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Abstract

Euler–Maclaurin formulas for a polytope express the sum of the values of a function over the lattice
points in the polytope in terms of integrals of the function and its derivatives over faces of the polytope or
its expansions. Exact Euler–Maclaurin formulas [A.G. Khovanskii, A.V. Pukhlikov, Algebra and Analysis
4 (1992) 188–216; S.E. Cappell, J.L. Shaneson, Bull. Amer. Math. Soc. 30 (1994) 62–69; C. R. Acad. Sci.
Paris Sér. I Math. 321 (1995) 885–890; V. Guillemin, J. Differential Geom. 45 (1997) 53–73; M. Brion,
M. Vergne, J. Amer. Math. Soc. 10 (2) (1997) 371–392] apply to exponential or polynomial functions;
Euler–Maclaurin formulas with remainder [Y. Karshon, S. Sternberg, J. Weitsman, Proc. Natl. Acad. Sci.
100 (2) (2003) 426–433; Duke Math. J. 130 (3) (2005) 401–434] apply to more general smooth func-
tions.

In this paper we review these results and present proofs of the exact formulas obtained by these authors,
using elementary methods. We then use an algebraic formalism due to Cappell and Shaneson to relate the
different formulas.
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1. Introduction

Let f be a polynomial in one variable. The classical Euler–Maclaurin formula (see [31, Chap-
ter XIV]) computes the sum of the values of f over the integer points in an interval in terms of
the integral of f over the interval and the values of f and of its derivatives at the endpoints of
the interval. The formula is almost three hundred years old [5,14,33]. We refer the readers to the
treatments by Wirtinger [44] and by Bourbaki [6].

A version of this formula that was generalized by Khovanskii and Pukhlikov to higher dimen-
sions (see [30]) involves variations of the interval. It reads

f (a) + f (a + 1) + · · · + f (b − 1) + f (b)

= Td

(
∂

∂h1

)
Td

(
∂

∂h2

)∣∣∣∣
h1=h2=0

b+h1∫
a−h2

f (x)dx, (1.1)

where a, b ∈ Z and

Td(D) = D

1 − e−D
= 1 + 1

2
D + 1

12
D2 − 1

720
D4 + · · · . (1.2)

The right-hand side of (1.1) is well defined because
∫ b+h1
a−h2

f (x)dx, as a function of h1 and h2,
is again a polynomial. We call this an exact formula, to distinguish it from Euler–Maclaurin
formulas with remainder, which apply to more general smooth functions.

In higher dimensions, one replaces the interval [a, b] by a polytope, that is, the convex hull
of a finite set of points in a vector space, or, equivalently, a bounded finite intersection of closed
half-spaces. We assume that our polytopes have nonempty interior. A polytope in Rn is called an
integral polytope, or a lattice polytope, if its vertices are in the lattice Zn. It is called simple if
exactly n edges emanate from each vertex. For example, a two dimensional polytope (a polygon)
is always simple. A tetrahedron and a cube are simple; a square-based pyramid and an octahedron
are not simple; see Fig. 1. A polytope with a non-singular fan is a simple polytope in which the
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Fig. 1.

Fig. 2.

edges emanating from each vertex lie along vectors that generate the lattice Zn. For example, in
Fig. 2, the triangle on the left has a non-singular fan, and that on the right does not (check its top
vertex).

We refer the reader to [2,17,26,45] for general background on convex polytopes.

Remark 1.1. A fan in Rn is a set of convex polyhedral cones emanating from the origin, such
that the intersection of any two cones in the set is a common face, and such that the face of any
cone in the set is itself a cone in the set. The fan of a polytope Δ ⊂ Rn consists of a set of cones
associated to the faces of Δ; for each face we take the cone generated by the inward normals to
the facets that meet at that face.

A convex polyhedral cone is non-singular if it can be generated by a set of vectors in Zn

which are part of a Z-basis of Zn. A fan is non-singular if each cone in the fan is non-singular.
The name “non-singular” comes from the theory of toric varieties; non-singular fans correspond
to non-singular toric varieties.

The terminology in the literature is inconsistent. A non-singular cone is also called “smooth
cone” and “unimodular cone.” Polytopes with non-singular fans are also called “non-singular
polytopes,” “smooth polytopes,” or “Delzant polytopes.” In our previous papers [24,25] we used
the terms “regular orthant” and “regular polytope” (not to be confused with the more common us-
age of this term as “platonic solid”). Other terms that have been suggested to us are “unimodular
polytope” or “torsion-free polytope.”

Khovanskii and Pukhlikov [29,30], following Khovanskii [27,28] (see also Kantor and Kho-
vanskii [22,23]), gave a formula for the sum of the values of a quasi-polynomial (polynomial
times exponential) function on the lattice points in a lattice polytope with non-singular fan.
This formula was further generalized to simple polytopes by Cappell and Shaneson [9–11,38],
and subsequently by Guillemin [18] and by Brion–Vergne [7,8]. Cappell–Shaneson and Brion–
Vergne [8] also work with polytopes that are not simple; in this paper we will restrict ourselves
to simple polytopes. Also see the explicit formulas in [39] and the survey [42]. When applied
to the constant function f ≡ 1, these formulas compute the number of lattice points in a simple
lattice polytope Δ in terms of the volumes of “expansions” of Δ. A sample of the literature on
the problem of counting lattice points in convex polytopes is [4,12,13,21,23,34–37,40]; see the
survey [3] and references therein.
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Remark 1.2. Khovanskii’s motivation came from algebraic geometry: a lattice polytope Δ with
non-singular fan determines a toric variety MΔ and a holomorphic line bundle LΔ → MΔ. The
quantization Q(MΔ) is interpreted as the space of holomorphic sections of LΔ and is com-
puted by the Hirzebruch–Riemann–Roch formula. The lattice points in Δ correspond to basis
elements of Q(MΔ). A simple polytope Δ still determines a toric variety, which now may have
orbifold singularities. Cappell and Shaneson derived their formula from their theory of charac-
teristic classes of singular algebraic varieties. Guillemin derived his formula by applying the
Kawasaki–Riemann–Roch formula to symplectic toric orbifolds. Brion and Vergne’s proof uses
Fourier analysis and is closer to Khovanskii and Pukhlikov’s original proof.

In this paper we present an elementary proof of the exact Euler–Maclaurin formulas that
follows the lines of the original Khovanskii–Pukhlikov proof, through a decomposition of the
polytope into an alternating sum of simple convex polyhedral cones. We then use an algebraic
formalism due to Cappell and Shaneson to explain the equivalence of the different formulas.

The proof of the exact Euler–Maclaurin formula for a simple convex polyhedral cone involves
the following ingredients: the summation of a geometric series, the change of variable formula for
integration, and Frobenius’ theorem that the average value of a non-trivial character of a finite
group is zero. (See Section 4.) The “polar decomposition” of the polytope into simple convex
polyhedral cones was proved in papers of Varchenko and Lawrence [32,40]. We present a short
direct proof of it. (See Section 3.)

From a simple polytope Δ with d faces one gets an expanded polytope Δ(h), for h =
(h1, . . . , hd), by parallel translating the hyperplanes containing the facets, see Eq. (5.2) below.
The integrals of a function f on Δ(h) and on its faces are functions of the d variables h1, . . . , hd .
The formulas of Khovanskii–Pukhlikov, Guillemin, and Brion–Vergne involve an application of
infinite order differential operators to these functions. The Cappell–Shaneson formula does not
involve expansions of the polytope. It is stated through a formalism that we call the Cappell–
Shaneson algebra. Their abstract formula translates to several different concrete formulas; each
of these involves applying differential operators to the function and integrating over faces of the
polytope. The relations in the Cappell–Shaneson algebra allow one to pass between the different
concrete formulas. In Section 6 we show how to incorporate expansions in h into the Cappell–
Shaneson formalism. In Section 7 we use a generalization of the “polar decomposition”, which
applies to polytopes with some facets removed, to prove that the Cappell–Shaneson formula is
equivalent to the Khovanskii–Pukhlikov formula in the case of polytopes with non-singular fans.

2. Euler–Maclaurin formulas in one dimension

In this section we present Euler–Maclaurin formulas for a ray and for an interval, in order to
illustrate arguments that generalize to higher dimensions.

The ODE for the exponential function. Let D = ∂
∂h

. Since

Dkeξh = ξkeξh,

for any formal power series F in one variable we have

F(D)eξh = F(ξ)eξh (2.1)



Y. Karshon et al. / Advances in Applied Mathematics 39 (2007) 1–50 5
in the ring of power series in two variables. It follows that, for any non-negative integer N ,

F(D)
(ξh)N

N ! = (
F(ξ)eξh

)〈N〉 (2.2)

where the superscript 〈N〉 denotes the N th term in the Taylor expansion in ξ . Under suitable
convergence conditions, (2.1) is an equality of functions. See [6].

Euler–Maclaurin formula for a ray. To conform with the topological literature, let us define
the Todd function by

Td(S) := S

1 − e−S
(2.3)

and the corresponding Todd operator in one variable by

Td(D).

Our general rule (2.1) gives

Td(D)eξh = Td(ξ)eξh

in the ring of formal power series. If |ξ | < 2π , so that the power series for Td(ξ) converges, we
can regard this last equation as an equality of functions. Namely, the left-hand side is the limit of
the functions obtained by applying the partial sums of the infinite series Td(D) to the exponential
function. If ξ 	= 0, we can re-write this as

Td(D)
eξh

ξ
= eξh

1 − e−ξ
. (2.4)

If ξ > 0, the geometric series expansion

1 + e−ξ + e−2ξ + e−3ξ + · · · = 1

1 − e−ξ

converges, as does the integral

h∫
−∞

eξx dx = eξh

ξ
,

so (2.4) gives

Td

(
∂

∂h

) h∫
−∞

eξx dx

∣∣∣∣
h=0

=
0∑

n=−∞
eξn. (2.5)

This is the Euler–Maclaurin formula for the ray (−∞,0], with the function f (x) = eξx .
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Polar decomposition of an interval. In the one dimensional case, the “polar decomposition”
becomes the relation

1I (x) = 1Cb
(x) − 1C�

a
(x) (2.6)

between the characteristic functions of the interval I = [a, b], the ray Cb = (−∞, b], and the
ray C�

a = (−∞, a) (which is obtained from the ray Ca = [a,∞) by flipping its direction and
removing its vertex).

Euler–Maclaurin on finite intervals. Let I = [a, b] be a closed interval with integer endpoints.
For h = (h1, h2), consider the expanded interval

I (h) := [a − h2, b + h1].

Summation and integration of the function

f (x) = eξx

gives

I(h, ξ) :=
∫

I (h)

eξx dx = eξ(b+h1)

ξ
− eξ(a−h2)

ξ
(2.7)

for all ξ such that ξ 	= 0, and

S(ξ) :=
∑

x∈I∩Z

eξx = eξb

1 − e−ξ
+ eξa

1 − eξ
(2.8)

for all ξ ∈ C such that eξ 	= 1. An indirect proof of (2.7) and (2.8), which generalizes to higher
dimensions, uses the “polar decomposition” (2.6): if Re ξ > 0, then

b∑
k=−∞

eξx dx = eξb

1 − e−ξ
and

a−1∑
k=−∞

eξx dx = eξ(a−1)

1 − e−ξ
= − eξa

1 − eξ
.

Since S(ξ) is the difference of these two infinite sums, (2.8) holds whenever Re ξ > 0. Because
the set {ξ ∈ C | eξ 	= 1} is connected, by analytic continuation (2.8) holds for all ξ in this set.
A similar argument shows that (2.7) holds for all ξ in the set {ξ ∈ C | ξ 	= 0}.

At this point one can proceed in several ways.

Formal approach. One can deduce an Euler–Maclaurin formula for polynomial functions di-
rectly from (2.7) and (2.8). This is the one dimensional case of the approach of Brion–Vergne.
From (2.7) we get

ξI(h, ξ) = eξ(b+h1) − eξ(a−h2) (2.9)



Y. Karshon et al. / Advances in Applied Mathematics 39 (2007) 1–50 7
for all ξ 	= 0, and, by continuity, also for ξ = 0. From (2.8) we get

ξS(ξ) = Td(ξ)eξb − Td(−ξ)eξa (2.10)

for all ξ such that eξ 	= 1 and, by continuity, also for ξ = 0. Comparing the Taylor coefficients
with respect to ξ on the left- and right-hand sides of (2.9) and of (2.10), we get

ξ

∫
I (h)

(ξx)N

N ! dx = (ξ(b + h1))
N+1

(N + 1)! − (ξ(a − h2))
N+1

(N + 1)! (2.11)

and

ξ
∑

x∈I∩Z

(ξx)N

N ! = (
eξbTd(ξ) − eξaTd(−ξ)

)〈N+1〉
, (2.12)

where the superscript 〈N + 1〉 denotes the summand that is homogeneous of degree N + 1 in ξ .
Since Td( ∂

∂hi
) = 1 + a multiple of ∂

∂hi
,

Td

(
∂

∂h1

)
Td

(
∂

∂h2

)∣∣∣∣
h=0

ξ

∫
I (h)

(ξx)N

N ! dx

= Td

(
∂

∂h1

)∣∣∣∣
h1=0

(ξ(b + h1))
N+1

(N + 1)! − Td

(
∂

∂h2

)∣∣∣∣
h2=0

(ξ(a − h2))
N+1

(N + 1)! by (2.11)

= (
Td(ξ)eξb − Td(−ξ)eξa

)〈N+1〉 by (2.2)

= ξ
∑

x∈I∩Z

(ξx)N

N ! by (2.12).

This gives the Euler–Maclaurin formula

Td

(
∂

∂h1

)
Td

(
∂

∂h2

)∣∣∣∣
h=0

∫
I (h)

f =
∑

x∈I∩Z

f (2.13)

for the function f (x) = ξN+1xN

N ! , whenever ξ 	= 0. Because multiplication by N ! and division by
the non-zero constant ξN+1 commutes with summation, with integration, and with the infinite
order differential operator Td( ∂

∂h1
)Td( ∂

∂h2
), we deduce the Euler–Maclaurin formula (2.13) for

the monomials f (x) = xN , and hence for all polynomials.

Approach through Euler–Maclaurin for exponentials. In the original approach of Khovanskii–
Pukhlikov, one deduces an Euler–Maclaurin formula for polynomials, and, more generally, for
(quasi-)polynomials, from a formula for exponentials. (A quasi-polynomial is a sum of products
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of exponentials by polynomials.) In the one dimensional case, the Euler–Maclaurin formula for
exponentials asserts that

Td

(
∂

∂h1

)
Td

(
∂

∂h2

)∣∣∣∣
h=0

∫
I (h)

eξx =
∑
I∩Z

eξx, (2.14)

or, equivalently, that

Td

(
∂

∂h1

)
Td

(
∂

∂h2

)∣∣∣∣
h=0

I(h, ξ) = S(ξ).

This formula is true for all ξ such that |ξ | < 2π . For ξ in the punctured disk

{
ξ ∈ C

∣∣ ξ 	= 0, |ξ | < 2π
}
, (2.15)

the formula follows immediately from (2.6)–(2.8), and from the facts that

Td

(
∂

∂h1

)∣∣∣∣
h=0

eξ(b+h1)

ξ
= Td(ξ)

eξb

ξ
= eξb

1 − e−ξ
(2.16)

and

Td

(
∂

∂h2

)∣∣∣∣
h=0

eξ(a−h2)

ξ
= Td(−ξ)

eξa

ξ
= − eξa

1 − eξ
. (2.17)

(If Re ξ 	= 0 then (2.16) is an Euler–Maclaurin formula for the ray (−∞, b] or [b,∞), and simi-
larly for (2.17). However, (2.16) and (2.17) hold for all ξ in the set (2.15).)

In (2.16) and (2.17), the left-hand sides converge to the right-hand sides uniformly in ξ on
compact subsets of the punctured disk (2.15). This is because the Taylor series of Td(·) con-

verges uniformly on compact subsets of the disk {|ξ | < 2π}, and the functions eξb

ξ
and eξa

ξ
are

bounded on compact subsets of the punctured disk (2.15). It follows that in (2.14) the left-hand
side converges to the right-hand side uniformly in ξ on compact subsets of (2.15). But the right-
hand side and the partial sums of the left-hand side of (2.14) are analytic in ξ for all |ξ | < 2π .
It follows from the Cauchy integral formula that the left-hand side of (2.14) converges to the
right-hand side, uniformly on compact subsets, on all of {ξ | |ξ | < 2π}.

It further follows that the infinite sum on the left-hand side of (2.14) can be differentiated with
respect to ξ term by term. Hence, the infinite order differential operator on the left-hand side of
(2.14) commutes with differentiation with respect to ξ . Since

∂k

∂ξk

∫
I (h)

eξx dx =
∫

I (h)

xkeξx dx and
∂k

∂ξk

∑
I∩Z

eξx =
∑
I∩Z

xkeξx,

we get the Euler–Maclaurin formula (2.13) for the function f (x) = xkeξx by differentiating the
left- and right-hand sides of (2.14) k times with respect to ξ .
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Approach through Euler–Maclaurin for rays. Yet another approach is to deduce the Euler–
Maclaurin formula for an interval directly from the Euler–Maclaurin formula for a ray. See
Appendix B.

3. Polar decomposition of a simple polytope

In this section we describe a decomposition of a simple polytope into simple convex polyhe-
dral cones. These cones have apexes at the vertices of the polytope. Each is generated by flipping
some of the edge vectors according to a choice of “polarization.” so that they all point roughly in
the same direction, and removing corresponding facets. For an illustration of this decomposition
in the case of a triangle, see Fig. 3.

In this section we present a short direct proof of the polar decomposition of a simple poly-
tope, similar to the one that we gave in [25]. In Section 7 (see (7.4)) we give a variant of this
decomposition that applies to a polytope with some facets removed.

Let Δ be a polytope in an n dimensional vector space V and F a face of Δ. The tangent cone
to Δ at F is

CF = {
y + r(x − y)

∣∣ r � 0, y ∈ F, x ∈ Δ
}
.

(Warning: other authors define the tangent cone as {r(x − y) | r � 0, y ∈ F, x ∈ Δ}.)

Example 3.1. Consider the triangle in R2 with vertices (0,0), (2,0), and (0,1). The tangent cone
at the hypotenuse is the (closed) half-plane consisting of all points lying below the line extending
the hypotenuse; the tangent cone at the top vertex consists of all rays subtended from this vertex
and pointing in the direction of the triangle; if F is the face consisting of the triangle itself, then
the tangent cone CF is the whole plane. See Fig. 4.

Fig. 3. The polar decomposition theorem.

Fig. 4. Triangle and tangent cones.
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Let σ1, . . . , σd denote the facets (codimension one faces) of Δ. (Warning: Cappell and Shane-
son use the symbols σi to denote the dual objects to the facets, namely, the one dimensional
cones in the corresponding fan.) Assume that Δ is simple, so that exactly n facets intersect at
each vertex. Let Vert(Δ) denote the set of vertices of Δ. For each vertex v ∈ Vert(Δ), let

Iv ⊂ {1, . . . , d}

encode the set of facets that meet at v, so that

i ∈ Iv if and only if v ∈ σi.

Let αi,v , for i ∈ Iv , be edge vectors emanating from v; concretely, assume that αi,v lies along
the unique edge at v which is not contained in the facet σi . (At the moment, the αi,v are only
determined up to positive scalars.) In terms of the edge vectors, the tangent cone at a vertex v is

Cv =
{
v +

∑
j∈Iv

xjαj,v

∣∣∣ xj � 0 for all j

}
.

The polar decomposition theorem relates the characteristic function of the polytope to the
characteristic functions of convex polyhedral cones. As in the one dimensional case (2.6), we
cannot just consider the tangent cones, but we must make two modifications. First, we must
“polarize” the tangent cones by flipping some of the edge vectors. Second, we must remove
some facets.

To carry this out, we choose a vector ξ ∈ V ∗ such that the pairings 〈ξ,αi,v〉 are all non-zero;
we call it a “polarizing vector” and think of it as defining the “upward” direction in V . We
“polarize” the edge vectors so that they all point “down”: for each vertex v of Δ and each edge
vector αi,v emanating from v, we define the corresponding polarized edge vector to be

α#
i,v =

{
αi,v if 〈ξ,αi,v〉 < 0,

−αi,v if 〈ξ,αi,v〉 > 0.
(3.1)

Let

ϕv = {
j ∈ Iv

∣∣ 〈ξ,αj,v〉 > 0
}

denote the set of “upward” edge vectors emanating from v, that is, those edge vectors that get
flipped in the polarization process (3.1). The polarized tangent cone to Δ at v is obtained from
the tangent cone Cv by flipping the j th edge and removing the j th facet for each j ∈ ϕv :

C#
v =

{
v +

∑
j∈Iv

xjα
#
j,v

∣∣∣∣ xj � 0 if j ∈ Iv \ ϕv, and
xj > 0 if j ∈ ϕv

}
. (3.2)

Recall that the characteristic function of a set A ⊂ Rn is

1A(x) =
{

1, x ∈ A,

0, x /∈ A.
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Theorem 3.2 (Lawrence, Varchenko).

1Δ(x) =
∑

v

(−1)|ϕv |1C#
v
(x). (3.3)

This decomposition was proved by Lawrence and Varchenko; see [32,40,41]. A version for
non-simple polytopes appeared in [20].

In preparation for our proof of Theorem 3.2 we introduce some notation.
Let E1, . . . ,EN be all the different hyperspaces in V ∗ that are perpendicular to edges of Δ

under the pairing between V and V ∗. That is,

{Ei | 1 � i � N} = {
kerαj,v

∣∣ v ∈ Vert(Δ), j ∈ Iv

}
. (3.4)

(For instance, if no two edges of Δ are parallel, then the number N of such hyperplanes is equal
to the number of edges of Δ.) A vector ξ can be taken to be a “polarizing vector” if and only if
it belongs to the complement

V ∗
Δ = V ∗ \ (E1 ∪ · · · ∪ EN). (3.5)

The connected components of this complement are called chambers. The signs of the pairings
〈ξ,αi,v〉 only depend on the chamber containing ξ .

Remark 3.3. For a Hamiltonian action of a torus T on a symplectic manifold M , one similarly
obtains chambers in the Lie algebra t of T from the isotropy weights αj,p at the fixed points
for the action. When M is a toric variety corresponding to the polytope Δ, this gives the same
notion of chambers as we have just described. For a flag manifold M ∼= G/T , where G is a
compact Lie group and T is a maximal torus, the isotropy weights αj,p are the roots of G, and
the corresponding chambers are precisely the interiors of the Weyl chambers.

Now suppose that ξ belongs to exactly one of the “walls” in (3.4). Let e be an edge of Δ that
is perpendicular to this wall. Let

Ie ⊂ {1, . . . , d}

correspond to the facets whose intersection is e, so that

i ∈ Ie if and only if e ⊂ σi.

Let v be an endpoint of e. The edge vectors at v are αj,v , for j ∈ Ie , and an edge vector that
lies along e, which we denote αe,v . Note that

〈ξ,αe,v〉 = 0.

Define

ϕe = {
j ∈ Ie

∣∣ 〈ξ,αj,v〉 > 0
}
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and, for each j ∈ Ie,

α#
j,v =

{
αj,v if 〈ξ,αj,v〉 < 0,

−αj,v if 〈ξ,αj,v〉 > 0.

Define the polarized tangent cone to Δ at the edge e to be

C#
e =

{
v + xeαe +

∑
j∈Ie

xjα
#
j,v

∣∣∣∣∣
xe ∈ R,

xj � 0 if j ∈ Ie \ ϕe, and
xj > 0 if j ∈ ϕe.

}

Let v′ be the other endpoint of e. We can normalize the edge vectors such that αe,v′ = −αe,v and
αj,v − αj,v′ ∈ Rαe,v . The set ϕe and the cone C#

e are independent of the choice of endpoint v

of e.

Proof of Theorem 3.2. Pick any polarizing vector ξ ∈ V ∗
Δ. Let v ∈ Vert(Δ) be the vertex for

which 〈ξ, v〉 is maximal. Then none of the αj,v’s are flipped, and so C�
v = Cv . For any other

vertex u ∈ Vert(Δ), at least one of the αj,u’s is flipped, and so C�
u ∩ Cu = ∅. So the polytope Δ

is contained in the polarized tangent cone C#
v at v and is disjoint from the polarized tangent cone

C#
u for all other u ∈ Vert(Δ), and Eq. (3.3), when evaluated at x ∈ Δ, reads 1 = 1.
Suppose now that x 	∈ Δ. The set of vectors ξ which separate x from Δ, that is, such that

〈ξ, x〉 > max
y∈Δ

〈ξ, y〉, (3.6)

is open in V ∗. Choose a polarizing vector ξ ∈ V ∗
Δ that satisfies (3.6). Then x is not in the polarized

tangent cone C#
v for any v ∈ Vert(Δ). Equation (3.3) for the polarizing vector ξ , when evaluated

at x, reads 0 = 0.
We finish by showing that, when the polarizing vector ξ crosses a single wall Ej in V ∗, the

right-hand side of (3.3) does not change.
If Ej is not perpendicular to any of the edge vectors at v, the signs of 〈ξ,αj,v〉 do not change,

so the polarized tangent cone C#
v does not change as ξ crosses the wall. The vertices whose

contributions to the right-hand side of (3.3) change as ξ crosses Ej come in pairs, because each
edge of Δ that is perpendicular to Ej has exactly two endpoints.

For each such vertex v, denote by Sv(x) and S′
v(x) its contributions to the right-hand side of

(3.3) before and after ξ crossed Ej . Let e be an edge perpendicular to Ej and v an endpoint
of e. Let S#

e(x) be the characteristic function of the polarized tangent cone C#
e corresponding

to the value of ξ as it crosses Ej . The difference Sv(x) − S′
v(x) is plus/minus S#

e(x). For the
other endpoint v of e, the difference Sv(x) − S′

v(x) is minus/plus S#
e(x). So the differences

Sv(x) − S′
v(x), for the two endpoints v of e, sum to zero. �

Remark 3.4. If we multiply both sides of (3.3) by Lebesgue measure dx we obtain a formula for
1Δ dx supported on Δ in terms of an alternating sum of the measures 1C#

v
(x) dx. This formula

(which is a special case of “Filliman duality” [15]) allows us to express the integral of any
compactly supported continuous function f over the polytope in terms of its integrals over the
cone C#

v . From the point of view of measure theory, the missing facets of C#
v are irrelevant as

they have measure zero; what is important is the change in the direction of some of the edges at
a vertex and the sign (−1)|ϕv | associated to the vertex.
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Remark 3.5. If the Δ is a polytope with non-singular fan, then (up to factors of 2π ) the measure
1Δ dx is the Duistermaat–Heckman measure of the associated toric manifold, and the vertices
of Δ are the images of the fixed points of the torus acting on this manifold. In this case, the
equality (3.3) multiplied by Lebesgue measure dx becomes a special case of the Guillemin–
Lerman–Sternberg (G-L-S) formula. The G-L-S formula expresses the Duistermaat–Heckman
measure for a Hamiltonian torus action in terms of an alternating sum of the Duistermaat–
Heckman measure associated to the linearized action along the components of the fixed point
set. See [19, Section 3.3]. This formula, in turn, can be deduced from the fact that a Hamiltonian
torus action is cobordant (in an appropriate sense) to a union of its linearized actions along the
components of its fixed point set. See [16, Chapter 4]. The role of the polarizing vector ξ ∈ V ∗
is played by a vector η in the Lie algebra t such that the η-component Φη of the moment map Φ

is proper and bounded from below.

4. Sums and integrals over simple polytopes

Formulas for sums and integrals of exponential functions over simple polytopes appeared in
[7,8]. In this section we deduce such formulas from the “polar decomposition.”

We work in a vector space V with a lattice VZ. One may identify V with Rn and VZ with Zn,
but we prefer to use notation that is independent of the choice of a basis. The dual lattice is

V ∗
Z = {

u ∈ V ∗ ∣∣ 〈u,α〉 ∈ Z for all α ∈ VZ

}
. (4.1)

Remark 4.1. When our polytope is viewed as associated to a toric variety, the vector space V is
the dual t∗ of the Lie algebra t of a torus T , the lattice VZ is the weight lattice in t∗, and V ∗

Z is
the kernel of the exponential map t → T .

Let Cv be a simple convex polyhedral cone in V , that is, a set of the form

Cv =
{

v +
n∑

j=1

xjαj

∣∣∣ xj � 0 for all j

}
(4.2)

where α1, . . . , αn are a basis of V . Equivalently, we can write

Cv = {
x

∣∣ 〈ui, x〉 + λj � 0, j = 1, . . . , n
}
, (4.3)

where u1, . . . , un are a basis of V ∗. We can pass from one description to another by setting
u1, . . . , un to be the dual basis to α1, . . . , αn and vice versa. Geometrically, the vectors ui ∈ V ∗
are the inward normal vectors to the facets of Cv , and they encode the slopes of the facets; the
real numbers λi then determine the locations of the facets; the “edge vectors” αi generate the
edges of Cv .

A priori, the ui ’s and the αi ’s are only determined up to multiplication by positive scalars. To
fix a particular normalization, we assume that the cone Cv is rational, that is, that the αi ’s can be
chosen to be elements of the lattice VZ, or, equivalently, the ui ’s can be chosen to be elements of
V ∗

Z . We choose the normal vectors ui to be primitive lattice elements, which means that each ui

is in V ∗
Z and is not equal to the product of an element of V ∗

Z by an integer greater than one. We
choose α1, . . . , αn to be the dual basis to u1, . . . , un.
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Fig. 5.

Although the ui ’s are primitive lattice elements, they may generate a lattice that is coarser
than V ∗

Z . The αi ’s then generate a lattice that is finer than VZ; in particular, the αi ’s themselves
might not be in VZ. See Fig. 5. The cone Cv is non-singular if the ui ’s generate the lattice V ∗

Z ,
or, equivalently, the αi ’s generate VZ.

Let dx denote Lebesgue measure on V , normalized so that the measure of V/VZ is one.
Consider an exponential function f :V → C given by

f (x) = e〈ξ,x〉, (4.4)

where ξ ∈ V ∗
C is such that

Re〈ξ,αi〉 < 0 for all i.

Then the integral of f over the cone Cv and the sum of f over the lattice points in Cv both
converge.

If the cone Cv is non-singular and v is in the lattice VZ then the map

(t1, . . . , tn) �→ v +
∑

tj αj

sends the standard positive orthant

Rn+ = {
(t1, . . . , tn)

∣∣ tj � 0 for all j
}

onto Cv and sends Rn+ ∩ Zn onto Cv ∩ VZ. In particular, it takes the standard Lebesgue measure
on Rn to the measure dx on V . So

∫
Cv

f (x) dx =
∞∫

0

· · ·
∞∫

0

e〈ξ,v+∑
tj αj 〉 dt1 · · ·dtn

= e〈ξ,v〉
n∏

j=1

∞∫
0

et〈ξ,αj 〉 dtj

= e〈ξ,v〉
n∏

− 1

〈ξ,αj 〉 (4.5)

j=1
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and

∑
Cv∩VZ

f =
∞∑

k1=0

· · ·
∞∑

kn=0

e〈ξ,v+∑
kj αj 〉

= e〈ξ,v〉
n∏

j=1

∞∑
kj =0

(
e〈ξ,αj 〉)kj

= e〈ξ,v〉
n∏

j=1

1

1 − e〈ξ,αj 〉 . (4.6)

A crucial ingredient in extending the Khovanskii–Pukhlikov formula to the case of simple
polytopes is an extension of the formulas (4.5) and (4.6) to the case that the cone Cv is not
non-singular.

We associate to Cv the finite abelian group

Γ = V ∗
Z/ spanZ{ui}.

Note that the group Γ is trivial if and only if the cone Cv is non-singular. Also note that e2πi〈γ,x〉
is well defined whenever γ ∈ Γ and x ∈ spanZ{αi}.

Remark. The toric variety associated to the cone is Cn/Γ , where Γ acts on Cn through the
homomorphism Γ → (S1)d given by γ �→ (e2πi〈γ,α1〉, . . . , e2πi〈γ,αn〉).

We have the following generalization of formula (4.6). Suppose that the vertex of Cv satisfies
v ∈ spanZ{αi}. Then

∑
x∈Cv∩VZ

e〈ξ,x〉 = e〈ξ,v〉 · 1

|Γ |
∑
γ∈Γ

e2πi〈γ,v〉
n∏

j=1

1

1 − e2πi〈γ,αj 〉e〈ξ,αj 〉 . (4.7)

Proof. The main step is to transform the left-hand side of (4.7) into a summation over elements
of the finer lattice spanZ{αj }. For each x ∈ spanZ{αi},

γ �→ e2πi〈γ,x〉 (4.8)

is a homomorphism from Γ to S1, and it is trivial if and only if x ∈ VZ. Frobenius’ theorem
asserts that, for a finite group Γ , the sum of the values of a non-trivial homomorphism Γ → S1

is zero. It follows that, for x ∈ spanZ{αi},
1

|Γ |
∑
γ∈Γ

e2πi〈γ,x〉 =
{

1 if x ∈ VZ;

0 otherwise.
(4.9)

By (4.9), the left-hand side of (4.7) is equal to

∑
x∈C ∩span {α }

e〈ξ,x〉 · 1

|Γ |
∑
γ∈Γ

e2πi〈γ,x〉. (4.10)

v Z j
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Writing

x = v +
∑

kjαj ,

this becomes

e〈ξ,v〉 · 1

|Γ |
∑
γ∈Γ

e2πi〈γ,v〉
n∏

j=1

∞∑
k=0

e2πik〈γ,αj 〉ek〈ξ,αj 〉,

which is equal to the right-hand side of (4.7) by the formula for the sum of a geometric series. �
We also have the following generalization of formula (4.5).

∫
Cv

e〈ξ,x〉 dx = e〈ξ,v〉 · 1

|Γ |
n∏

j=1

− 1

〈ξ,αj 〉 . (4.11)

Proof. We perform the change of variable x = v + ∑n
j=1 tj αj . Then x ∈ Cv if and only if

t = (t1, . . . , tn) belongs to the positive orthant Rn+. The inverse transformation is

tj = 〈uj , x − v〉;

its Jacobian is [V ∗
Z : spanZ uj ] = |Γ |. So

∫
Cv

e〈ξ,x〉 dx = 1

|Γ |
∫

Rn+

e〈ξ,v+∑
tj αj 〉 dt1 · · ·dtn

= e〈ξ,v〉 · 1

|Γ |
n∏

j=1

∞∫
0

et〈ξ,αj 〉 dt

= e〈ξ,v〉 · 1

|Γ |
n∏

j=1

− 1

〈ξ,αj 〉 . �

To apply formulas (4.7) and (4.11) to the “polar decomposition” of a polytope, we need to
consider “polarized cones.” Suppose that ξ ∈ V ∗

C satisfies Re〈ξ,αj 〉 	= 0 for all j . As in Section 3,
let

ϕv = {
j

∣∣ Re〈ξ,αj 〉 > 0
};

for each j , let

α
�
j =

{
αj if j /∈ ϕv ,

−α if j ∈ ϕ ;
(4.12)
j v
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and let

C�
v =

{
v +

n∑
j=1

xjα
�
j

∣∣∣∣∣ xj � 0 if j /∈ ϕv, and
xj > 0 if j ∈ ϕv.

}
.

Then the integral of f over C�
v and the sum of f over the lattice points in C�

v converge. We
compute this integral and this sum:

∫
C�

v

e〈ξ,x〉 dx = e〈ξ,v〉 · 1

|Γ |
n∏

j=1

− 1

〈ξ,α#
j 〉

by (4.11)

= (−1)|ϕv |e〈ξ,v〉 · 1

|Γ |
n∏

j=1

− 1

〈ξ,αj 〉 by (4.12). (4.13)

Because v ∈ spanZ{αj },

C�
v ∩ (

spanZ{αj }
) =

{
v +

∑
mjα

�
j

∣∣∣∣∣
mj ∈ Z,

mj � 0 if j /∈ ϕv,

mj > 0 if j ∈ ϕv

}

=
{
vshift +

∑
mjα

�
j

∣∣∣∣ mj ∈ Z,

mj � 0 for all j

}

where

vshift = v +
∑
j∈ϕv

α
�
j . (4.14)

So

C�
v ∩ VZ = C�

v,shift ∩ VZ (4.15)

where

C�
v,shift =

{
vshift +

∑
xjα

�
j

∣∣∣ xj � 0 for all j
}
.

We have

∑
x∈C�

v∩VZ

e〈ξ,x〉 =
∑

x∈C�
v,shift∩VZ

e〈ξ,x〉 by (4.15)

= e〈ξ,vshift〉 · 1

|Γ |
∑
γ∈Γ

e2πi〈γ,vshift〉
n∏

j=1

1

1 − e
2πi〈γ,α

�
j 〉

e
〈ξ,α

�
j 〉 by (4.7)

= e〈ξ,v〉 · 1

|Γ |
∑

e2πi〈γ,v〉 ∏ 1

1 − e2πi〈γ,αj 〉e〈ξ,αj 〉

γ∈Γ j /∈ϕv
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×
∏
j∈ϕv

e−2πi〈γ,αj 〉e−〈ξ,αj 〉

1 − e−2πi〈γ,αj 〉e−〈ξ,αj 〉 by (4.14) and (4.12)

= (−1)|ϕv |e〈ξ,v〉 · 1

|Γ |
∑
γ∈Γ

e2πi〈γ,v〉 ∏ 1

1 − e2πi〈γ,αj 〉e〈ξ,αj 〉 (4.16)

by applying the relation

ex

1 − ex
= − 1

1 − e−x

to x = −2πi〈γ,αj 〉 − 〈ξ,αj 〉 for j ∈ ϕv .
We can now reproduce Brion–Vergne’s formulas for simple polytopes. Let Δ ⊂ V be a simple

polytope. Suppose that ξ ∈ V ∗
C satisfies Re〈ξ,αj,v〉 	= 0 for all v ∈ Vert(Δ) and all j ∈ Iv . With

the notation of Section 3,

∫
Δ

e〈ξ,x〉 dx =
∑

v∈Vert(Δ)

(−1)|ϕv |
∫

C#
v

e〈ξ,x〉 dx by (3.3)

=
∑

v∈Vert(Δ)

e〈ξ,v〉 · 1

|Γv|
∏
j∈Iv

− 1

〈ξ,αj,v〉 by (4.13). (4.17)

Similar formulas appeared in [7, Proposition 3.10] and [8, p. 801, Theorem, part (ii)].
Also,

∑
x∈Δ∩VZ

e〈ξ,x〉 =
∑

v∈Vert(Δ)

(−1)|ϕv | ∑
x∈C#

v∩VZ

e〈ξ,x〉 by (3.3)

=
∑

v∈Vert(Δ)

e〈ξ,v〉 · 1

|Γv|
∑
γ∈Γv

e2πi〈γ,v〉 ∏
j∈Iv

1

1 − e2πi〈γ,αj,v〉e〈ξ,αj,v〉 by (4.16)

=
∑

v∈Vert(Δ)

e〈ξ,v〉Tdv

({−〈ξ,αj,v〉
}) · 1

|Γv|
∏
j∈Iv

− 1

〈ξ,αj,v〉 (4.18)

where

Tdv(S) =
∑
γ∈Γv

e2πi〈γ,v〉 ∏
j∈Iv

Sj

1 − e2πi〈γ,αj,v〉e−Sj
for S = {Sj }j∈Iv . (4.19)

Similar formulas appeared in [7, Proposition 3.9] and [8, p. 801, Theorem, part (iii)].

Remark 4.2. We proved (4.17) for ξ outside the real hyperplanes

Re〈ξ,αj,v〉 = 0, v ∈ Vert(Δ), j ∈ Iv (4.20)



Y. Karshon et al. / Advances in Applied Mathematics 39 (2007) 1–50 19
in V ∗
C . However, the left-hand side of (4.17) is analytic for all ξ ∈ V ∗

C , and the right-hand side is
analytic outside the complex hyperplanes

〈ξ,αj,v〉 = 0.

By analytic continuation (4.17) continues to hold for all ξ outside these complex hyperplanes.
Similarly, we proved (4.18) for ξ outside the real hyperplanes (4.20), but by analytic continuation
it remains true for all ξ outside the complex hyperplanes

〈ξ,αj,v〉 = 2πi〈y,αj,v〉, y ∈ V ∗
Z . (4.21)

(Notice that these complex hyperplanes are contained in the real hyperplanes (4.20).) We are
grateful to A. Khovanskii for calling our attention to this approach.

Remark 4.3. Note that the function Tdv(S) is analytic on the polydisk

|Sj | < bj , j ∈ Iv,

in CIv , where

bj = min
y∈V ∗

Z〈y,αj,v〉	=0

{∣∣2π〈y,αj,v〉
∣∣}.

5. Euler–Maclaurin formulas for a simple polytope

In this section we present Euler–Maclaurin formulas for simple lattice polytopes in arbitrary
dimensions. As in the previous section, we work with an n dimensional vector space V with a
lattice VZ. Let Δ be a convex polytope in V with d facets, given by

Δ =
d⋂

i=1

{
x

∣∣ 〈x,ui〉 + λi � 0
}
. (5.1)

The vectors ui ∈ V ∗ are inward normal vectors to the facets, and they encode the slopes of the
facets; the real numbers λi determine the location of the facets. As before, we assume that the
slopes of the facets are rational, and we choose the normal vectors ui to be primitive elements
of the dual lattice V ∗

Z . We assume that the polytope Δ is simple, meaning that exactly n facets
intersect at each vertex. We also assume that the λi ’s are integers.

Remark 5.1. If the vertices of Δ are lattice points, the λi ’s are integers. If Δ has a non-singular
fan and the λi ’s are integers, then the vertices of Δ are lattice points. However, if Δ is simple
but does not have a non-singular fan, its vertices might not be lattice points even if the λi are all
integers.

For h near 0, the expanded polytope

Δ(h) =
d⋂

i=1

{
x ∈ V

∣∣ 〈x,ui〉 + λi + hi � 0
}

(5.2)

is obtained from Δ by shifting the half-spaces defining its facets without changing their slopes.
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As before, we normalize Lebesgue measure on V so that a fundamental domain with respect
to the lattice VZ has measure one. The integral of a function f over the expanded polytope Δ(h)

is a function of h1, . . . , hd .
For a polynomial P in d variables, the expression

P

(
∂

∂h1
, . . . ,

∂

∂hd

)∣∣∣∣
h=0

∫
Δ(h)

f (5.3)

makes sense if the integral is a smooth function of h for h near 0. If P is a power series in d

variables, the expression (5.3) makes sense if the resulting series converges. If P is an analytic
function in d variables, we interpret the expression (5.3) by expanding P into its Taylor series
about the origin.

In what follows, the function f can be taken to be the product of a polynomial function with
an exponential function of the form e〈ξ,x〉 where ξ ∈ V ∗

C is sufficiently small.

Khovanskii–Pukhlikov’s formula for a polytope with a non-singular fan. The formula of Kho-
vanskii and Pukhlikov (see Section 4 of [30]), translated to our notation, is the following formula:

∑
Δ∩VZ

f = Td

(
∂

∂h1

)
· · ·Td

(
∂

∂hd

)∣∣∣∣
h=λ

∫
Δ(h)

f, (5.4)

where the polytope Δ is integral and has a non-singular fan.

Finite groups associated to the faces of a simple rational polytope. The facets of the polytope Δ

are

σi = {
x ∈ Δ

∣∣ 〈ui, x〉 + λi = 0
}
, i = 1, . . . , d.

Because the polytope Δ is simple, each face F of Δ can be uniquely described as an intersection
of facets. We let IF ⊂ {1, . . . , d} denote the subset such that

F =
⋂
i∈IF

σi .

The number of elements in IF is equal to the codimension of F . The relation

F �→ IF

is order (inclusion) reversing.
For each vertex v of Δ, the vectors

ui, i ∈ Iv,

form a basis of V ∗. Let

αi,v, i ∈ Iv,
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be the dual basis. The αi,v’s are edge vectors at v, that is, they point in the directions of the edges
emanating from v.

The vector space VF normal to a face F is the quotient of V by TF = {r(x − y) | x, y ∈ F,

r ∈ R}. Its dual is the subspace

V ∗
F := span{uj | j ∈ IF } (5.5)

of V ∗. Let αj,F , j ∈ IF , be the basis of VF that is dual to the basis uj , j ∈ IF , of V ∗
F .

To each face F of Δ we associate a finite abelian group ΓF in the following way. The lattice

spanZ{ui | i ∈ IF } ⊂ V ∗
F ∩ V ∗

Z

is a sublattice of V ∗
F ∩ V ∗

Z of finite index. The finite abelian group associated to the face F is the
quotient

ΓF := (
V ∗

F ∩ V ∗
Z

)
/ spanZ{ui | i ∈ IF }. (5.6)

For each γ ∈ ΓF and j ∈ IF , the pairing 〈γ,αj,F 〉 is well defined modulo 1, so

e2πi〈γ,αj,F 〉

is well defined.

Remark 5.2. The group ΓF measures the singularity of the toric variety associated to Δ along
the stratum corresponding to F .

If F ⊆ E are faces of Δ, so that IE ⊆ IF , then {ui | i ∈ IE} is a subset of {ui | i ∈ IF }. Because
these sets are bases of V ∗

E and V ∗
F , we have

V ∗
E ⊆ V ∗

F ,

and

V ∗
E ∩ spanZ{ui | i ∈ IF } = spanZ{ui | i ∈ IE}.

Hence, the natural map from ΓE to ΓF is one-to-one, and provides us with a natural inclusion
map:

if F ⊆ E then ΓE ⊆ ΓF .

We define

Γ
�
F = ΓF \

⋃
faces E such that E�F

ΓE. (5.7)

Finally, note that, for each face F and element γ ∈ ΓF , the number e−2πi〈γ,x〉 is the same for
all x ∈ F ; we denote this number

e−2πi〈γ,F 〉.
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Guillemin and Brion–Vergne formulas for a simple polytope. On any linear subspace A of V

with rational slope we normalize Lebesgue measure so that a fundamental domain with respect to
the lattice A∩VZ has measure one. We shift this measure to any affine translate of A. Integration
over each face F of Δ is defined with respect to these measures.

For each face F of Δ, let

F(h) = Δ(h) ∩
⋂
i∈IF

{
x

∣∣ 〈ui, x〉 + λi + hi = 0
}

(5.8)

denote the corresponding face of the expanded polytope Δ(h).
Guillemin gives an Euler–Maclaurin formula for a polytope when the polytope is expressed

as the set of solutions of the equation k1α1 + · · · + kdαd = μ, k1, . . . , kd ∈ R�0, for some fixed
integral vectors α1, . . . , αd,μ. (See Theorem 1.3 and formula (3.28) of [18].) When translated to
our setup, his formula becomes the following formula:

∑
Δ∩VZ

f =
∑
F

1

|ΓF |
∑

γ∈Γ
�
F

e2πi〈γ,F 〉 ∏
j /∈IF

∂
∂hj

1 − e−∂/∂hj

∏
j∈IF

1

1 − e2πi〈γ,αj,F 〉e−∂/∂hj

∣∣∣∣
h=0

∫
F(h)

f,

(5.9)

where the polytope Δ is simple and is given by (5.1) where all the λi ’s are integers.
Finally, the formula of Brion and Vergne in our notation is

∑
Δ∩VZ

f =
∑
F

∑
γ∈Γ

�
F

e2πi〈γ,F 〉 ∏
j /∈IF

∂
∂hj

1 − e−∂/∂hj

∏
j∈IF

∂
∂hj

1 − e2πi〈γ,αj,F 〉e−∂/∂hj

∣∣∣∣
h=0

∫
Δ(h)

f. (5.10)

See [7, Theorem 2.15] (where Δ is simple and integral), and, more generally, [8].

Remark 5.3. If the polytope Δ is integral (which is a stronger requirement than the assumption
that the λi ’s be integers) then e2πi〈γ,F 〉 = 1 for each face F and each γ ∈ ΓF .

We now give a self-contained statement and an elementary proof of the Guillemin–Brion–
Vergne formulas.

Theorem 1. Let V be a vector space with a lattice VZ. Let V ∗
Z ⊂ V ∗ be the dual lattice. Let

Δ ⊂ V be a simple rational polytope with d facets. Let u1, . . . , ud ∈ V ∗
Z be the primitive inward

normals to the facets of Δ. Let λ1, . . . , λd be the real numbers so that

Δ =
d⋂

i=1

{
x

∣∣ 〈ui, x〉 + λi � 0
}
.

Suppose that λ1, . . . , λd are integers. For h = (h1, . . . , hd), let

Δ(h) =
d⋂{

x
∣∣ 〈ui, x〉 + λi + hi � 0

}
.

i=1
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For each face F of Δ, let IF ⊂ {1, . . . , d} be the subset such that F consists of those x ∈ Δ for
which 〈ui, x〉 + λi = 0 for all i ∈ IF . Let αi,F , for i ∈ IF , be the basis of V/TF = V/R(F − F)

that is dual to the basis ui , i ∈ IF , of V ∗
F = T 0

F . (In particular, if v ∈ Vert(Δ) and i ∈ Iv then αi,v

are the edge vectors emanating from v.) Let

ΓF = (
V ∗

F ∩ V ∗
Z

)
/ spanZ{ui | i ∈ IF }

be the finite group associated to the face F , and let Γ
�
F = ΓF \⋃

ΓE , where the union is over all
faces E such that E � F . Let

TdΔ(S1, . . . , Sd) =
∑
F

∑
γ∈Γ

�
F

e2πi〈γ,F 〉 ∏
j /∈IF

Sj

1 − e−Sj

∏
j∈IF

Sj

1 − e2πi〈γ,αj,F 〉e−Sj
.

Let f :V → C be a quasi-polynomial function, that is, a linear combination of functions of the
form

f (x) = p(x)e〈ξ,x〉

where p :V → C are polynomial functions and where the exponents ξ ∈ V ∗
C satisfy∣∣〈ξ,αj,v〉

∣∣ < 2π
∣∣〈y,αj,v〉

∣∣ (5.11)

for each vertex v, each edge vector αj,v , j ∈ Iv , and each y ∈ V ∗
Z such that 〈y,αj,v〉 	= 0. (Each

of the sets {〈y,αj,v〉 | y ∈ V ∗
Z } is discrete, so the set of ξ ’s that satisfy these conditions is a

neighborhood of the origin in V ∗
C .) Then

∑
x∈Δ∩VZ

f (x) = TdΔ

(
∂

∂h1
, . . . ,

∂

∂hd

)∣∣∣∣
h=0

∫
Δ(h)

f (x) dx. (5.12)

Remark 5.4. The right-hand side of (5.12) is an infinite sequence. The theorem asserts that
this sequence converges to the left-hand side. In Appendix B we show that this convergence is
uniform on compact subsets of (5.11).

The proof of Theorem 1 uses the following characterization of Γ
�
F .

Lemma 5.5. Let F be a face of Δ.

(1) If γ ∈ ΓF and v is a vertex of Δ such that v ∈ F , then

e2πi〈γ,αj,v〉 =
{

e2πi〈γ,αj,F 〉 for all j ∈ IF ,

1 for all j ∈ Iv \ IF .

(2) If j ∈ IF and γ ∈ Γ
�
F , then e2πi〈γ,αj,F 〉 	= 1.

(3) For γ ∈ ΓF ,

γ ∈ Γ
�
F if and only if e2πi〈γ,αj,F 〉 	= 1 for all j ∈ IF .
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Proof. Let y ∈ V ∗
F ∩ V ∗

Z be a representative of γ (see (5.6)). Then, by definition, e2πi〈γ,αj,F 〉 =
e2πi〈y,αj,F 〉. Because y ∈ V ∗

F , and by (5.5), there exist real numbers aj , for j ∈ IF , such that
y = ∑

j∈IF
ajuj . Then

〈y,αj,F 〉 = aj for all j ∈ IF . (5.13)

Defining aj = 0 for j ∈ Iv \ IF , we also have y = ∑
j∈Iv

ajuj , and

〈y,αj,v〉 = aj for all j ∈ Iv. (5.14)

In particular,

〈y,αj,v〉 = 0 for all j ∈ Iv \ IF . (5.15)

Part (1) follows from (5.13)–(5.15).
Fix j ∈ IF . Suppose e2πi〈γ,αj,F 〉 = 1. Then we can choose a representative y ∈ V ∗

F ∩ V ∗
Z of γ

such that 〈y,αj,F 〉 = 0. Writing y = ∑
l∈IF

alul , we have aj = 〈y,αj,F 〉 = 0. Let E be the face
of Δ such that IE = IF \ {j}. Then y = ∑

l∈IE
alul , so, by (5.5), y is in V ∗

E , and so γ ∈ ΓE . In

particular, by (5.7), γ /∈ Γ
�
F . This proves part (2).

Let γ ∈ ΓF . By part (2), if γ ∈ Γ
�
F then e2πi〈γ,αj,F 〉 	= 1 for all j ∈ IF . Conversely, suppose

that Γ /∈ Γ
�
F . Then, by (5.7), there exists a face E such that γ ∈ ΓE and E � F . Let j ∈ IF \ IE .

Let v be any vertex of F (and hence of E). Then e2πi〈γ,αj,F 〉 = e2πi〈γ,αj,v〉 = 1, where the first
equality follows from part (1) for the face F , and where the second equality follows from part (1)
for the face E. This proves part (3). �
Claim. For each v ∈ Vert(Δ),

TdΔ(S1, . . . , Sd) = Tdv

({Sj }j∈Iv

) + multiples of Sj for j /∈ Iv. (5.16)

Proof. Recall that

TdΔ(S1, . . . , Sd) =
∑
F

∑
γ∈Γ

�
F

e2πi〈γ,F 〉 ∏
j /∈IF

Sj

1 − e−Sj

∏
j∈IF

Sj

1 − e2πi〈γ,αj,F 〉e−Sj
.

By part (2) of Lemma 5.5, for each γ ∈ Γ
�
F and j ∈ IF ,

Sj

1 − e2πi〈γ,αj,F 〉e−Sj
= a multiple of Sj .

Because v /∈ F implies that there exists j ∈ IF such that j /∈ Iv , and because
Sj

1−e
−Sj

= 1+
a multiple of Sj ,

TdΔ(S1, . . . , Sd) =
∑

F such that
v∈F

∑
γ∈Γ

�
F

e2πi〈γ,F 〉 ∏
j∈Iv\IF

Sj

1 − e−Sj

∏
j∈IF

Sj

1 − e2πi〈γ,αj,v〉e−Sj

+ multiples of Sj for j /∈ Iv.
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By (5.7),

Γv =
⊔

F such that
v∈F

Γ
�
F .

Also, e2πi〈γ,F 〉 = e2πi〈γ,v〉 whenever v ∈ F . By this and part (1) of Lemma 5.5,

TdΔ(S1, . . . , Sd) =
∑
γ∈Γv

e2πi〈γ,v〉 ∏
j∈Iv

Sj

1 − e2πi〈γ,αj,v〉e−Sj
+ multiples of Sj for j /∈ Iv.

By the definition (4.19) of Tdv , this exactly shows (5.16). �
Proof of Theorem 1 (Khovanskii–Pukhlikov approach). Let Ω ⊂ Rd be the set of all h ∈ Rd

that are sufficiently small so that the polytope Δ(h) has the same combinatorics as the poly-
tope Δ (i.e., the same subsets IF ⊂ {1, . . . , d} correspond to faces). The vertices of the expanded
polytope Δ(h) are then

v(h) = v −
∑
j∈Iv

hjαj,v, (5.17)

and we have

∂

∂hj

e〈ξ,v(h)〉 = −〈ξ,αj,v〉e〈ξ,v(h)〉 (5.18)

for any j ∈ Iv . Let

IΔ(h, v) =
∫

Δ(h)

e〈ξ,x〉 dx and SΔ(ξ) =
∑

x∈Δ∩VZ

e〈ξ,x〉.

By (4.17),

IΔ(h, ξ) =
∑

v∈Vert(Δ)

e〈ξ,v(h)〉 · 1

|Γv|
∏
j∈Iv

− 1

〈ξ,αj,v〉 (5.19)

for all h ∈ Ω and ξ ∈ V ∗
C that lies outside the complex hyperplanes

〈ξ,αj,v〉 = 0, v ∈ Vert(Δ), j ∈ Iv. (5.20)

By (4.18),

SΔ(ξ) =
∑

v∈Vert(Δ)

e〈ξ,v〉Tdv

({−〈ξ,αj,v〉
}
j∈Iv

) · 1

|Γv|
∏
j∈Iv

− 1

〈ξ,αj,v〉 , (5.21)

for all ξ ∈ V ∗
C that lie outside the hyperplanes (4.21). See Remark 4.2.

By (5.16), (5.17), and (5.19),
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TdΔ

(
∂

∂h1
, . . . ,

∂

∂hd

)
IΔ(h, ξ)

=
∑

v∈Vert(Δ)

Tdv

({
∂

∂hj

}
j∈Iv

)
e〈ξ,v(h)〉 · 1

|Γv|
∏
j∈Iv

− 1

〈ξ,αj,v〉 . (5.22)

So the partial sums of the series (5.22) are

∑
v

Pm,v

({−〈ξ,αj,v〉
}
j∈Iv

)
e〈ξ,v(h)〉 · 1

|Γv|
∏
j∈Iv

− 1

〈ξ,αj,v〉 (5.23)

where Pm,v are the Taylor polynomials of Tdv . By Remark 4.3, Pm,v({Sj }j∈Iv ) converges to
Tdv({Sj }j∈Iv ) uniformly on compact subsets of the polydisk

{
S ∈ CIv

∣∣ |Sj | < bj,v for all j ∈ Iv

}
, (5.24)

where

bj,v = min
y∈V ∗

Z〈y,αj,v〉	=0

2π〈y,αj,v〉. (5.25)

Because the functions

e〈ξ,v〉 · 1

|Γv|
∏
j∈Iv

− 1

〈ξ,αj,v〉

are (continuous, hence) bounded on compact subsets of the set of ξ ’s that lie outside the complex
hyperplanes given by (5.20), the partial sums (5.23) of the series (5.22) converge to

∑
v∈Vert(Δ)

Tdv

({−〈ξ,αj,v〉
}
j∈Iv

)
e〈ξ,v(h)〉 · 1

|Γv|
∏
j∈Iv

− 1

〈ξ,αj,v〉

uniformly on compact subsets of the set of (h, ξ) ∈ Ω ×V ∗
C such that ξ is outside the hyperplanes

(5.20) and satisfies

∣∣〈ξ,αj,v〉
∣∣ < bj,v for all v ∈ Vert(Δ) and j ∈ Iv. (5.26)

Setting h = 0, by (5.21), we get

TdΔ

(
∂

∂h1
, . . . ,

∂

∂hd

)∣∣∣∣
h=0

IΔ(h, ξ) = SΔ(ξ), (5.27)

and that the left-hand side of (5.27) converges to the right-hand side of (5.27) uniformly in ξ on
compact subsets of the set of ξ ∈ V ∗

C that lie outside the hyperplanes (5.20) and in the set (5.26).
However, the right-hand side of (5.27) and the partial sums of the left-hand side of (5.27) are

analytic in ξ for all ξ .
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Recall that, as a consequence of Cauchy’s integral formula, if gν(ξ) is a sequence of complex
analytic functions on an open subset U of Cn, g(ξ) is a complex analytic function on U , gν(ξ)

converges to g(ξ) in U \ E where E is a locally finite union of complex hyperplanes, and this
convergence is uniform on compact subsets of U \E, then gν(ξ) converges to g(ξ) for all ξ ∈ U ,
uniformly on compact subsets of U .

It follows that (5.27) holds for all ξ ∈ V ∗
C that satisfy (5.26), and, moreover, the left-hand side

of (5.27) converges to the right-hand side uniformly in ξ on compact subsets of (5.26). This gives
the Euler–Maclaurin formula for exponential functions e〈ξ,x〉 for all ξ in the set (5.26). It also
shows that the limit on the left-hand side of (5.27) commutes with differentiations with respect
to ξ . Applying such differentiations to the left- and right-hand sides of (5.27), we get

TdΔ

(
∂

∂h1
, . . . ,

∂

∂hd

)∣∣∣∣
h=0

∫
Δ(h)

P (x)e〈ξ,x〉 dx =
∑

x∈Δ∩VZ

P(x)e〈ξ,x〉 dx

whenever P(x) is a polynomial and ξ is in the set (5.26).
In particular, for ξ = 0, we get the Euler–Maclaurin formula for polynomials. �

Proof of Theorem 1 for polynomial functions (Brion–Vergne approach). The terms in (5.19)
and (5.21) are functions of ξ whose products with

∏
j,v〈ξ,αj,v〉 extend to analytic functions near

ξ = 0. Comparing the Taylor expansions in ξ of the left- and right-hand terms of these products,
we get

∫
Δ

〈ξ, x〉k
k! dx =

∑
v∈Vert(Δ)

〈ξ, v〉k+n

(k + n)! · 1

|Γv|
∏
j∈Iv

− 1

〈ξ,αj,v〉 (5.28)

and

∑
x∈Δ∩VZ

〈ξ, x〉k
k! =

∑
v∈Vert(Δ)

(
e〈ξ,v〉Tdv

({−〈ξ,αj,v〉
}
j∈Iv

))〈k+n〉 · 1

|Γv|
∏
j∈Iv

− 1

〈ξ,αj,v〉 (5.29)

where the superscript 〈k + n〉 denotes the homogeneous term of degree k + n in ξ .
Recall that the vertices of Δ(h) are

v(h) = v −
∑
j∈Iv

hjαj,v.

〈ξ, v(h)〉k is a polynomial of degree k in the hj ’s that only depends on hj for j ∈ Iv . For all
j ∈ Iv ,

∂

∂hj

〈ξ, v(h)〉k
k! = −〈ξ,αj,v〉 〈ξ, v(h)〉k−1

(k − 1)! .

So for any homogeneous polynomial T (·) of degree � in the variables Sj , j ∈ Iv ,

T

({
∂

∂hj

} )∣∣∣∣ 〈ξ, v(h)〉k
k! = T

({−〈ξ,αj,v〉
}
j∈Iv

) 〈ξ, v(h)〉k−�

(k − �)! . (5.30)

j∈Iv h=0



28 Y. Karshon et al. / Advances in Applied Mathematics 39 (2007) 1–50
We have

TdΔ

(
∂

∂h1
, . . . ,

∂

∂hd

) ∫
Δ(h)

〈ξ, x〉k
k! dx

=
∑

v∈Vert(Δ)

Tdv

({
∂

∂hj

}
j∈Iv

) 〈ξ, v(h)〉k+n

(k + n)! · 1

|Γv|
∏
j∈Iv

− 1

〈ξ,αj,v〉 by (5.28) and (5.16)

=
∑

v∈Vert(Δ)

∑
0���k+n

Td〈�〉
v

({−〈ξ,αj,v〉
}
j∈Iv

) 〈ξ, v(h)〉k+n−�

(k + n − �)! · 1

|Γv|
∏
j∈Iv

− 1

〈ξ,αj,v〉 by (5.30).

When h = 0, by (5.29), this is equal to

∑
x∈Δ∩VZ

〈ξ, x〉k
k! . �

6. The Stokes formula for polytopes and the Cappell–Shaneson algebra

Khovanskii and Pukhlikov work with derivatives ∂
∂hi

associated to the “expansion” Δ(h) ⊂ V

of the polytope. In this section we give two results that relate such derivatives to differential
operators on V . The first result, Proposition 6.1, is the Stokes formula for polynomials. The
second result, Proposition 6.2, is that integration over faces can be replaced by differentiations
with respect to corresponding hj ’s. A similar argument appears in [8, Section 3.6]. We use these
results to define the “Cappell–Shaneson algebra,” a formalism used by Cappell and Shaneson to
express their formulas. These results play a key role in relating the Cappell–Shaneson formula to
the original Khovanskii–Pukhlikov formula; we do this in Section 7. The two results can also be
used to derive the Euler–Maclaurin formula for polynomials from the formula for exponentials,
as we do in Appendix B.

The Stokes formula for polytopes.

Proposition 6.1. Let V be a vector space with a lattice VZ. Normalize Lebesgue measure on V so
that the measure of a fundamental domain for the lattice VZ is one. Let Δ be a rational polytope
in V . Let u1, . . . , ud denote the inward normals to its facets, normalized so that they are primitive
elements of the dual lattice V ∗

Z . For any v ∈ V , let Dv denote the directional derivative in the
direction of v. Then, for any f ∈ C∞(V ),

∫
Δ

Dvf = −
d∑

i=1

〈ui, v〉
∫
σi

f. (6.1)

Proof. The formula is an immediate consequence of the general Stokes formula.
Alternatively, it follows directly from

Δ
(
h1 + 〈u1, v〉, . . . , hn + 〈un, v〉) = Δ(h) − v. �
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Integration over faces.

Proposition 6.2. Let Δ be a simple polytope and let F be a face of Δ. Let Δ(h) be the expanded
polytope and F(h) the corresponding face of Δ(h). (See (5.1), (5.2), and (5.8).) Then, for any
smooth function f ∈ C∞(V ), the integral of f on Δ(h) is a smooth function of h for h near 0,
and ∫

F(h)

f = |ΓF |
∏
i∈IF

∂

∂hi

∫
Δ(h)

f (6.2)

where ΓF is the finite abelian group associated to the face F . (See (5.6).)

In particular,

∂

∂hi1

· · · ∂

∂hik

∫
Δ(h)

f = 0 if σi1 ∩ · · · ∩ σik = ∅, (6.3)

and

∂

∂hi

∫
Δ(h)

f =
∫

σi(h)

f. (6.4)

Proof. Choose a polarizing vector ξ ∈ V ∗
Δ such that if v ∈ Vert(Δ), v /∈ F , and x ∈ F , then

〈ξ, x〉 > 〈ξ, v〉. (For instance, we may take ξ ′ such that the restriction of the linear functional
〈ξ ′, ·〉 to Δ attains its maximum along the face F , and take ξ to be a perturbation of ξ ′ which is
in V ∗

Δ.) Then the edge vectors that are based at a vertex of F but are not contained in F (that is,
αj,v for v ∈ F and j ∈ IF ) are not flipped in the polarization process (3.1).

Let PF denote the affine plane generated by the face F . After possibly multiplying f by a cut-
off function which is equal to one near F , we may assume that 〈ξ, x〉 > 〈ξ, v〉 for every vertex v

which is not in F and every x ∈ PF ∩ supp(f ), where supp(f ) is the support of f .
Then for every vertex v which is not contained in F we have∫

PF ∩C#
v

f = 0.

Similarly, ∫
PF(h)∩C#

v(h)

f = 0 if v /∈ F and h is sufficiently small, (6.5)

where PF(h) is the affine plane generated by F(h) and where C#
v(h) are the cones that occur in

the polar decomposition

1Δ(h) =
∑

(−1)|ϕv |1C#
v (h). (6.6)
v
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From (6.5) and (6.6) we get

∫
F(h)

f =
∫

PF (h)

f · 1Δ(h) =
∫

PF (h)

f ·
∑
v∈F

(−1)|ϕv |1C#
v(h) =

∑
v∈F

(−1)|ϕv |
∫

PF(h)∩C#
v(h)

f.

It remains to show that ∫
PF(h)∩C#

v(h)

f = |ΓF |
∏
i∈IF

∂

∂hi

∫
C#

v(h)

f (6.7)

for each v ∈ Vert(Δ) such that v ∈ F . Assume without loss of generality that hj = 0 for all
j ∈ Iv \ IF .

Let

TF = {
r(x − y)

∣∣ x, y ∈ F
}

denote the tangent space to the face F . Consider the affine change of variable map

ϕ :TF × RIF → V

given by

ϕ(y, t) = v + y +
∑
j∈IF

tj αj,v.

Let

F #
0 =

∑
j∈Iv\IF

R+α#
j,v and R

IF+ (h) =
∏
j∈IF

[−hj ,∞).

The map ϕ sends F #
0 × R

IF+ onto C#
v(h) and sends F #

0 × {(−hj )j∈IF
} onto F #

v (h). Lebesgue
measure in F #

0 ⊂ TF is normalized so that the measure of a fundamental chamber for the lattice
TF ∩ VZ is one. Clearly,

∫
F #

0

f
(
ϕ(y,−h)

)
dy =

∏
i∈IF

∂

∂hi

∫
F #

0 ×R
IF+ (h)

f
(
ϕ(y, t)

)
dy dt.

To conclude (6.7) it remains to show that |detdϕ| = 1
|ΓF | .

The map dϕ sends the subspace T F ×{0} ⊂ T F ×RIF to the subspace T F ⊂ V and respects
the lattices in these subspaces. So its determinant is equal to that of the induced map on quotients.
Recall that V/T F = VF . The induced map on quotients is the map

ϕ : RIF → VF
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given by ϕ((tj )j∈IF
) = ∑

j∈IF
tj αj,v . Its inverse,

ψ :VF → RIF ,

is

ψ(β) = (〈uj ,β〉)
j∈IF

.

The dual ψ∗ : RIF → V ∗
F sends the standard basis element ej to uj for each j ∈ IF . Finally,

detdϕ = detϕ = (detψ)−1 = (detψ∗)−1 = [
spanZ{uj }: V ∗

F ∩ V ∗
Z

]−1 = |ΓF |−1,

as desired. �
By (6.2), the formulas of Guillemin (5.9) and of Brion–Vergne (5.10) are equivalent.

The Cappell–Shaneson algebra. Let V be a vector space with a lattice VZ and Δ ⊂ V a simple
lattice polytope. Let D denote the ring of infinite order constant coefficient differential opera-
tors on V . Consider the algebra D�[σ1], . . . , [σd ]� of power series in the formal variables [σi],
corresponding to the facets, and with coefficients in D. A general element of this algebra can be
written as

A =
∑
α

pα

d∏
i=1

[σi]α(i)

where pα ∈ D for each α : {1, . . . , d} → Z�0. Each such element A defines a linear func-
tional

∫
A which associates to each polynomial f on V the number

∫
A(f ) :=

∑
α

d∏
i=1

(
∂

∂hi

)α(i)∣∣∣∣
h=λ

∫
Δ(h)

pα(f ). (6.8)

∫
A(f ) is also defined for every smooth function f for which the right-hand side of (6.8) is

absolutely convergent. By (6.3),∫
[σi1] · · · [σik ] = 0 if σi1 ∩ · · · ∩ σik = ∅. (6.9)

By (6.1) and (6.4),

∫ (
Dv +

d∑
i=1

〈v,ui〉[σi]
)

= 0 for all v ∈ V . (6.10)

Following Cappell and Shaneson, we consider the quotient Q(Δ) of D�[σ1], . . . , [σd ]� by the
equivalence relations

[σi1] · · · [σik ] = 0 (6.11)
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for each set σi1, . . . , σik of facets where σi1 ∩ · · · ∩ σik = ∅, and, for each v ∈ V ,

Dv +
d∑

i=1

〈v,ui〉[σi] = 0. (6.12)

We call Q(Δ) the Cappell–Shaneson algebra. (Cappell and Shaneson denote this algebra Q(Σ),
where Σ is the corresponding fan.)

Remark 6.3. The quotient of the polynomial algebra D�[σ1], . . . , [σd ]� by the relation (6.11) is
the Stanley–Reisner ring (the face ring) of Δ with coefficients in D.

By (6.9) and (6.10), the definition of
∫

A(f ) descends to the Cappell–Shaneson algebra
Q(Δ): for T ∈ Q(Δ) that is represented by A ∈D�[σ1], . . . , [σd ]�, we can define∫

T (f ) =
∫

A(f ). (6.13)

Remark 6.4. Cappell and Shaneson do not consider variations Δ(h) of the polytope Δ. They
consider the free D-module P(Δ) with basis elements [F ] corresponding to the faces F of Δ

and the D-module map ρ :P(Δ) → Q(Δ) defined by

ρ
([F ]) = |ΓF |

∏
i∈IF

[σi].

For T = ρ(Ω), with Ω = ∑
F pF [F ] ∈ P(Δ), Eq. (6.2) implies∫

T (f ) =
∑
F

∫
F

pF f. (6.14)

Cappell and Shaneson define
∫

T (f ) by (6.14). Comparing with 6.13, we see that this is well
defined.

Define the summation functional by

S(f ) =
∑

Δ∩VZ

f.

Using the Cappell–Shaneson algebra, the Khovanskii–Pukhlikov formula (5.4) for an integral
polytope with non-singular fan reads

S =
∫ d∏

i=1

[σi]
1 − e−[σi ] ,

and the Guillemin–Brion–Vergne formula for an integral simple polytope reads

S =
∫ ∑

F

∑
γ∈Γ

�

∏
j /∈IF

[σj ]
1 − e−[σj ]

∏
j∈IF

[σj ]
1 − e2πi〈γ,αj,F 〉e−[σj ] .
F
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7. The Cappell–Shaneson formula

The main differences between the formulas of Cappell and Shaneson and those of Khovanskii–
Pukhlikov, Guillemin, and Brion–Vergne, are these:

• The latter authors work with expansions of the polytope. Cappell and Shaneson work with
derivatives of the function on V .

• Cappell and Shaneson express their formula in terms of what we call the “Cappell–Shaneson
algebra.”

• Cappell and Shaneson derive their formula for the sum
∑

Δ∩VZ
f from formulas for the

weighted sum

∑′

Δ∩VZ

f :=
∑
F

(
1

2

)codimF ∑
rel-int(F )∩VZ

f.

Cappell and Shaneson’s exact formulas for simple lattice polytopes, when applied to polytopes
with non-singular fans, become the following formulas:

Theorem 2. Let Δ be an integral lattice polytope in a vector space V with a lattice VZ. Let f be
a polynomial function on V . Then

∑
Δ∩VZ

f =
∫

T (f ), (7.1)

∑
interior(Δ)∩VZ

f =
∫

T̂ (f ), (7.2)

and

∑
Δ∩VZ

f − 1

2

∑
∂Δ∩VZ

f =
∫

1

2
(T + T̂ )(f ), (7.3)

where

T =
∑
F

∏
i∈IF

[σi]
2

∏
i /∈IF

[σi]/2

tanh([σi]/2)

and

T̂ =
∑
F

(−1)codimF
∏
i∈IF

[σi]
2

∏
i /∈IF

[σi]/2

tanh([σi]/2)
.

The relation of these formula to the Khovanskii–Pukhlikov formula goes through similar for-
mulas that apply to a polytope with some facets removed. We first need a corresponding polar
decomposition.
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As before, let Δ be a polytope with d facets. For a subset L ⊆ {1, . . . , d}, denote by ΔL the
set obtained by removing from Δ the facets σi , i ∈ L. In particular, for L = ∅, ΔL = Δ, and for
L = {1, . . . , d}, ΔL = interior(Δ).

Recall that Δ = H1 ∩ · · · ∩ Hd where each Hj is a half-spaces whose boundary is the affine
span of the facet σj . Let

HL
j =

{
Hj if j ∈ L,

interior(Hj ) if j /∈ L.

Then we have

ΔL =
⋂
j

HL
j .

Fix a polarizing vector ξ for Δ. Recall that this determines a subset ϕv of Iv for each vertex v.
Consider the cones

C#,L
v =

⋂
j∈Iv

H
#,L
j,v

where

H
#,L
j,v =

{
HL

j if j ∈ Iv \ ϕv ,

(HL
j )c if j ∈ ϕv .

We have the following polar decomposition for ΔL:

Proposition 7.1 (Polar decomposition with some facets removed).

1ΔL(x) =
∑
v

(−1)|ϕv |1
C

#,L
v

(x). (7.4)

Proof. We shift the bounding hyperplanes of Hj inward or outward according to whether j ∈ L

or j /∈ L. That is, we shift by an h which belongs to the set

OrthL := {
(h1, . . . , hd)

∣∣ hj < 0 for j ∈ L and hj > 0 for j /∈ L
}
.

We have the pointwise limits

1ΔL(x) = lim
h→0

h∈OrthL

1Δ(h)(x)

and

1
C

#,L
v

(x) = lim
h→0

L

1C#
v (h)(x)
h∈Orth
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for all x. The proposition follows immediately from these limits and from the polar decomposi-
tion theorem for Δ(h). �

We have the following variant of the Khovanskii–Pukhlikov formula for a polytope with some
facets removed:

Proposition 7.2. Let V be a vector space with a lattice VZ. Let Δ be a lattice polytope in V with
facets σ1, . . . , σd and f a polynomial function on V . Let L ⊂ {1, . . . , d} be any subset. Suppose
that Δ is a polytope with a non-singular fan. Then

∑
ΔL∩VZ

f =
∫ ∏

i∈L

[σj ]e−[σj ]

1 − e−[σj ]
∏
i /∈L

[σj ]
1 − e−[σj ] (f ).

Proof. The proof follows exactly the same lines as the proof of the Khovanskii–Pukhlikov for-
mula, (5.4), using the polar decomposition (7.4) for ΔL. We leave the details to the reader. �

We derive the following formula for the weighted sum:

Proposition 7.3. Suppose that Δ is an integral polytope with a non-singular fan and f is a
polynomial. Then

∫ d∏
i=1

[σi]/2

tanh([σi]/2)
(f ) =

∑′

Δ∩VZ

f. (7.5)

Proof. Consider the left-hand side of Eq. (7.5):

∫ d∏
j=1

[σj/2]
tanh[σj/2] (f ). (7.6)

Since

D/2

tanh(D/2)
= (D/2)

eD/2 + e−D/2

eD/2 − e−D/2
= 1

2

(
1 + e−D

) D

1 − e−D
,

(7.6) is equal to

∫ d∏
j=1

1

2

(
1 + e−[σj ]) [σj ]

1 − e−[σj ] (f ).

Expanding, this becomes

(
1

2

)d ∑ ∫ ∏ [σj ]e−[σj ]

1 − e−[σj ]
∏ [σj ]

1 − e−[σj ] (f ),
L⊆{1,...,d} j∈L j /∈L
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which, by Proposition 7.2, is equal to

(
1

2

)d ∑
L

∑
ΔL∩VZ

f. (7.7)

For each face F of Δ, the relative interior of F is contained in ΔL if and only if IF ∩L = ∅. The
number of subsets L which satisfy this condition is 2d−codimF . Therefore, (7.7) is equal to

∑
F

(
1

2

)codimF ∑
interior(F )∩VZ

f,

which is the right-hand side of (7.5). �
Lemma 7.4 relates weighted sums to non-weighted sums. For a face F of the simple poly-

tope Δ, let

∑′

Δ∩VZ

f

denote the weighted sum with respect to the affine span of F , that is,

∑′

Δ∩VZ

f =
∑
E

E⊆F

(
1

2

)dimF−dimE ∑
rel-int(E)∩VZ

f.

Here, the faces of F are exactly the faces E of Δ that are contained in F , and the exponent
dimF − dimE is the codimension of E in the affine span of F .

Lemma 7.4.

∑
Δ∩VZ

f =
∑
F

(
1

2

)codimF ∑′

F∩VZ

f,

and

∑
interior(Δ)∩VZ

f =
∑
F

(
−1

2

)codimF ∑′

F∩VZ

f.

Proof.

∑
F

(
±1

2

)codimF ∑′

F∩VZ

f =
∑
F

(
±1

2

)codimF ∑
E

E⊆F

(
1

2

)dimF−dimE ∑
rel-int(E)∩VZ

f

=
∑
E

(
1

2

)codimE( ∑
F

(±1)codimF

) ∑
rel-int(E)∩VZ

f. (7.8)
F⊇E
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Because Δ is simple,

∑
F

F⊇E

1 = 2codimE and
∑
F

F⊇E

(−1)codimF =
{

0 E � Δ,

1 E = Δ.

Substituting this in (7.8) gives the lemma. �
We are now ready to derive the Cappell–Shaneson formula.
For each face F of Δ, we have i ∈ IF if and only if σi ⊇ F . For i /∈ IF , the intersection σi ∩F

is either empty or is equal to a face of Δ which is a facet of F . We denote

ΣF = {i | σi ∩ F is a facet of F }.
Since

[σi]/2

tanh([σi]/2)
= 1 + a multiple of [σi],

and by (6.9), we get

T =
∑
F

∏
i∈IF

[σi]
2

∏
i∈ΣF

[σi]/2

tanh([σi]/2)
(7.9)

and

T̂ =
∑
F

(−1)codimF
∏
i∈IF

[σi]
2

∏
i∈ΣF

[σi]/2

tanh([σi]/2)
(7.10)

as elements of the Cappell–Shaneson algebra Q(Δ). By (7.9) and (6.2), followed by Proposi-
tion 7.3 applied to the face F , and further followed by Lemma 7.4, we get

∫
T (f ) =

∑
F

(
1

2

)codimF ∫
F

∏
i∈ΣF

[σi]/2

tanh([σi]/2)
(f ) =

∑
F

(
1

2

)codimF ∑′

F∩VZ

f =
∑

Δ∩VZ

f.

Similarly, from (7.10) we get

∫
T̂ (f ) =

∑
F

(
−1

2

)codimF ∫
F

∏
i∈ΣF

[σi]/2

tanh([σi]/2)
(f ) =

∑
F

(
−1

2

)codimF ∑′

F∩VZ

f

=
∑

interior(Δ)∩VZ

f.

This proves (7.1) and (7.2). The equality (7.3) clearly follows from these.

Remark 7.5. We expect that a similar argument will show that the Cappell–Shaneson formula
for simple polytopes is equivalent to the Guillemin–Brion–Vergne formula.
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Remark 7.6. Formulas with more general weightings have been developed in [1].
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Appendix A. Relation to remainder formulas

Another exact formula for polynomial functions on simple polytopes appeared in our recent
paper [25]. There we proved an Euler–Maclaurin formula with remainder for simple polytopes
and gave estimates on the remainder. From this we deduced an exact formula for polynomials
directly, without passing through formulas for exponential functions. Let us describe our exact
formula from [25] in our current notation.

Let λ be a complex root of unity, say

λN = 1.

Define a sequence of functions Qm,λ(x) on R recursively, as follows. For m = 1, set

Q1,λ(x) = λ

1 − λ

∑
n∈Z

λn1[n,n+1)(x).

Given the function Qm−1,λ(x), define the function Qm,λ(x) by the conditions

d

dx
Qm,λ(x) = Qm−1,λ(x) and

N∫
0

Qm,λ(x) dx = 0.

Consider the polynomial

Mk,λ(S) =
(

1

2
+ λ

1 − λ

)
S + Q2,λ(0)S2 + · · · + Qk,λ(0)Sk.

Let V be a vector space with a lattice VZ. Let

Δ = {
x

∣∣ 〈ui, x〉 + μi � 0, i = 1, . . . , d
}

be a simple lattice polytope in V , where u1, . . . , ud ∈ V ∗ are the normals to the facets of Δ,
normalized so that they are primitive elements of the lattice V ∗

Z . Let

Δ(h) = {
x

∣∣ 〈ui, x〉 + μi + hi � 0, i = 1, . . . , d
}
.

For a face F of Δ, an element γ of ΓF , and an index 1 � j � d , let

λγ,j,F =
{

e2πi〈γ,αj,F 〉 j ∈ IF ,
1 j /∈ IF ,
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and consider the differential operators

Mk
γ,F =

d∏
j=1

Mk,λγ,j,F

(
∂

∂hj

)
.

Let ∑′

Δ∩VZ

f :=
∑
F

(1/2)codimF
∑

rel-int(F )∩VZ

f,

summing over the faces F of Δ. Then for any polynomial function f on Δ, for sufficiently
large k,

∑′

Δ∩VZ

f =
∑
F

∑
γ∈Γ

�
F

Mk
γ,F

∫
Δ(h)

f

∣∣∣∣
h=0

. (A.1)

For comparison, the Euler–Maclaurin formula (5.12) for simple lattice polytopes can be writ-
ten as

∑
Δ∩VZ

f =
∑
F

∑
γ∈Γ

�
F

Tγ,F

∫
Δ(h)

f

∣∣∣∣
h=0

with

Tγ,F =
d∏

j=1

T λγ,j,F

(
∂

∂hj

)
and Tλ(S) = S

1 − λe−S
.

A similar argument (see below) gives

∑′

Δ∩VZ

f =
∑
F

∑
γ∈Γ

�
F

Lγ,F

∫
Δ(h)

f

∣∣∣∣
h=0

(A.2)

with

Lγ,F =
d∏

j=1

Lλγ,j,F

(
∂

∂hj

)

and

Lλ(S) = S

2
· 1 + λe−S

1 − λe−S
= s ·

(
1

2
+ λe−S + λ2e−2S + λ3e−3S + · · ·

)
.

As observed by Michèle Vergne [43], the equivalence of formulas (A.1) and (A.2) is seen
from
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Lemma A.1. Mk,λ(S) is the kth Taylor polynomial of Lλ(S).

We complete this section by giving the proofs of (A.2) and of Lemma A.1.

Proof of (A.2). We have the following analogue of (4.7):

∑′

x∈Cv∩VZ

e〈ξ,x〉 = e〈ξ,v〉 · 1

|Γ |
∑
γ∈Γ

e2πi〈γ,v〉
n∏

j=1

1

2
· 1 + e2πi〈γ,αj 〉e〈ξ,αj 〉

1 − e2πi〈γ,αj 〉e〈ξ,αj 〉 . (A.3)

Indeed, applying

1

2
· 1 + λe−S

1 − λe−S
= 1

2
+ λe−S + λ2e−2S + · · ·

to λ = e2πi〈γ,v〉 and e−S = e〈ξ,αj 〉 and rearranging the terms, the right-hand side of (A.3) is
equal to

∑′

(k1,...,kn)∈Zn
�0

e〈ξ,v+∑
kj αj 〉 · 1

|Γ |
∑
γ∈Γ

e2πi〈γ,v+∑
kj αj 〉

which, by (4.9), is equal to the right-hand side of (A.3).
From this we get the following analogue of (4.16):

∑′

x∈C
�

v∩VZ

e〈ξ,x〉 = e〈ξ,vshift〉 · 1

|Γ |
∑
γ∈Γ

e2πi〈γ,v〉
n∏

j=1

1

2

1 + e
2πi〈γ,α

�
j 〉

e
〈ξ,α

�
j 〉

1 − e
2πi〈γ,α

�
j 〉

e
〈ξ,α

�
j 〉 by (A.3)

= e〈ξ,v〉 · 1

|Γ |
∑
γ∈Γ

e2πi〈γ,v〉 ∏
j /∈ϕv

1

2

1 + e2πi〈γ,αj 〉e〈ξ,αj 〉

1 − e2πi〈γ,αj 〉e〈ξ,αj 〉

×
∏
j∈ϕv

1

2

1 + e−2πi〈γ,αj 〉e−〈ξ,αj 〉

1 − e−2πi〈γ,αj 〉e−〈ξ,αj 〉 by (4.12)

= (−1)|ϕv |e〈ξ,v〉 · 1

|Γ |
∑
γ∈Γ

e2πi〈γ,v〉 ∏ 1

2

1 + e2πi〈γ,αj 〉e〈ξ,αj 〉

1 − e2πi〈γ,αj 〉e〈ξ,αj 〉 (A.4)

by applying the relation

1 + ex

1 − ex
= −1 + e−x

1 − e−x

to x = −2πi〈γ,αj 〉 − 〈ξ,αj 〉 for j ∈ ϕv .
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Let 1w
Δ(x) denote the weighted characteristic function, given by 1w

Δ(x) = ( 1
2 )codimF if x lies

in the relative interior of a face F , and 1w
Δ(x) = 0 if x /∈ Δ. Define 1w

C(x) in a similar manner
whenever C is a convex polyhedral cone. We have the following analogue of (3.3):

1w
Δ(x) =

∑
v

(−1)|ϕv |1w

C�
v

(x). (A.5)

This can be proved directly (see [25, Section 3]), or it can be deduced from (7.4) using the
formulas

1w
Δ(x) = 1

2d

∑
L⊆{1,...,d}

1ΔL(x) and 1w

C�
v

(x) = 1

2d
1C�,L

v
(x).

From this we get the following analogue of (4.18):

∑′

x∈Δ∩VZ

e〈ξ,x〉 =
∑

v∈Vert(Δ)

(−1)|ϕv | ∑′

x∈C#
v∩VZ

e〈ξ,x〉 by (A.5)

=
∑

v∈Vert(Δ)

e〈ξ,v〉 · 1

|Γv|
∑
γ∈Γv

e2πi〈γ,v〉 ∏
j∈Iv

1

2
· 1 + e2πi〈γ,αj,v〉e〈ξ,αj,v〉

1 − e2πi〈γ,αj,v〉e〈ξ,αj,v〉 by (A.4)

=
∑

v∈Vert(Δ)

e〈ξ,v〉Lv

({−〈ξ,αj,v〉
}) · 1

|Γv|
∏
j∈Iv

− 1

〈ξ,αj,v〉 (A.6)

where

Lv(S) =
∑
γ∈Γv

e2πi〈γ,v〉 ∏
j∈Iv

Lλγ,j,v (Sj ). (A.7)

Note that Lv(S) is analytic on the polydisk {|Sj | < bj , j ∈ Iv} that is described in Remark (4.3).
The operator that appears in (A.2) can be written as LΔ( ∂

∂h1
, . . . , ∂

∂hd
) where

LΔ(S1, . . . , Sd) =
∑
F

∑
γ∈Γ

�
F

d∏
j=1

Lλγ,j,F (Sj ).

We have the following analogue of (5.16): for each v ∈ Vert(Δ),

LΔ(S1, . . . , Sd) = Lv

({Sj }j∈Iv

) + multiples of Sj for j /∈ Iv. (A.8)

This is shown exactly like (5.16), using the facts that if λ 	= 1 then Lλ(S) is a multiple of S and
if λ = 1 then Lλ(S) = 1+ a multiple of S.

By (5.17) and (5.19),

∫
e〈ξ,x〉 dx =

∑
v∈Vert(Δ)

e
〈ξ,v−∑

j∈Iv
hj αj,v〉 · 1

|Γv|
∏
j∈Iv

− 1

〈ξ,αj,v〉 . (A.9)
Δ(h)
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(A.2) follows from (A.9) and (A.8) by the same arguments as in the proof of Theorem 1 in
Section 5. �
Proof of Lemma A.1. Suppose that λ 	= 1 and λN = 1. An argument similar to those in Section 2
gives

(
Lλ

(
∂

∂h1

)
+ Lλ−1

(
∂

∂h2

))∣∣∣∣
h1=h2=0

N+h2∫
−h1

f (x)dx

= 1

2
f (0) + λf (1) + λ2f (2) + · · · + λN−2f (N − 2) + λN−1f (N − 1) + 1

2
f (N)

(A.10)

for all polynomial functions f (x). Indeed, direct computation of 1
2 + λeξ + λ2e2ξ + · · · +

λN−1e(N−1)ξ + 1
2 , followed by multiplication by ξ and taking the N th degree term in the Taylor

expansion, gives the following analogue of (2.12):

ξ
∑′

x∈[0,N ]∩Z

(ξ) = (
Lλ−1

(ξ) · eξN − Lλ(−ξ) · 1
)〈N+1〉 (A.11)

whenever λeξ 	= 1, where the superscript 〈N + 1〉 denotes the (N + 1)th term in the Taylor
expansion. On the other hand,

Lλ

(
∂

∂h2

)
+ Lλ−1

(
∂

∂h1

)∣∣∣∣
h=0

ξ

N+h1∫
−h2

(ξx)N

N ! dx

= Lλ−1
(

∂

∂h1

)∣∣∣∣
h1=0

(ξ(N + h1))
N+1

(N + 1)! − Lλ

(
∂

∂h2

)∣∣∣∣
h2=0

(−ξh2)
N+1

(N + 1)! by (2.11)

= (
Lλ−1

(ξ)eξN − Lλ(−ξ)
)〈N+1〉 by (2.2).

By direct computation, the first Taylor coefficient of Lλ(S) is 1
2 + λ

1−λ
and that of Lλ−1

(S)

is 1
2 + λ−1

1−λ−1 = 1
2 − 1

1−λ
. Let am denote the mth Taylor coefficient of Lλ(S). Since Lλ(−S) =

Lλ−1
(S), the mth Taylor coefficient of Lλ−1

(S) is (−1)mam. Taking F(x) to be a polynomial of
degree � k + 1 and f (x) = F ′(x), the left-hand side of (A.10) becomes

(
1

2
+ λ

1 − λ

)
f (0) +

(
1

2
− 1

1 − λ

)
f (N)

+
∞∑

m=2

(
am

(
∂

∂h1

)m

+ (−1)mam

(
∂

∂h2

)m)∣∣∣∣
h1=h2=0

(
F(N) − F(0)

)

=
(

1

2
+ λ

1 − λ

)
f (0) +

(
1

2
− 1

1 − λ

)
f (N) +

k∑
(−1)mam

(
F (m)(N) − F (m)(0)

)
. (A.12)
m=2
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On the other hand, the right-hand side of (A.10) is equal to

(
1

2
+ λ

1 − λ

)
f (0) +

(
1

2
− 1

1 − λ

)
f (N) + λ

1 − λ

N−1∑
n=0

(
f (n + 1) − f (n)

)

=
(

1

2
+ λ

1 − λ

)
f (0) +

(
1

2
− 1

1 − λ

)
f (N) + λ

1 − λ

N∫
0

Q1,λ(x)f ′(x) dx

=
(

1

2
+ λ

1 − λ

)
f (0) +

(
1

2
− 1

1 − λ

)
f (N) +

k∑
m=2

(−1)mQm,λ(x)f (m−1)(x)

∣∣∣∣
N

0

+ (−1)k+1

N∫
0

Qk,λ(x)f (k)(x) dx (A.13)

for any k � 2, by repeated integration by parts as in the proof of Proposition 27 of [25]. Re-
calling that Qm,λ(0) = Qm,λ(N) and that

∫ N

0 Qk,λ(x) dx = 0, taking f (x) = F ′(x) where F is
polynomial of degree � k + 1, the right-hand side of (A.13) becomes

(
1

2
+ λ

1 − λ

)
f (0) +

(
1

2
− 1

1 − λ

)
f (N) +

k∑
m=2

(−1)mQm,λ(0)
(
F (m)(N) − F (m)(0)

)
.

Comparing this with (A.12) for the monomials F(x) = x3, x4, x5, . . . we deduce, by induction
on m, that the coefficients Qm,λ(0) in Mk,λ are equal to the Taylor coefficients am of Lλ(S) for
m = 2,3,4, . . . . �
Appendix B. From exponentials to quasi-polynomials: Alternative approach

One can also deduce the Euler–Maclaurin formula for a polytope directly from an Euler–
Maclaurin formula for a cone. This approach is a bit longer than the approaches taken in Sec-
tion 5. Here we outline this approach and include a lemma that may be of independent interest.

The exact Euler–Maclaurin formula for an exponential function on a non-singular convex
polyhedral cone is this. Let V be a vector space with a lattice VZ, and let V ∗

Z ⊂ V ∗ be the
dual lattice. Let u1, . . . , un be primitive elements of V ∗

Z which form a basis for V ∗, and let
α1, . . . , αn ∈ V be the dual basis. Take any λ1, . . . , λn ∈ Z and let v = −∑n

j=1 λjαj . Consider
the finite abelian group

Γ = V ∗
Z/ spanZ{ui}.

Consider the cone

Cv = {
x

∣∣ 〈uj , x〉 + λj � 0, j = 1, . . . , n
} =

{
v +

∑
tj αj

∣∣∣ tj � 0, j = 1, . . . , n
}
,

and its expansions, given by

Cv(h) = {
x

∣∣ 〈uj , x〉 + λj + hj � 0, j = 1, . . . , n
}
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for h near 0. Let

f (x) = e〈ξ,x〉,

where ξ ∈ V ∗
C satisfies, for each j = 1, . . . , n,

(a) Re(〈ξ,αj 〉) < 0, and
(b) |〈ξ,αj 〉| < 2π |〈y,αj 〉| for all y ∈ V ∗

Z such that 〈y,αj 〉 	= 0.

(The set of ξ ’s that satisfy (b) is a neighborhood of the origin in V ∗
C .) Then

∑
Cv∩VZ

f =
∑
γ∈Γ

e2πi〈γ,v〉
n∏

j=1

∂
∂hj

1 − e2πi〈γ,αj 〉e− ∂
∂hj

∣∣∣∣
h=0

∫
Cv(h)

f. (B.1)

This formula follows directly from (4.7), (4.11), and (5.18).
By applying this formula to the polarized cones C�

v that occur in the polar decomposition
(Section 3), together with some bookkeeping, one deduces the exact Euler–Maclaurin formula
on a polytope,

∑
x∈Δ∩VZ

e〈ξ,x〉 = TdΔ

(
∂

∂h1
, . . . ,

∂

∂hd

) ∫
Δ(h)

e〈ξ,x〉 dx (B.2)

where ξ ∈ V ∗ is sufficiently small and is “polarizing,” i.e., belongs to the complement of a finite
union of (real!) hyperplanes through the origin.

One would like to obtain a similar formula for polynomial functions by taking the derivatives
of (B.2) with respect to ξ and taking the limit as ξ → 0, (or, alternatively, by comparing the coef-
ficients in the Taylor expansions in ξ of the left- and right-hand sides of (B.2)). For this one needs
to show that the infinite order differential operator TdΔ( ∂

∂h1
, . . . , ∂

∂hd
), applied to

∫
Δ(h)

e〈ξ,x〉 dx,
commutes with derivatives and limits with respect to ξ . This follows from the following lemma,
which may be of independent interest.

Lemma B.1. Consider the exponential function

f (ξ, x) = e〈ξ,x〉 (B.3)

where x ∈ V and ξ ∈ V ∗
C . Let b1, . . . , bd be positive numbers, and let TΔ(S1, . . . , Sd) be a formal

power series that converges on the multi-disk

|Si | < bi, i = 1, . . . , d. (B.4)

Then the series

TΔ

(
∂

∂h1
, . . . ,

∂

∂hd

) ∫
f (ξ, x) dx (B.5)
Δ(h)



Y. Karshon et al. / Advances in Applied Mathematics 39 (2007) 1–50 45
is absolutely convergent whenever ξ ∈ V ∗
C satisfies the inequalities

∣∣〈ξ,αi,v〉
∣∣ < bi for all v ∈ Vert(Δ) and all i ∈ Iv, (B.6)

and this convergence is uniform on compact subsets of the domain (B.6).

Proof. By general properties of power series, TΔ(S1, . . . , Sd) is absolutely convergent on the
multi-disk (B.4), and this convergence is uniform on any strictly smaller multi-disk. Let

TΔ(S1, . . . , Sd) =
∑
F

∑
�m=(mi)i∈IF

mi non-negative integers

CF, �m
∏
i∈IF

S
1+mi

i

+ terms that involve other monomials. (B.7)

The terms that involve other monomials make zero contribution to (B.5), by (6.3).
Because the series (B.7) is absolutely convergent on the multi-disk (B.4), so is the series

∑
F

∑
�n=(ni )i∈IF

ni non-negative integers

|CF,�n+�δ|
∏
i∈IF

S
ni

i

for each �δ ∈ ZIF , where we set CF, �m = 0 if mi < 0 for some i ∈ IF . For �n = (ni)i∈IF
and

�m = (mi)i∈IF
we write �n � �m to mean ni � mi for all i ∈ IF , and, for such �n, we write | �m− �n| =∑

mi − ni . Then the series

∑
F

∑
�n

( ∑
�m such that�n� �m and

| �m−�n|�dimV

|CF, �m|
) ∏

i∈IF

S
ni

i

is also absolutely convergent on the multi-disk (B.4).
Let K be any compact subset of the set of ξ ’s that satisfy (B.6). Choose positive numbers λ

and b′
i such that 0 < b′

i < bi and 0 < λ < 1 and such that

∣∣〈ξ,αi,v〉
∣∣ < λb′

i for all v ∈ Vert(Δ) and all i ∈ Iv (B.8)

for every ξ ∈ K . To prove the lemma, we will show that the series (B.5) is dominated on K by a
multiple of the converging positive series

∑
F

∑
�n

( ∑
�m such that�n� �m and

| �m−�n|�dimV

|CF, �m|
) ∏

i∈IF

(
b′
i

)ni .

For each face F of Δ and each i ∈ IF we choose an element α̃i,F ∈ V to be equal to αi,v for
an arbitrary vertex v ∈ F . Then the elements α̃i,F of V have the following properties:
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(1) 〈ul, α̃i,F 〉 =
{

1 if l = i,

0 if l ∈ IF \ {i}. (B.9)

(2) By (B.8), for every ξ ∈ K ,

∣∣〈ξ, α̃i,F 〉∣∣ < λb′
i for each face F and index i ∈ IF .

The Stokes formula (6.1) and part (1) of (B.9) imply that for each face F of Δ and each i ∈ IF

∫
σi

f = −
∑
l /∈IF

〈ul, α̃i,F 〉
∫
σl

f −
∫
Δ

Dα̃i,F
f. (B.10)

The exponential function (B.3) satisfies Dαf = 〈ξ,α〉f for any α ∈ V . Combining these facts
with (6.4) and (B.10), we get

∂

∂hi

∫
Δ(h)

f = −
∑
l /∈IF

〈ul, α̃i,F 〉 ∂

∂hl

∫
Δ(h)

f − 〈ξ, α̃i,F 〉
∫

Δ(h)

f. (B.11)

Applying
∏

i∈IF

∂
∂hi

to (B.11), using the fact that the ∂
∂hi

’s commute, and applying (6.2), we get

∂

∂hi

1

|ΓF |
∫

F(h)

f = −
∑

l such that
E:=F∩σl

satisfies ∅	=E�F

〈ul, α̃i,F 〉 1

|ΓE |
∫

E(h)

f − 〈ξ, α̃i,F 〉 1

|ΓF |
∫

F(h)

f.

Iterating this formula we get, for any i1, . . . , ik ∈ IF ,

k∏
j=1

∂

∂hij

1

|ΓF |
∫

F(h)

f

= (−1)k
∑

l1,...,ls such that
Er :=F∩σl1∩···∩σlr

satisfy
F=E0�···�Es 	=∅

∑
1�j1<···<js�k

(
j1−1∏
j=1

〈ξ, α̃ij ,F 〉
)

〈ul1 , α̃ij1 ,F 〉

·
(

j2−1∏
j=j1+1

〈ξ, α̃ij ,E1〉
)

〈ul2, α̃ij2 ,E1〉 · · · 〈uls , α̃ijs ,Es−1〉
(

k∏
j=js+1

〈ξ, α̃ij ,Es 〉
)

1

|ΓEs |
∫

Es(h)

f.

(B.12)

Let B � 1 be such that

∣∣〈ul, α̃i,E〉∣∣ � B for all l, i, and E.
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By this and (B.8), the term on the right-hand side of (B.12) that corresponds to some fixed
l1, . . . , ls and some fixed j1, . . . , js is bounded by

Bsλk−s
∏

j=1,...,k
j /∈{j1,...,js }

b′
ij

· 1

|ΓEs |
∣∣∣∣

∫
Es(h)

f

∣∣∣∣ (B.13)

where Es = F ∩ σl1 ∩ · · · ∩ σls . Let B1 be strictly greater than Bsλ−s 1
|ΓE | |

∫
E

f | for all 0 � s �
dimV and all faces E of Δ. Then, for h near 0, the bound (B.13) is less than or equal to

B1λ
k

∏
j=1,...,k

j /∈{j1,...,js }

b′
ij
. (B.14)

Let mi be the number of times that i occurs in (i1, . . . , ik). Then the left-hand side of (B.12)
can be rewritten as

∏
i∈IF

(
∂

∂hi

)1+mi
∫

Δ(h)

f.

Let ni be the number of times that i occurs among ij for j ∈ {1, . . . , k} \ {j1, . . . , js}. Then the
bound (B.14) can be rewritten as

B1λ
k

∏
i∈IF

(
b′
i

)ni . (B.15)

Denote �m = (mi, i ∈ IF ) and �n = (ni, i ∈ IF ). Then ni � mi for all i, which we write as �n � �m,
and

∑
(mi − ni) � s � dimF , which we write as | �m − �n| � dimF . Then we can further bound

(B.15) by the following number which depends on �m and not on �n:

B1λ
k max

�n such that�n� �m and
| �m−�n|�dimF

∏
i∈IF

(
b′
i

)ni . (B.16)

This bound was for the summand of (B.12) which corresponds to a fixed choice of l1, . . . , ls
and of j1, . . . , js . The number of possible choices of l1, . . . , ls is bounded by ds , which is
bounded by ddimF , and, further, by ddimV . The number of possible choices for j1, . . . , js is(
k
s

)
, which is bounded by kdimF , and, further, by kdimV . It follows that the right-hand side of

(B.12) is bounded by

ddimV kdimV B1λ
k max

�n such that�n� �m and

∏
i∈IF

(
b′
i

)ni . (B.17)
| �m−�n|�dimF
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Since kdimV λk −−−→
k→∞ 0 and since the maximum among positive numbers is bounded by their

sum, there exists B2 such that (B.17) is bounded by

B2

∑
�n such that�n� �m and

| �m−�n|�dimF

∏
i∈IF

(
b′
i

)ni . (B.18)

To conclude, we found B2 such that

∣∣∣∣∏
i∈IF

(
∂

∂hi

)1+mi
∫

Δ(h)

f

∣∣∣∣ � B2

∑
�n such that�n� �m and

| �m−�n|�dimF

∏
i∈IF

(
b′
i

)ni .

The series (B.5) can be written as

∑
F

∑
�m

CF, �m
∏
i∈IF

(
∂

∂hi

)1+mi
∫

Δ(h)

f.

By what we have shown, for ξ in the compact set K , this series is dominated by the positive
series ∑

F

∑
�m

|CF, �m|B2

∑
�n such that�n� �m and

| �m−�n|�dimF

∏
i∈IF

(
b′
i

)ni ,

which can also be re-written as

B2

∑
F

∑
�n

( ∑
�m such that�m��n and

| �m−�n|�dimV

|CF, �m|
) ∏

i∈IF

(
b′
i

)ni .

As we have shown, this series is convergent. �
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