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A non-Newtonian viscoelastic fluid flow passes through the porous wall of an axisym-
metric channel on a turbine disc for cooling application. The present article solves the
couple equations (momentum and heat transfer) of a non-Newtonian fluid flow in an
axisymmetric channel with a porous wall for turbine cooling applications by using the
Duan–Rach Approach (DRA). The precious achievement of the present work is introducing
a new and efficient approximate analytical technique that this method allows us to find a
solution without using numerical methods to evaluate the undetermined coefficients. The
approximate analytical investigation is carried out for different values of the embedding
parameters namely: Reynolds number, Prandtl number, injection Reynolds number and
power law index. The DRA results indicate that Nusselt number has direct relationship
with Reynolds number, Prandtl number and power law index. Also the results were
compared with numerical solution in order to verify the accuracy of the proposed method.
It is seen that the current results in comparison with the numerical ones are in excellent
agreement.
& 2015 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The study of non-Newtonian fluid flow in the presence of porous media has become main interest in many engineering
and industrial applications, particularly the interest in heat transfer problem of non-Newtonian fluids has grown con-
siderably. Hot rolling, extrusion of plastics, flow in journal bearings, lubrication, flow in a shock absorber, ceramic pro-
cessing, biomechanics, enhanced oil, recovery process, filtration process, polymer processing, electronic packing and drag
reduction are some typical examples to name. Understanding the nature of channel flow of non-Newtonian fluid and related
heat transfer problem by mathematical modeling with a view to predict the temperature distribution and the associated
behavior of fluid flow have been the focus of considerable research works [1–7]. This problem can be modeled mathe-
matically by nonlinear ordinary differential equation systems. The solution of this nonlinear problem is normally obtained
by using, for example, the perturbation method [8]. In most cases, such problems will not admit analytical solution, and this
necessitates the implementation of special techniques. In recent years, much attention has been devoted to the newly
developed methods to construct an analytical solution of differential equation; such as Adomian Decomposition Method
(ADM) [9,10], Differential Transformation Method (DTM) [11–15], etc.
an open access article under the CC BY-NC-ND license
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Nomenclature

A B, symmetric kinematic matrices
C specific heat
Cn blade – wall temperature coefficient
DRA Duan–Rach approach
ADM Adomian decomposition method
v x/m n∂ ∂ velocity gradients
a x/m n∂ ∂ acceleration gradients

xk general coordinate
f velocity function
κ fluid thermal conductivity
n Power law index in temoerature distribution
Re injection Reynolds number
Kr rotation parameter
u u,r z velocity components in r, z directions,

respectively
NM numerical
ρ fluid density
T temperature
qn η( ) temperature function
Pr Prandtl number
ψ stream function

ijτ stress tensor component
P fluid pressure
r z, ,θ cylindrical coordinate symbols
V injection velocity

kϕ viscosity coefficients
φ dissipation function
η dimensionless coordinate in z direction
ψ stream function
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Subsequently, several studies were performed on the heat transfer in the presence of porous media. The heat transfer
and entropy generation in a channel partially filled with porous media using local thermal non-equilibrium model was
studied by Torbabi et al. [16]. They discussed about the effects of many thermophysical parameters on the velocity, tem-
perature, Nusselt number and entropy generation rates. The laminar fluid flow and heat transfer in channel with porous
walls in the presence of a transverse magnetic field was investigated by Fakour et al. [17]. They applied the Least Square
Method (LSM) to solve governing equations. Their results indicate that increasing the Reynolds and Hartman number is
reduces the nanofluid flow velocity in the channel and the maximum amount of temperature increase and increasing the
Prandtl and Eckert number will increase the maximum amount of temperature. Vahabzadeh et al. [18] studied the tem-
perature distribution, heat transfer rate, efficiency and optimization of porous pin fins in fully wet conditions. They applied
the Least Square Method (LSM) to solve governing equations. Their results indicate that the temperature distribution is
increased by increasing the Relative Humidity (RH) percentage. The combined conduction–convection–radiation heat
transfer in heat exchangers filled with a fluid saturated cellular porous medium was investigated by Dehghan et al. [19].
They applied the Homotopy Perturbation Method (HPM) to solve governing equations. Also, they discussed about the effects
of porous medium shape parameter(s) and radiation parameters on the thermal performance. Pia and Sanna [20] studied
the influence of microstructure voids on thermal conductivity in fractal porous media. They discussed about the effects of
pore size, geometric organization and complexity of the porous media on the thermal conductivity. Their results indicate
that the presence of pore walls and a great number of small pores decrease the value of thermal conductivity. Huai et al. [21]
studied several types of fractals to model the structures of porous media, and heat conduction in these structures. They
applied the finite volume method (FVM) to discretizing the governing equations. Also, they discussed about the effects of
the porosity, the size and spatial distribution of pores on the effective thermal conductivity of these structures.

In 1986 Adomian [9] published an analytical method to solve nonlinear equations. Esmaili et al. [22] applied this
technique to resolve the convergent–divergent flow. The results obtained show a good agreement with the numerical
methods. Hashim [23] presented the Adomian Decomposition Method for solving boundary value problems for fourth-order
integro-differential equations and the Blasius equation. Many authors have tried to modify the ADM. Jin [24] modified ADM
for solving a kind of evolution equation. All these methods need to find the unknown initial values of the problem that the
final solution depends on the accuracy of the initial values determined by numerical method. Duan et al. [25] have pre-
sented a new modification of the ADM that called Duan–Rach Approach (DRA), to solve a wide class of multi-order and
multi-point nonlinear boundary value problems (BVP). Dib et al. [26] applied Duan–Rach Approach (DRA) to solve the
magneto hydrodynamic (MHD) Jeffery–Hamel flow. The results obtained show a good agreement with the numerical
method and homotopy analysis method (HAM). Also, Dib et al. [27] applied proposed method to obtain an approximate
analytical solution of squeezing unsteady nanofluid flow between two parallel plates.

In the present work, we have applied this modified method (DRA) to solve equation of non-Newtonian fluid flow in an
axisymmetric channel with a porous wall for turbine cooling applications and have made a comparison with the numerical
solution in order to verify the accuracy of the proposed method. The numerical results of this problem have been performed
using Maple14.
2. Flow and heat transfer analysis and mathematical formulation

This study is concerned with simultaneous development of flow and heat transfer for non-Newtonian viscoelastic fluid
flow on the turbine disc for cooling purposes. The problem to be considered is depicted schematically in Fig. 1.The r-axis is



Fig. 1. Schematic view of the physical system.
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parallel to the surface of disk and the z-axis is normal to it. The porous disc of the channel is at z L= + . The wall that
coincides with ther-axis is heated externally and non-Newtonian fluid is injected uniformly from the other perforated wall
in order to cool the heated wall. As can be observed in Fig. 1 the cooling problem of the disk can be considered as a
stagnation point flow with injection. For a steady, axisymmetric, non-Newtonian fluid flow the following equations can be
written in cylindrical coordinates. The continuity equation
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The analytical model under consideration leads to the following boundary conditions

z u u T T0: 0, 0, 5r z w= = = = ( )

z L u u V T T: 0, , 6r z 0= = = − = ( )

In the above equations, ur and uz are the velocity components in the r and z directions, V is the injection velocity, ρ is the
density, P is the pressure, T is the temperature, C is the specific heat, κ is the heat condition coefficient of the fluid,

, , ,rr rz zr zzτ τ τ τ are the components of the stress matrix and φ is the dissipation function.
For particular class of viscoelastic and viscoinelastic fluids Rivlin [6] showed that if the stress components ijτ at a point
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and k 0, 1, 2, 3kϕ ( = ) are polynomials in the invariants of A B A, , 2. This study is restricted to second order fluids for which
k 0, 1, 2, 3kϕ ( = ) are constant and k 4, 5, 6, ...kϕ ( = ) are zero. So that the stress components are as follows:
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For the solution of this problem in the case of axially symmetric flow it is convenient to define a stream function so that
the continuity equation is satisfied
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The pressure term can be eliminated by differentiating Eq. (17) with respect to z and Eq. (18) with respect to r and
subtracting the resulting equations. This gives the following equations:
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The boundary conditions are
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On the other hand, for equation of heat transfer, Letting the blade wall z 0( = ) temperature distribution be
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where T0 is the temperature of the incoming coolant z L( = ) and neglecting dissipation effect the following non-dimensional
equation and boundary conditions are obtained
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3. Description of the Duan–Rach approach (DRA)

3.1. Fundamentals of the Adomian decomposition method (ADM)

Consider the following general functional equation:

u x u x f xN 27( ) − ( ) = ( ) ( )

where N denotes a nonlinear operator and f(x) is a known function. The ADM suggests the solution of Eq. (27) to be an
infinite series form of
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that was first published by Adomian and Rach [28].
3.2. Modified ADM by Duan–Rach approach

Consider a third-order non-linear differential equation
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Thus in Eq. (38) the three known boundary values u x0( ), u x1′( ) and u x2′( ) are included and the undetermined coefficient
was replaced. Next, the solution is decomposed and the nonlinearity u x u x Nu x A x,m m m m0 0( ) = ∑ ( ) ( ) = ∑ ( )=

∞
=

∞ where
A x A u x u x u x, , ... ,m m m0 1( ) = ( ( ) ( ) ( )) are the Adomian polynomials.

From Eq. (37), the solution components are determined by the modified recursion scheme
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4. Implementation of the method

In our study, the Duan–Rach Approach must be modified. We do not use the prescribed value ξ.
According to Eq. (32), Eqs. (20) and (24) can be written as follows:
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Obviously, we do not have the values of f 0″( ), f 0‴( ) and q 0n′( ). In the standard Adomian decomposition method (ADM), we
need to evaluate those unknown conditions with numerical methods. Consequently, the boundary value problem (BVP) is
turned into an initial value problem (IVP). The accuracy of the solution depends on the accuracy of the three unknown
parameters. In our study, we use the Duan–Rach Approach [25] to find a totally analytical solution.
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Table 1
Comparison between DRA and numerical results.

η f (when Re¼1, K1¼0.01) qn (when Re¼1, K1¼0.02, Pr¼1, n¼0)

DRA NM % Error DRA NM % Error

0 0 0 0 1 1 0
0.1 0.031188982 0.03118898 7.35251E�06 0.869030364 0.869030359 5.53147E�09
0.2 0.114810882 0.114810875 6.40733E�06 0.738985402 0.738985392 1.34769E�08
0.3 0.235836971 0.235836956 6.12873E�06 0.611963412 0.611963396 2.53413E�08
0.4 0.379379585 0.379379563 5.59066E�06 0.490827836 0.490827813 4.74529E�08
0.5 0.531129975 0.53112995 4.61866E�06 0.378547137 0.378547101 9.43771E�08
0.6 0.677805204 0.677805183 3.08103E�06 0.277562244 0.277562198 1.68247E�07
0.7 0.807510276 0.807510267 1.14864E�06 0.189343984 0.189343939 2.39818E�07
0.8 0.909951115 0.909951117 2.35202E�07 0.114237788 0.114237769 1.71124E�07
0.9 0.976480301 0.976480301 2.05707E�08 0.051582243 0.05158225 1.23226E�07
1 1 1 0 0 0 0
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and h 0″( ) is
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Substituting f 0″( ) and f 0‴( ) into Eq. (44) yields,
Fig. 2. Comparison of f and qn obtained by DRA with numerical solution (NM).



Fig. 3. Error (%) of DRA in comparison by the numerical solution for f (when Re¼1, K1¼0.01) and qn (when Re¼1, K1¼0.02, Pr¼1, n¼0).
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Thus the right hand side of Eq. (56) does not contain the undetermined parameters f 0″( ) and f 0‴( ).
Finally, we have the modified recursive scheme

f 3 20
2 3η η η( ) = −
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=

−

where the Am η( ) are the Adomian polynomials, which can be determined by the formula.
Applying Eq. (31), we obtain the terms of the Adomian polynomials and put them in Eq. (57), and we determine fm η( ) as

follows:

f 3 20
2 3η η η( ) = −
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The functions f2 η( ), f3 η( ), ⋯ can be determined in a similar way from Eq. (57). For convenience, we do not represent all
terms of fn η( ).

Using
f f f f f ...m m0 0 1 2η η η η η( ) = ∑ ( ) = ( ) + ( ) + ( ) +=
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According to Eq. (59), the accuracy increases by increasing the number of solution terms (n). For qn η( ), we proceed in the
same manner. We get the following recursive scheme:

q 1n,0 η η( ) = −



Fig. 4. Velocity profiles f and f ' for different values of Re, K1.
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Fig. 5. Skin friction profile ( f ''(0) ) under the effect of Re, K1.

Fig. 6. Temperature distribution (qn) for different values of Re, Pr, K1, n.

A.S. Dogonchi, D.D. Ganji / Case Studies in Thermal Engineering 6 (2015) 40–51 49
5. Results and discussion

In this study, the heat transfer investigation of a non-Newtonian fluid flow in an axisymmetric channel with a porous
wall for turbine cooling applications is considered using DRA (Fig. 1). The effects of various parameters such as the cross
viscosity parameter (K1), the power law index (n), the injection Reynolds number (Re) and the Prandtl number (Pr) are
investigated on the velocity and temperature distribution. To validate the analytical results, we compare the analytical
results with those of obtained by numerical solution for different values of the embedding parameters. The results are well



Fig. 7. dimensionless heat transfer rate (Nusselt number) for different values of Re, Pr, n.
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matched with the results carried out by numerical solution as shown in Table 1 and Fig. 2. In Table 1, an error is introduced
as follows:

Error
DRA NM

NM
% 100.= − ×

Fig. 3 shows the Error (%) of the DRA in comparison to the numerical method and a low maximum Error (%) in this figure
emphasis on accuracy and efficiency of the Duan–Rach Approach (DRA). This accuracy gives high confidence in the validity
of this problem, and reveals an excellent agreement in engineering accuracy.

The effects of injection Reynolds number (Re) and K1 on velocity profiles are shown in Fig.4. According to this figure, at
low injection Reynolds numbers the velocity distribution exhibit center line symmetry indicating a Poiseuille flow for non-
Newtonian fluids. At higher injection Reynolds numbers the location of the maximum velocity point tend to move closer to
the solid wall where shear stress becomes larger as the injection Reynolds number grows. Also, as the K1 increases, these
effects become more conspicuous.

Fig. 5 shows the variation of the skin friction (f’“(0)) with Re number for constant values of K1. One can observe that for
constant values of K1, f’“(0) varies linearly with Re number and for constant value of the Re number, skin friction decreases
with increasing value of K1. Since f’“(0) is measure of friction force, it is advisable to use viscoinelastic fluids as a coolant fluid
for industrial gas turbine engines.

In Fig. 6 temperature distribution for different values of Reynolds number, Prandtl number, cross viscosity parameter (K1)
and power law index (n) are shown. One can observe that as Reynolds number, Prandtl number, cross viscosity parameter
and power law index (n) increase, the qn (η) decreases. Also, as Reynolds number and power law index increase, the thermal
boundary layer thickness decreases. This reduction causes to increase the Nusselt number. On the other hand, as seen in
Fig. 6, the qn (η) variation is more gradual than when the power law index at a lower value or cross viscosity parameter at a
higher value.

Fig. 7 shows the effect of the Re number, Prandtl number and power law index on the dimensionless heat transfer rate
(Nusselt number, Nu¼�q'n(0)). As previously mentioned, As Reynolds number, Prandtl number and power law index in-
creases the thermal boundary layer thickness decreases. Whereas Nusselt number has a inverse relation with boundary
layer thickness, so with an increase in the Re number, Prandtl number and power law index the Nusselt number increases
and that is final goal of this process to have a better cooling in the industrial application. Also, as seen in Fig. 7, the
dimensionless heat transfer rate (Nusselt number) variation is more gradual than when the power law index at a lower
value.

As previously mentioned, Figs. 2 and 3 confirm that the approach used is of a high accuracy for different Reynolds
number (Re), Prandtl number (Pr), cross viscosity parameter (K1) and power law index (n). In the ADM, for given Re, Pr, K1

and n we have to solve f(1)¼1, f′″(1)¼0 and qn(1)¼0 to find α1¼ f‴(0), α2¼ f‴(0) and β¼q′n(0). If we change the value of Re,
we have to again evaluate the values of α1, α2 and β. In our work (Duan–Rach Approach), the obtained solutions for f(η) (Eq.
(59)) and qn(η) (Eq. (61)) are purely analytic approach and we do not need any other calculations if we change any of
parameters of the flow and the final solution does not contain undetermined coefficients.
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6. Conclusions

In this paper, the Duan–Rach Approach (DRA) was used to obtain a purely approximate analytical solution of non-
Newtonian fluid flow in an axisymmetric channel with a porous wall for turbine cooling applications. The Duan–Rach
Approach allows us to find an analytical solution without using a numerical methods to evaluate the missing parameters
f‴(0), f⁗(0) and qʹn(0). The comparison between DRA and NM confirms the validity of this approach. The results show that
the Nusselt number has direct relationship with Reynolds number, Prandtl number and power law index.
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