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Abstract Motivated by the autopilot of an unmanned aerial vehicle (UAV) with a wide flight enve-

lope span experiencing large parametric variations in the presence of uncertainties, a fuzzy adaptive

tracking controller (FATC) is proposed. The controller consists of a fuzzy baseline controller and

an adaptive increment, and the main highlight is that the fuzzy baseline controller and adaptation

laws are both based on the fuzzy multiple Lyapunov function approach, which helps to reduce the

conservatism for the large envelope and guarantees satisfactory tracking performances with strong

robustness simultaneously within the whole envelope. The constraint condition of the fuzzy baseline

controller is provided in the form of linear matrix inequality (LMI), and it specifies the satisfactory

tracking performances in the absence of uncertainties. The adaptive increment ensures the

uniformly ultimately bounded (UUB) predication errors to recover satisfactory responses in the

presence of uncertainties. Simulation results show that the proposed controller helps to achieve

high-accuracy tracking of airspeed and altitude desirable commands with strong robustness to

uncertainties throughout the entire flight envelope.
ª 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

Open access under CC BY-NC-ND license.
1. Introduction

As the development of modern UAVs, the flight envelope is
expanded constantly. Flight control confronts the challenge
of high-precision tracking of desirable instruments with strong
robustness for the entire flight envelope. A UAV is a multi-

input, multi-output nonlinear system with strong coupling,
and the aerodynamic forces and moments for the kinetics
depend not only on the dynamic pressure but also on the force

and moment coefficients as a function of aerodynamic deriva-
tives. The engine thrust, dynamic pressure, and aerodynamic
derivatives vary significantly along with the changes of Mach

number and altitude, especially during a transonic flight.
Therefore, the operating and stability characteristics of a
UAV at different operating points vary remarkably.1 In

addition, undesirable uncertainties intensify the difficulty due
to modeling errors, parametric perturbations, and control
efficiency failures within the full envelope.

Although local model based robust control,2 adaptive

dynamic inversion control,3 and L1 adaptive control4 enhance
performances, they are not applicable for a flight over a large
envelope. The interpolation of local linearization-based
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controllers in terms of flight condition is widely applied in
engineering, but stability could not be guaranteed.1 The gap
metric5 and guardian maps6 approaches extend stability to

the entire envelope iteratively, but the processes are time-
consuming.

The linear parameter varying (LPV) control is a popular

gain-scheduling approach for a large envelope. However, the
conservatism of the common Lyapunov method based robust7

or adaptive controllers8,9 may lead to no feasible solution for

desired performances. To relax the conservatism, Huang et al.10

provided switching the LPV robust controller using multiple
Lyapunov functions for air-breathing hypersonic vehicles,
while Lu et al.11 switched the LPV controller using hysteresis

and average dwell time logics respectively. However, higher
computational complexities emerge and they ensure robustness
at the price of response performances. Hou et al.12,13 enhanced

the response performances with the adaptive increment, but
dwell time restricts the arbitrary switching and switching
dynamics may cause underlying damages.

The fuzzy control is also an attractive alternative for robust
control within a full envelope.14 The generalized fuzzy hybrid
controllers blend the common Lyapunov function with

H1,15 the sliding mode,16 or MRAC,17 and they degrade
control performances due to the conservatism. To reduce the
conservatism, Feng18 proposed a piecewise Lyapunov function
based fuzzy H1 controller, but the switching dynamics could

not be avoided. The fuzzy multiple Lyapunov functions can
reduce the control conservatism with the advantage of a conti-
nuity feature,19 and Bouarar et al.20 reduced computational

complexity by adopting the descriptor system approach, yet
the local H1 controller guarantees robustness at the cost of
response performances.21 Although Wu and Juang22 employed

a fuzzy adaptive sliding-mode controller to relax the cost of
response for robustness, chattering emerges owing to the
discontinuous control signals across the sliding surfaces.

Based on the above analysis, a fuzzy multiple Lyapunov
function based tracking controller augmenting a fuzzy baseline
controller with an adaptive increment is proposed. The key
breakthroughs can be concluded as follows:

(1) The conservatism of the fuzzy baseline controller and
the adaptation law for the entire flight envelope is

relaxed by employing the fuzzy multiple Lyapunov
method.

(2) The computational complexity of LMI for the fuzzy

baseline controller is reduced by using the descriptor sys-
tem approach.

(3) The controller provides smooth control signals through-
out the flight envelope.

2. Problem formation

2.1. Nonlinear kinetic model

The flight envelope23 of a UAV refers to the capabilities of
operating ranges in terms of Mach number and altitude. For
a fix-wing UAV, the flight envelope is restricted by the stalling

angle, service ceiling, maximum march, maximum dynamic
pressure, performances of the engine, etc.
The original nonlinear model23,24 in the path coordinate
frame can be constructed as

_VT ¼ T cosðaþ uÞ �D�mg sin cð Þ=m
_c ¼ T sinðaþ uÞ þ L�mg cos cð Þ= mVTð Þ
_q ¼M=Jz

_h ¼ q

a ¼ h� c

_H ¼ VT sin c

8>>>>>>>>>><>>>>>>>>>>:
ð1Þ

where VT, a, q, h, c and H are the airspeed, angle of attack,
pitch rate, pitch angle, path angle, and altitude, respectively;

u is the angle of the thrust line; m is the mass; g is the gravita-
tional constant; Jz is the pitch moment of inertia; T, L, D and
M are the engine thrust, lift, drag, and pitch moment24

expressed as

T ¼ P dth;Ma;Hð Þ
L ¼ �qSCL

D ¼ �qSCD

M ¼ �qS�cCM � epT

8>>><>>>: ð2Þ

with P(Æ) the thrust curve; dth the throttle setting; Ma the Mach

number; S; �c and ep the wing area, wing mean geometric chord,
and thrust eccentricity; �q ¼ 0:5qðHÞV2

T the dynamic pressure,
and q(H) = 1.225 (1 � H/44331)4.25588 the air density; and
CL,CD, CM the lift, drag, and pitching moment coefficients

defined by

CL ¼ CLaMa a� að Þ þ CLdeMade

CD ¼ AMaC2
L þ CD0Ma

CM ¼ CM0Maþ xcgR � xcaRMa
� �

CL

þCMdeMade þ
CMqMaq�c

VT

þ CM _aMa _a�c

VT

8>>>>><>>>>>:
ð3Þ

where a is the zero lift angle; de is the elevator deflections;
_a is the derivative of the angle of attack;
CLa;CLde ;A;CD0;CM0;CMde ;CMq, and CM _a are the aerody-

namic derivatives; and xcgR xcaR are the reference locations
of the gravity and aerodynamic centers.

The relationship between the flight of a UAV over a large

envelope and the nonlinear kinetics can be illustrated in
Fig. 1. As shown in Fig. 1, the thrust and aerodynamic deriv-
atives connect the operating points in the flight envelope with
the forces and moments in the nonlinear model. The natural

frequency and damp of short-period and phugoid-period vary
remarkably along with airspeed, altitude, dynamic pressure,
and aerodynamic derivatives.24 Hence, we can use the Mach

number and the altitude as the premise variables to distinguish
the natural characteristics of the UAV over a large flight
envelope.1

2.2. Fuzzy T–S model

As the fuzzy system with the Gaussian membership function

has been shown to realize the universal approximation of
any nonlinear functions on the considered compact set,25 the
nonlinear model of Eq. (1) can be transformed to an uncertain
fuzzy T–S system as



Fig. 1 Relationship between flight of a UAV over a large envelope and nonlinear kinetics.
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_xðtÞ ¼
XN
i¼1

li zðtÞð ÞAixðtÞ þ
XN
i¼1

li zðtÞð ÞBi

� Iþ KTðtÞ
� �

uðtÞ þ L xðtÞ; zðtÞð Þ
� �

yðtÞ ¼
XN
i¼1

liðzðtÞÞCixðtÞ

8>>>>>>><>>>>>>>:
ð4Þ

where x(t) = [VT, a, q, h, H]T, u(t) = [d, th,de]
T and y(t) =

[VT, H]T denote the system state, input, and output vectors,

respectively; N is the size of the fuzzy rules; z(t) = [z1(t), z2(t)]
T

is the premise variable and z1(t) = Ma, z2(t) = H; L(x(t), z(t))
represents the modeling errors and unknown parametric

perturbations; K(t) = diag(K1(t),K2(t)) is the unknown diago-
nal matrix with K1(t) and K2(t) modeling the control efficiency
failures of thrust and elevator; Ai 2 R5·5, Bi 2 R5·2, Ci 2 R2·5

(i= 1, 2, . . . , N) are the local system matrices; li(z(t)) P 0 is
the membership degree defined as

li zðtÞð Þ ¼
YK
k¼1

fikðzkðtÞÞ
XN
i¼1

YK
k¼1

fikðzkðtÞÞ
 !,

XN
i¼1

liðzðtÞÞ ¼ 1

8>>>><>>>>: ð5Þ

with fikðzkðtÞÞ the ith Gaussian membership function of zk(t)
reflecting to the fuzzy set Zi

k, and

fikðzkðtÞÞ ¼ exp
� zkðtÞ � �zik
� �2

ri
k

2

" #
ð6Þ

where �zik and ri
k are the center and width of fikðzkðtÞÞ. Note that

we set symbols n ¼ 5; �m ¼ 2; K ¼ 2 to represent the sizes of
the system states, inputs, and premise variables, respectively.

For any i= 1, 2, . . . , N and k = 1, 2, the parameters �zik and
ri
k are obtained through the orthogonal projection of fuzzy

partition, which is realized by fuzzy c-means clustering of flight
dynamics.14,26 Ai, Bi and Ci (i = 1, 2, . . . , N) are acquired via

local linearization with respect to the centers of the fuzzy rules.
The overlapped membership degrees of the fuzzy partition
matrix renders the universe of discourse of the Gaussian mem-

bership function to exceed the boundary of the flight envelope,
so the dynamics of the fuzzy T–S system can cover the flight
envelope region sufficiently with N overlapped ellipses. 27

Assumption 1. The flight envelope constrains that z(t) belongs

to the compact set Xz.

Assumption 2. The uncertainties L(x(t), z(t)) can be approxi-
mated by a single hidden layer neural network (SHLNN) over

the compact set (x(t), z(t)) 2 Xx · Xz with a known structure
and size as28
L xðtÞ; zðtÞð Þ ¼WTr VTwðtÞ
� �

þ eðwðtÞÞ
eðwðtÞÞk k 6 �e

(
ð7Þ

where w(t) = [br, x
T(t), zT(t)]T is the input; W 2 Rðlþ1Þ� �m;

V 2 RðnþKþ1Þ�l are unknown connection weights of SHLNN;
rðVTwðtÞÞ ¼ ½1; r1ðvT1 wðtÞÞ; r2ðvT2 wðtÞÞ; . . . ; rlðvTl wðtÞÞ�

T 2 Rlþ1

is the hidden layer operation; br = 1 is the input bias; l is

the size of the hidden layer neuron; vi(i= 1, 2, . . . , l) is the ith
column of matrix V satisfying vik k 6 �vi; wi(i= 1, 2, . . . , m) is
the ith column of W satisfying kwik 6 �wi, where �vi and �wi

are constant values determined according to the range of

uncertainty; e(w(t)) is the approximated error vector with the
upper bound �e, and the basis function

ri v
T
i wðtÞ

� �
¼ 1

1þ exp �aivTi wðtÞð Þ ði ¼ 1; 2; . . . ; lÞ ð8Þ

with ai > 0 (i = 1, 2, . . . , l) the activation potential factor. And

i Æ i denotes the 2-norm of the matrix.

Assumption 3. The control efficiency failures are constrained
as

KiðtÞj j < �Ki

_KiðtÞ
�� �� < dKi

(
ði ¼ 1; 2Þ ð9Þ

where 0 < �Ki < 1 and dKi > 0 are known constants and satisfy
�K1 þ �K2 < 1.

Assumption 4. The membership degrees are continuously dif-
ferentiable and slowly varying, i.e.,

_liðzðtÞÞj j 6 /i ði ¼ 1; 2; . . . ;N� 1Þ ð10Þ

where /i(i= 1, 2, . . . , N � 1) are known constants, and we
define b = [/1,/2, . . . , /N�1]

T.
For simplicity, we use li to represent li(z(t)).
2.3. Control objective

The control objective is the precise tracking of airspeed and

altitude commands with strong robustness within the full flight
envelope. The desirable responses are specified by a command
filter

_xcðtÞ ¼ AcxcðtÞ þ BcrðtÞ
ycðtÞ ¼ CcxcðtÞ

�
ð11Þ

where xcðtÞ ¼ ½VTc; _VTc; Hc; _Hc�
T
, r(t) = [VTg, Hg]

T, yc(t) =
[VTc, Hc]

T; VTg and Hg are the given airspeed and altitude
inputs; VTc and Hc are the desirable commands; and Ac, Bc,
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Cc are the system matrices. r(t) is uniformly bounded. To

remove steady-state errors, we define

dðtÞ ¼
Z t

0

ycðsÞ � yðsÞð Þds ð12Þ

With the augmentation of the command filter, the extended

tracking system can be constructed as

_�xðtÞ ¼
XN
i¼1

liAi�xðtÞ þ
XN
i¼1

liBi I �m þ KTðtÞ
� �

� uðtÞ
�

þLðxðtÞ; zðtÞÞ� þ GrðtÞ ð13Þ

where �xðtÞ ¼ xTðtÞ; xT
c ðtÞ; d

TðtÞ
� �T 2 R�n with �n ¼ nþ 3 �m; I �m is

a unit matrix of dimension �m, and

Ai ¼
Ai 0 0

0 0 Ac

�Ci 0 Cc

264
375; Bi¼

Bi

0

0

264
375; G¼

0 0

0 Bc

0 0

264
375 ði¼ 1;2; . . . ;NÞ
3. Fuzzy adaptive tracking control for a UAV within the full

envelope

Consider the following control law

uðtÞ ¼ uLðtÞ þ uAðtÞ ð14Þ

where uL(t) is the fuzzy baseline controller and uA(t) is the

adaptive increment. The fuzzy baseline controller specifies
the satisfactory tracking performances in the absence of uncer-
tainties, while the adaptive increment copes with the uncertain-

ties to recover the specified tracking performances.

3.1. Fuzzy baseline controller

Define the quadratic performance index as

J ¼
Z Tf

0

�xTðtÞQ�xðtÞ þ uTðtÞRuðtÞ
� �

dt ð15Þ

where Q and R are the given diagonal positive matrices, and Tf

is the terminal time.
Applying the fuzzy multiple Lyapunov function approach,

we introduce the fuzzy baseline controller

uLðtÞ ¼ �
XN
i¼1

liKi�xðtÞ ¼ �
XN
i¼1

liNi

XN

j¼1
ljXj

� 	�1
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�Ki

�xðtÞ ð16Þ

where Xj 2 R�n��nðj ¼ 1; 2; . . . ;NÞ is the jth Lyapunov positive
define matrix, Ni 2 R �m��n and Ki 2 R �m��n are the ith (i = 1,

2, . . . , N) local proportional matrix and the composited gain
matrix, respectively.

In the absence of uncertainties, the extended tracking

system of Eq. (13) with uL(t) takes the form of

_�xðtÞ ¼
XN
i¼1

li Ai þ Bi

XN
j¼1

ljKj

 !
�xðtÞ þ GrðtÞ ð17Þ

and it can be represented in the form of an equivalent
descriptor system

E
_ _
x
_ðtÞ ¼

XN
i¼1

liA
_

i x
_ðtÞ þ G

_

rðtÞ ð18Þ

where
x
_ðtÞ ¼ �xðtÞ

uLðtÞ

� �
E
_

¼ I�n 0

0 0

� �
A
_

i ¼
Ai Bi

�Ki I �m

� �
G
_

¼ G

0

� �

8>>>>>>>>>>>><>>>>>>>>>>>>:
ði ¼ 1; 2; . . . ;NÞ

Theorem 1. Under Assumptions 1–4, for a given quadratic
performance index defined as Eq. (15) and a descriptor system
given by Eq. (18), if there exists a feasible solution

(Xi,X21i,X22i,Ni,v
2)Œi=1, 2, . . . , N satisfying

Hii 6 0 ði ¼ 1; 2; . . . ;NÞ
1

N� 1
Hii þ

1

2
Hij þHji

� �
6 0 ð1 6 i–j 6 NÞ

XN � Xi > 0 ði ¼ 1; 2; . . . ;N� 1Þ
Xi ¼ XT

i > 0 ði ¼ 1; 2; . . . ;NÞ

8>>>>><>>>>>:
ð19Þ

where

Hij ¼
W
_

ij � �

X
_

j �Q
_
�1 �

G
_

T 0 �v2I�nþ �m

26664
37775

W
_

ij ¼

XT
j A

T
i þ XT

21jB
T
i þ AiXj

þBiX21j þ
XN�1
�h¼1

/�hðXN � X�hÞ

0BB@
1CCA �

XT
22jB

T
i �Ni þ X21j XT

22j þ X22j

2666664

3777775

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
then uL(t) in Eq. (16) is a stabilizing controller rendering

J 6 �J ¼ x
_T

0
�Pv0x

_
0 þ v2

Z Tf

0

rTðsÞrðsÞds ð20Þ

where x
_

0 ¼ x
_ðt0Þ, v > 0 is the attenuation level, and

Pv0 ¼ IT�n��n; 0
T
�m��n

� � XN
j¼1

ljðzðt0ÞÞX
_

j

" #�1
I�n��n

0 �m��n

� �
and X21i 2 R �m��n;X22i 2 R �m� �m are the relative matrices for the
solution of controller parameters in Eq. (16).

Proof. Consider the following candidate fuzzy multiple

Lyapunov function20

Vðx_ðtÞÞ ¼ x
_TðtÞE

_
TP
_

v x
_ðtÞ ð21Þ

where P
_

v ¼
PN

j¼1ljP
_

j ¼ X
_
�1
v ¼

PN
j¼1ljX

_

j

� 	�1
with X

_

j;P
_

j 2
R�n��n j ¼ 1; 2; . . . ;Nð Þ. P

_

v is the nonsingular matrix restricted by

E
_

TP
_

v ¼ P
_

T
v E
_

P 0 ð22Þ

The constraint condition Eq. (22) holds if

X
_

i ¼
Xi 0

X21i X22i

� �
Xi ¼ XT

i > 0

8><>: ði ¼ 1; 2; . . . ;NÞ ð23Þ



Fuzzy adaptive tracking control within the full envelope for an unmanned aerial vehicle 1277
The time derivate of Vðx_ðtÞÞ along trajectories of the

descriptor system Eq. (18) renders

_V x
_ðtÞ
� 	

þ x
_TðtÞQ

_

x
_ðtÞ � c2rTðtÞrðtÞ

¼ x
_TðtÞ; rTðtÞ
h i

X x
_TðtÞ; rTðtÞ
h iT

ð24Þ

where

X ¼ A
_

T
hP
_

v þ P
_

T
vA
_

h þ E
_

T
_
P
_

v þQ
_

�

G
_

TP
_

v �v2I �m

24 35
Q
_

¼ diagðQ;RÞ

8>>><>>>:
with A

_

h ¼
PN

i¼1liA
_

i.

Multiplying X on the left and right by diagðX
_

T
v ; I �mÞ and

diagðX
_

v; I �mÞ, respectively, we get a similar matrix eX. The

property of li defined by Eq. (5) and XN � Xi > 0 (i= 1,
2, . . . ,N � 1) yield

~X ¼ Chv þ X
_

T
vE
_

T
_
P
_

vX
_

v þ X
_

T
v Q
_

X
_

v �

G
_

T �v2I �m

24 35 6 �X

¼
Chv þ Zþ X

_
T
v Q
_

X
_

v �

G
_

T �v2I �m

24 35 ð25Þ

with

Chv ¼
XT

vA
T
h þ XT

21vB
T
hþ

AhXv þ BhX21v

 !
�

XT
22vB

T
h �Nh þ X21v XT

22v þ X22v

2664
3775

Z ¼
XN�1
�h¼1

/�h XN � X�hð Þ 0

0 0

264
375

8>>>>>>>>>><>>>>>>>>>>:
and Ah ¼

PN
i¼1liAi; Bh ¼

PN
i¼1liBi; Nh ¼

PN
i¼1liNi; Xv ¼PN

j¼1ljXj; X21v ¼
PN

j¼1ljX21j; X22v ¼
PN

j¼1ljX22j.

By Schur complement, LMI constraint of Eq. (19) renders
�X 6 0.15,29 Then X 6 0 and
_V x
_ðtÞ
� 	

þ x
_TðtÞQ

_

x
_ðtÞ � v2rTðtÞrðtÞ 6 0 ð26Þ

The integral of Eq. (26) from t = 0 to t= Tf yields J 6 �J, and
this completes the proof.30 h

Under the LMI constraint of Eq. (19), the system described
by Eq. (17) leads to the reference closed-loop system

_�xmðtÞ ¼
XN

i¼1
li Ai þ Bi

XN

j¼1
ljKj

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Amh

�xmðtÞ þ GrðtÞ ð27Þ

where �xmðtÞ is the reference state and Amh is the time-varying

Hurwitz matrix for any z(t) 2 Xz, which specifies the satisfac-
tory tracking performances of the desirable commands yc(t).

Remark 1. The LMI constraint Eq. (19) degrades to a
common Lyapunov function based constraint15 if we set

X
_

i ¼ X
_

j for any i, j 2 {1,2, . . . , N} and i„j. Hence, the fuzzy
baseline controller reduces the conservatism. Compared with

Ref.19, the computational complexity is reduced from O(N3) to
O(N2). Where the function O(Æ) represents the computational
complexity with respect to the number of fuzzy rules.
Remark 2. The control parameter can be optimized through

adjusting Q, R and the minimum v constantly by adopting
the function mincx(Æ) under the MATLAB LMI toolbox.31
3.2. Adaptive increment and stability analysis

Substituting the controller u(t) with uL(t) restricted by Eq. (19),

we get an uncertain closed-loop system

_�xðtÞ ¼ Amh�xðtÞ þ Bh I �m þ KTðtÞ
� �

uAðtÞ þWTr VTðtÞwðtÞ
� ��

þKTðtÞuLðtÞ þ eðwðtÞÞ
�
þ GrðtÞ ð28Þ

Define the fuzzy premise variables based state predictor (the

reference closed-loop system) as

_̂xðtÞ ¼ Amhx̂ðtÞ þ Bh I �m þ K̂TðtÞ
� 	

uAðtÞ þ ŴTðtÞr V̂TðtÞwðtÞ
� �h

þK̂TðtÞuLðtÞ
i
þ GrðtÞ ð29Þ

with x̂ðtÞ the predictor state, ŴðtÞ; V̂ðtÞ and K̂ðtÞ the adaptive
parametric estimates of W, V and K.

Let the adaptive increment uA(t) be given by

uAðtÞ ¼ � I �m þ K̂TðtÞ
� 	�1
� ŴTðtÞr V̂TðtÞwðtÞ

� �
þ K̂TðtÞuLðtÞ

h i
ð30Þ

and the existence of ðI �m þ K̂TðtÞÞ�1 will be addressed latter. By

subtracting Eq. (28) from Eq. (29) and using Tayor series
expansion of SHLNN about (W(t), V(t)), we can obtain the
predication error system

_~xðtÞ ¼ Amh~xðtÞ þ Bh
fWTðtÞt V̂ðtÞ;wðtÞ

� �h
þ ŴðtÞTrr V̂ðtÞwðtÞ

� �
~VTðtÞwðtÞ þ ~KTðtÞuðtÞ

þ1ðtÞ � eðwðtÞÞ� ð31Þ

where ~xðtÞ ¼ x̂ðtÞ � �xðtÞ is the predication error;fWðtÞ ¼ ŴðtÞ �W; ~VðtÞ ¼ V̂ðtÞ � V and ~KðtÞ ¼ K̂ðtÞ � K are
estimation errors of unknown W, V and K, and

t V̂ðtÞ;wðtÞ
� �

¼ r V̂TðtÞwðtÞ
� �

�rr V̂TðtÞwðtÞ
� �

V̂TðtÞwðtÞ

1ðtÞ ¼ fWTðtÞrr V̂TðtÞwðtÞ
� �

VTwðtÞ

þWT‘ ~VTðtÞwðtÞ


 

2

F

� 	

8>>>>>>><>>>>>>>:
ð32Þ

with i Æ iF the Frobenius norm of the matrix. And

‘ ~VTðtÞwðtÞ


 

2

F

� 	
represents the 2nd and higher order terms

of the Taylor-series expansion, and ~VTðtÞwðtÞ


 

2

F
and

‘ ~VTðtÞwðtÞ


 

2

F

� 	
! 0 as ~VTðtÞwðtÞ



 


F
! 0.rrðV̂TðtÞwðtÞÞ 2

Rðlþ1Þ�l is the Jacobian matrix as follows
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rr V̂TðtÞwðtÞ
� �

¼
@r V̂TðtÞwðtÞ
� �
@V̂TðtÞwðtÞ

¼

0 0 0 0
@r1ðq1Þ
@q1

0 0 0

0 @r2ðq2Þ
@q2

� � � 0

..

. ..
. . .

. ..
.

0 0 0 @rlðqlÞ
@ql

2666666664

3777777775
ð33Þ

where qi ¼ v̂Ti ðtÞwðtÞ with v̂i the estimate of vi and

@riðqiÞ=@qi ¼ aie
�aiqi=ð1þ e�aiqiÞ2, for any i 2 (1, 2, . . . , l ).

The predication error system of Eq. (31) can be represented

in terms of descriptor system

E
_ _
x
^ðtÞ ¼

XN
i¼1

liA
_

iðtÞx
^ðtÞ þ

XN
i¼1

liB
_

iðtÞ

� fWTðtÞt V̂ðtÞ;wðtÞ
� �

þ ŴTðtÞ
h

�rr V̂TðtÞwðtÞ
� �

~VTðtÞwðtÞ þ ~KTðtÞuðtÞ
þ1ðtÞ � eðwðtÞÞ� ð34Þ

with x
^ðtÞ ¼ ~xTðtÞ; u

^TðtÞ
h iT

;B
_

iðtÞ ¼ BT
i ðtÞ; 0

� �T
for i = 1,

2, . . . , N, and u
^ðtÞ ¼ �

PN
i¼1liKi~xðtÞ.

Theorem 2. Consider the uncertain fuzzy T–S system Eq.

(4) with u(t) given by Eq. (14), uL(t) given by Eq. (16) satisfying
LMI constraintEq. (19), uA(t) given byEq. (30), the state predictor
and predication error system given by Eqs. (29) and (31) with
ŴðtÞ; V̂ðtÞ and K̂ðtÞ governedby projection-based 4 adaptation laws

_̂
WðtÞ ¼ C Proj ŴðtÞ;�t V̂ðtÞ;wðtÞ

� �
nðtÞ

� �
_̂
VðtÞ ¼ F Proj V̂ðtÞ;�wðtÞnðtÞŴTrr V̂TðtÞwðtÞ

� �� �
_̂
KðtÞ ¼ T Proj K̂ðtÞ;�uðtÞnðtÞ

� 	
8>>><>>>: ð35Þ

where the filtered prediction error is

nðtÞ ¼ ~xTðtÞ�PvBh ð36Þ

with

�Pv ¼ IT�n��n; 0
T
�m��n

� � XN
j¼1

ljX
_

j

 !�1
IT�n��n

0T�m��n

" #
ð37Þ

and the adaptation rates C 2 Rðlþ1Þ�ðlþ1Þ;T 2 R �m� �m, and
F 2 R(n+K+1)·(n+K+1) are diagonal positive define matrices.
Then, ð~xðtÞ;fWðtÞ; ~VðtÞ; ~KðtÞÞ of the predication error system
(31) is uniformly ultimately bounded (UUB) for any

(x(t), z(t)) 2 Xx · Xz with an ultimate bound k~xðtÞk 6 ~xb,

~xb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2
0 þ q1

p
þ q0

� 	2
þ q2

kzmin
�Pv

� �
vuuut ð38Þ

with

q0 ¼
kzmax

�Pv

� �
�b �eþ �1ð Þ

kmin Qð Þ

q1 ¼
4�C�dC

kminðTÞkminðQÞ

q2 ¼
4 �W2

kmin Cð Þ þ
4 �V2

kminðFÞ
þ 4�C2

kminðTÞ

8>>>>>>>><>>>>>>>>:
ð39Þ
where kmin(Æ), kmax(Æ) are the minimum and maximum eigenvalues

of the matrices; �1 > 0 is a constant, with k1ðtÞk 6 �1 satisfied;
and

kzmaxð�Þ ¼ sup
zðtÞ2Xz

kmaxð�Þ

kzminð�Þ ¼ inf
zðtÞ2Xz

kminð�Þ

�b ¼ max
zðtÞ2Xz

Bh



 


F

�W ¼
Xl

i¼1
�wi; �V ¼

X�m

i¼1
�vi

�C ¼
X�m

i¼1

�Ki; �dC ¼
X�m

i¼1

�dKi

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
Hence, the controller guarantees a UUB close-loop system

under undesirable uncertainties, and it constitutes the fuzzy
adaptive tracking controller within the full envelope for the

UAV as shown in Fig. 2.

Proof. Consider the following candidate fuzzy multiple
Lyapunov-like function

V x
^ðtÞ
� 	

¼ x
^TðtÞE

_
TP
_

v x
^ðtÞ þ tr fWTðtÞC�1fWTðtÞ

� 	
þ tr ~VTðtÞF�1 ~VðtÞ

� �
þ tr ~KTðtÞT�1 ~KðtÞ

� �
ð40Þ

with P
_

v restrained by Eq. (22) and tr(Æ) the trace operator. The

time derivate of Vðx^ðtÞÞ can be written as

_V x
^ðtÞ
� 	

¼ x
^TðtÞ A

_
T
hP
_

v þ P
_

T
vA
_

h þ E
_

T
_
P
_

v

� �
x
^ðtÞ

þ 2x
^TðtÞP

_
T
vB
_

h
fWTt V̂ðtÞ;wðtÞ

� �h
þŴTðtÞrr V̂TðtÞwðtÞ

� �
~VTðtÞwðtÞ þ ~KTðtÞuðtÞ

þ1ðtÞ � eðwðtÞÞ� þ 2tr fWTðtÞC�1 _̂
WðtÞ

� 	
þ 2tr ~VTðtÞF�1 _̂

VðtÞ
� 	

þ 2tr ~KTðtÞT�1 _̂
KðtÞ

� 	
� 2tr ~KTðtÞT�1 _KðtÞ

� �
ð41Þ

with B
_

h ¼
PN

i¼1liB
_

i.
Since the LMI constraint of Eq. (19) guarantees X 6 0 as

defined in Eq. (24), with Schur complement, we can get

x
^TðtÞ A

_
T
hP
_

v þ P
_

T
vA
_

h þ E
_

T
_
P
_

v

� �
x
^ðtÞ 6 �~xTðtÞQ~xðtÞ ð42Þ

The constraint condition by Eq. (22) renders

nðtÞ ¼ x
^TðtÞP

_
T
vB
_

h ¼ ~xTðtÞ�PvBh . By Assumptions 1 and 2, we

can obtain W 2 XW ¼ Wj Wk kF < �W
� �

; V 2 XV ¼
Vj Vk kF < �V
� �

;K 2 XK ¼ Kj Kk kF < �C
� �

. The projection

operators in Eq. (35) ensure ŴðtÞ 2 XW; V̂ðtÞ 2 XV and

K̂ðtÞ 2 XK. Hence, the boundedness of fWðtÞ; ~VðtÞ and ~KðtÞ
can be guaranteed and there exists a constant �1 > 0 so that
1ðtÞk k 6 �1. Using aTb= tr(baT), we get
_V x
^ðtÞ
� 	

6 �kmin Qð Þ ~xðtÞk k2 þ 2nðtÞ � 1ðtÞ � eðwðtÞÞð Þ

� 2tr ~KTðtÞT�1 _KðtÞ
� �

6 kmin Qð Þ � ~xðtÞk k � q0ð Þ2 þ q1 þ q2
0

h i
ð43Þ



Fig. 2 Control architecture of fuzzy adaptive tracking controller.
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Notice _Vð~xðtÞÞ 6 0, if ~xðtÞk kP ~xmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2
0 þ q1

p
þ q0.

Therefore, we can get

Vmax ¼ kzmax
�Pv

� �
~x2
max þ 4 �W2=kmin Cð Þ þ 4 �V2=kmin Fð Þ

þ 4�C2=kmin Tð Þ ð44Þ

Since Vð~xð0ÞÞ 6 Vmax, we obtain Vð~xðtÞÞ 6 Vmax and for all

t P 0,

kzmin
�Pv

� �
~xðtÞk k2 6 Vmax ð45Þ

which yields ~xðtÞk k 6 ~xb and ~xðtÞ;fWðtÞ; ~VðtÞ and ~KðtÞ are
UUB, which completes the proof. h

Remark 3. Notice that KðtÞk kF < �C < 1 renders

kmaxðK̂ðtÞÞ < �C. Hence, ðI �m þ K̂TðtÞÞ�1 exists for any t> 0,
which follows the fact that det(A + B) „ 0 if and only if there
exists d > 0 so that kmin(A) > d and kmax(B) 6 d, where det(Æ)
denotes the determinant of a matrix.

Remark 4. The state predictor of Eq. (29) with the adaptive
increment of Eq. (30) is equivalent to the reference closed-loop
system of Eq. (27). ~xðtÞ is UUB and it can be arbitrarily

reduced via increasing C, F and T, which indicates the recovery
of satisfactory tracking performances specified by the reference
closed-loop system with strong robustness to uncertainties.

Remark 5. The fuzzy multiple Lyapunov function based adap-

tation laws improve the applicability of the adaptive increment
for the compensation of uncertainties within the full envelope.
Table 1 Wing-platform and inertia parameters.

Parameter Value Parameter Value Parameter Value

m (kg) 12495 S(m2) 39.5 xcgR 0.33

Jz (kg Æ m2) 23516 u(�) 8 a(�) �0.5
�c ðmÞ 6.3 ep(m) �0.6 b(m) 8.9
4. Simulations

In this section, we demonstrate the efficiency of the proposed
controller under the nonlinear model of a prototype UAV.
The flight envelope is restricted by the stall angle of attack
16�, the service ceiling 12 km, the maximum Mach number
1.4, and the maximum dynamic press 51.147 kPa. The satura-

tion limits of dth and de are set to (20%,100%) and (�25�, 25�),
with the dynamics 5/(s+ 5) and 15/(s + 15), respectively. The
wing-plant and inertia parameters are shown in Table 1, while

the aerodynamic derivatives under different Mach numbers are
represented in Table 2. Following Ref.26, we construct the
fuzzy T–S model with N = 11 fuzzy rules.

Fig. 3 represents the fuzzy partition of the flight envelope
with the brightness indicating the maximum membership
degreeslmaxðzÞ ¼ max

16i611
ðliÞof the operating point to the 11 fuzzy

rules. The fuzzy partition reflects composition results of 11 over-

lapped ellipses for the flight envelope region. We can find that it
is bright to certain degree near the boundary of the flight enve-
lope, so the universe of discourse for Gaussian membership
functions of all the fuzzy rules exceeds the flight envelope bound-

ary and covers the entire flight envelope region sufficiently.
Following the Theorem 1 and 2, we can construct the FATC

for the prototype UAV. The command filter is defined as follows

Ac ¼

0 1 0 0

�0:533 �1:285 0 0

0 0 0 1

0 0 �0:423 �1:14

2664
3775

Bc ¼

0 0

0:533 0

0 0

0 0:423

2664
3775

Cc ¼
1 0 0 0

0 0 1 0

� �

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:



Table 2 Aerodynamic derivatives with respect to Mach number.

Mach number Aerodynamic derivatives

Ma CLa CLde CD0 A CM0 CMq CMde CM _a xcaR

0.6 0.0481 0.0092 0.0182 0.2834 �0.0085 �1.5265 �0.0097 �0.6657 0.3853

0.7 0.0490 0.0094 0.0289 0.2845 �0.0088 �1.5600 �0.0097 �0.7164 0.3855

0.8 0.0504 0.0096 0.0338 0.2865 �0.0092 �1.6127 �0.0099 �0.7761 0.3904

0.9 0.0535 0.0097 0.0377 0.2896 �0.0105 �1.7533 �0.0102 �0.8912 0.3873

1.0 0.0546 0.0085 0.0405 0.3075 �0.0102 �2.0537 �0.0108 �0.9823 0.4342

1.1 0.0496 0.0066 0.0456 0.3595 �0.0051 �1.9732 �0.0092 �0.8767 0.4711

1.2 0.0472 0.0060 0.0387 0.3861 �0.0027 �2.0645 �0.0081 �0.7762 0.5012

1.3 0.0465 0.0057 0.0375 0.4274 �0.0014 �1.9577 �0.0070 �0.6190 0.5193

1.4 0.0457 0.0055 0.0342 0.4696 �0.0011 �1.8128 �0.0062 �0.5036 0.5163

Fig. 3 Fuzzy partition of flight envelope.

Fig. 4 Flight test points and flight trajectory over large envelope

span.

Table 3 Parametric perturbations.

Parameter Perturbation

values (%)

Parameter Perturbation

values (%)

CLa 30 CMq �30
CLde 30 CM0 �30
CD0 �30 xcgR 30

A �30 XcaR �30
Cmde �30 T �30
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Let b = [4.3, 4.6, 5.5, 6.7, 7.9, 9.1, 9.8, 9.2, 6.3]T, we get
v2 = 0.37 with Q= diag(10�4I9,1.2I2) and R = diag(10�4,

10�4) following Remark 2. Then, the control parameters
Ni,Xi,X21i and X22i can be obtained (i = 1, 2, . . . ,11), and
we show Ni and X1, X4, X11 as examples in Appendix A. We
design the SHLNN with 9 nodes in the input layer, 20 nodes

in the hidden layer, and 2 nodes in the output layer. The
parameters ai = 10(2(i�1)/19 )�4 (i= 1, 2, . . . , 20) cover the
range between 0.0001 and 0.01, and C = 10I21, F= 500I9,

T = 1.5I2. The column norm bounds of adaptive parametric
estimates ŴðtÞ; V̂ðtÞ and K̂ðtÞ are as �wi ¼ 1:2 ði ¼ 1; 2Þ;
�Kk ¼ 0:4ðk ¼ 1; 2Þ; �vj ¼ 1:0 (j= 1, 2, . . . , 20). According to

Theorem 1, we can realize the controller u(t) given by
Eq. (14), and uL(t) given by Eq. (16) satisfying LMI constraint
of Eq. (19), uA(t) given by Eq. (30).

As the contrast of the FATC, a generalized fuzzy adaptive
controller (GFAC) and a multi-model switching controller
(MMSC) are constructed. The GFAC augments the common
Lyapunov function based fuzzy baseline controller as Remark

1 with an L1 adaptive increment.8,17 The MMSC divides the
flight envelope into 3 locally overlapped subsystems: P1:
0 km 6H6 5.5 km; P2: 5 km 6H6 9 km; P3: 8.5 km

6H 6 12 km. For any subsystem, N = 6 polytopic vertices
are determined, and a local robust H1 LPV controller is
designed by employing the common Lyapunov function and

considering maximum uncertainties DAsi = 0.15Asi,
DBsi = 0.15Bsi (i = 1, 2, . . . , 6;s = 1, 2, 3) and Asi and Bsi

are the local system matrices of the ith fuzzy rule in the sth sub-

system The local controllers switch using hysteretic switching
logic.10
Under the nonlinear kinetic model of the UAV given by
Eq. (1), the tracking performances of desirable commands

are compared by employing the FATC, the GFAC, and the
MMSC, respectively in the following sections. Two simulation
cases are considered:

(1) Step responses at test operating points covering the
entire envelope;

(2) A continuous flight over the large flight envelope span.

4.1. Tracking performances at the test points

As shown in Fig. 4, 58 test points are determined1 to cover the
entire flight envelope. We also select three navigation points
(A, B and C) to identify the flight trajectory over the large



ig. 6 Step responses of the closed-loop system with GFAC for

ll test points.
Fig. 5 Step response comparison at a specific test point with 3

controllers.
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envelope span. To verify the robustness at the 58 test points,
we conduct the large perturbations of aerodynamic parameters
referring to the nominal values as shown in Table 3. The per-
turbations create bad conditions involving increased lift,

reduced drag, control efficiency failures, and deterioration of
airspeed static stability. For any test point, the simulation is
initialized at the equilibrium state, and the rising step com-

mands of airspeed and altitude are implemented at 2 s to illus-
trate the tracking performance in the absence of uncertainties
between 2 s and 10 s. The perturbations are injected at 10 s,

and the attenuation performance for instantly imposed uncer-
tainties can be shown during (10 s, 15 s). The falling step
commands are conducted at 15 s to illustrate the tracking

performance in the presence of uncertainties between 15 s
and 25 s.

As an illustration, the step responses at a specific test point
(Ma= 1.22, H= 9.8 km) with the three controllers are
F

a

represented in Fig. 5. Where CMMD represents the airspeed
and altitude command in Fig. 5(a) and (b), respectively.

From Fig. 5, we can find that for the tracking responses of
the step commands during the time intervals (2 s, 10 s) and

(15 s, 25 s), the MMSC and the FATC both provide better
tracking performances for the desirable airspeed and altitude
commands (CMMD) on transient and steady-state than the

GFAC. The GFAC degrades the tracking performance due
to the conservatism for the entire flight envelope. After the
exertion of uncertainties at 15 s, the MMSC just generates rel-

atively smaller adjustments of throttle setting and elevator
deflection with slower response rates and it leads to largest
tracking errors and longest adjustment time. Hence, the local

LPV robust controller attenuates the imposed uncertainties
at the cost of response performances. Though the GFAC
reduces the tracking errors obviously via the quick compensa-
tion of the L1 adaptive increment, the convergence time is



Fig. 7 Step responses of the closed-loop system with MMSC for

all test points.

Fig. 8 Step responses of the closed-loop system with FATC for

all test points.
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longer than that of the FATC due to the poor responses of the
fuzzy baseline controller. Benefiting from less conservatism

and rapid compensation of the adaptive SHLNN increment
without sacrificing the response quality, the FATC guarantees
superior tracking performances with strong attenuation per-

formances for the instantly imposed undesirable uncertainties.
Hence, the proposed FATC improves response and robust per-
formances simultaneously at the specific test point.

The responses of the closed-loop system with the three con-

trollers for all the test points are represented in Figs. 6–8,
respectively, in which symbol D denotes the deviation value
of the signal with respect to the trimmed value at the corre-

sponding point.
The statistic results of the tracking errors are represented in

Figs. 9 and 10. Fig. 9 focuses on the step responses during the

time intervals (2 s, 10 s) and (15 s, 25 s), and subscripts R and
F label the rising step and the falling step, respectively. VTe, He
represent the maximum tracking errors of airspeed and alti-
tude, while TeV, TeH indicate the response time errors at the
corresponding test point. Fig. 10 shows the attenuation perfor-
mances after the exertion of uncertainties between (10 s, 15 s),

providing the maximum induced tracking errors VTe, He and
the required convergence times TeV, TeH to 10% of the maxi-
mum induced errors at the corresponding test point.

From Figs. 6–8, we get that though all the three controllers
guarantee stable responses throughout the entire flight enve-
lope, the tracking performances and uncertainties attenuation

performances are different, and this can be concluded accord-
ing to the statistic results in Figs. 9 and 10. For the tracking
responses of rising and failing step commands, the GFAC

leads to the largest tracking errors and response time errors
obviously, though the SMMC improves the tracking perfor-
mances and the responses within the whole envelope are more
dispersed compared with those of the FATC. The FATC



Fig. 9 Statistic results of tracking errors for all test points.

Fig. 10 Statistic results of uncertainties attenuation for all test

points.
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restrains the airspeed errors within a small range (0.025, 0.034)
m/s and the response time errors within (0.35 s, 0.48 s), and so
as to the altitude. During (10 s, 15 s), the SMMC guarantees

stability at the cost of response performances, so the imposed
uncertainties render long adjustment times and large tracking
errors, while the GFAC eliminates the airspeed errors quickly

but the attenuation qualities of the altitude errors do not rep-
resent obvious advantage. The FATC attenuates the induced
airspeed and altitude errors within 0.28 m/s and 0.26 m with

the adjustment times less than 0.5 s and 1.42 s, and it shows
the best uncertainties attenuation performance. Hence, the
proposed FATC guarantees consistent and satisfactory track-
ing performances within the full envelope in spite of uncertain-

ties, and it attenuates the influences of instant uncertainties
without sacrificing the response performances.

4.2. Tracking performances under continuous flight over large
envelope span

As shown in Fig. 5, the flight trajectory over a large span is

designed to verify the tracking performances under a
continuous flight in the presence of uncertainties. We select
three navigation points to identify the desirable command of

the flight state. The trimmed states for three navigation points
(A, B and C) in the absence of uncertainties are illustrated in
Table 4.

The UAV is initiated at operating point A and switches to

point B and C at 5 s and 200 s respectively through filter
dynamic

GðsÞ ¼ 0:0009=ðs2 þ 0:057sþ 0:0009Þ

and then we can obtain the given inputs VTg, Hg:

VTg ¼
VTA t < 5 s

VTB þ 1� G sð Þð Þ VTA � VTBð Þ 5 s 6 t < 200 s

VTC þ 1� GðsÞð Þ VTC � VTBð Þ 200 s 6 t 6 400 s

8><>:
Hg ¼

HA t < 5 s

HB þ ð1� GðsÞÞ HA �HBð Þ 5 s 6 t < 200 s

HC þ 1� GðsÞð Þ HC �HBð Þ 200 s 6 t 6 400 s

8><>:
where VTA, VTB, VTC are the airspeeds at points A, B, and C,

respectively and HA, HB, HC are the corresponding
altitudes.

We introduce sine time-varying parametric perturbation
uncertainties defined as Am sin(2p(t � t0)/T), where the ampli-

tudes Am for CLa; CLde ; CD0; A; CM0; CMq; xcgR; xcaR are
determined as in Table 3, the imposed time t0 = 10 s, and
the periods T are 30 s, 35 s, 40 s, 45 s, 50 s, 55 s, 60 s, and

80 s, respectively. The failures of 30% reduction of the thrust
Table 4 Trimmed values for three navigation operating

points.

Label Condition Trimmed states

Ma H (km) a(�) h(�) dth (%) de(�)

A 0.46 7.40 10.7 10.7 65.6 �2.9
B 1.32 10.60 2.6 2.6 66.6 �2.3
C 1.01 3.40 1.6 1.6 85.6 �1.3



Fig. 11 Responses under continuous flight over a large envelope

span.

Fig. 12 Membership degrees to 11 fuzzy rules.
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and 30% reduction of the elevator effectiveness are imposed at
100 s and 300 s, respectively.

The responses under the continuous flight with the three
controllers are shown in Figs. 11 and 12 provides the
membership degrees of the UAV to 11 fuzzy rules during the

flight process under the feedback control of the FACT.
From Fig. 11, we can conclude that the three controllers

all realize stable tracking over the flight under the time-vary-

ing uncertainties. After 5 s, the quick decrease of the eleva-
tor deflection and the increase of the throttle setting cause
the increases of airspeed and altitude. The elevator rises
slowly at 8.2 s, and after 48.4 s, the throttle setting declines

to relieve the change rates of altitude and airspeed, and then
the UAV transforms from increasing to steady-state flight at
point B. After 200 s, the quick increase of the elevator

deflection and the decrease of the throttle setting lead to a
quick decline of the UAV. Then the elevator deflection
decreases and the throttle setting rises slowly to reduce the

difference between the drag and the thrust, so that the
UAV transforms from declining to steady-state flight at
point C gradually. As the aerodynamic drag at point C is
much larger, the throttle setting reaches a higher value to

maintain the balance between the drag and the thrust finally
with respect to point B. The quick injections of control effi-
ciency failures at 100 s and 300 s cause fast regulations of

the elevator and the throttle.
The variations of membership degrees to the 11 fuzzy rules

shown in Fig. 12 illustrate the scheduling mechanism of the

proposed controller. At any specific moment, the flight condi-
tion is subject to 11 fuzzy rules with different membership
degrees, which reflect the weights of corresponding local gain

matrices. The variations of Mach number and altitude accom-
panying with the flight over the large envelope span lead to the
smooth transition of membership degrees, so the fuzzy multi-
ple Lyapunov function synthesizes the 11 fuzzy Lyapunov

matrices Xj with the membership degrees to replace the com-
mon Lyapunov matrix Xc and the smooth gain scheduling of
the baseline controller of Eq. (15) and the adaptation laws of

Eq. (36) can be realized. Therefore, the extra freedom degrees
of control parameters are offered.

As shown in Fig. 11, though the three controllers all real-

ize stable tracking, the GFAC embodies the largest tracking
errors due to the conservatism compared with the other con-
trollers. Though the MMSC reduces the tracking errors for

a certain degree, the relevant tracking performances as
shown in Fig. 9 could not be ensured due to the cost of
response degradation under the time-varying uncertainties,
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and the maximum tracking errors of airspeed and altitude are
9.5 m/s and 23 m, which are obviously larger than 3.5 m/s
and 3.3 m caused by the GFAC. Another drawback of the

MMSC is also presented, which is the switching between dif-
ferent subsystems. As marked in the altitude curve, three
switching processes S1, S2, and S3 are conduced, and they

lead to switching dynamics. Especially during S3, the varia-
tion ranges of dth and de are 11.2% and 4.5�, and they cause
the fluctuation of 3.6� for the pitch angle. The switching

dynamics degrade the tracking performances and lead to
underlying damages. With reduced conservatism and adaptive
SHLNN compensation for uncertainties, the FATC ensures
stable responses of flight states and guarantees the minimum

tracking errors among the three controllers without introduc-
ing switching dynamics. Hence, the proposed FATC guaran-
tees satisfactory tracking performances of the desirable

commands with strong robustness to the uncertainties during
the continuous flight over the large flight envelope.

5. Conclusions

A fuzzy adaptive tracking controller is proposed for the flight
of a UAV over a large envelope span in the presence of unde-

sirable uncertainties:
Appendix A. The control parameters for the fuzzy baseline controlle

N1 ¼
�563:86 2:89 �38:52 1:35 �1:03 0:15 0:03 �
�37:12 8:75 1590:8 9:89 �143:9 0:21 �3:68 �

�

N2 ¼
�511:31 1:45 �37:49 0:30 1:67 0:07 0:12

0:18 14:39 2974:3 13:21 �92:70 �0:60 �1:14

�

N3 ¼
�660:07 1:22 �35:99 0:152 3:26 0:04 0:19

0:492 13:96 3965:1 11:58 �80:43 �0:37 �0:79

�

N4 ¼
�768:52 1:29 �30:64 0:19 3:82 0:041 0:22

�2:71 15:15 4269:2 12:08 �58:86 �0:39 0:34

�

N5 ¼
�914:29 1:55 �23:66 0:404 4:02 0:05 0:26

�9:55 14:28 4049:8 11:19 �30:06 �0:44 1:64

�

N6 ¼
�1055:5 2:47 �19:41 1:25 4:28 0:03 0:42 2:59

�20:40 9:26 3146:5 7:14 2:74 �0:34 2:70 27:46

�

N7 ¼
�1215:8 7:24 29:55 5:63 3:85 �0:14 1:14

�42:81 �6:47 1111:8 �5:46 39:10 0:01 3:14 3

�

N8 ¼
�1416:8 1:470 �24:43 0:41 0:60 0:07 0:11

�59:05 �22:99 3401:8 �21:62 0:08 0:72 �0:97

�

N9 ¼
�1222:1 5:20 �18:1 3:85 �3:60 �0:01 0:

�70:97 �30:81 1742:3 �27:24 �40:23 0:605 �3

�

(1) Benefiting from the relaxed conservatism of the fuzzy

baseline controller and the adaptation laws, the control-
ler guarantees satisfactory tracking performances of the
desirable commands with strong robustness to the

uncertainties for the entire flight envelope.
(2) The parameters of the fuzzy baseline controller can be

obtained conveniently by solving LMI with reduced
computational complexity.

(3) The controller is scheduled based on smooth transition
of membership degrees, and the adaptive increment
provides continuous compensating signals with bounded

parametric eliminates, so the problems of switching
dynamics, chattering, and parametric drift are
avoided.
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