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Abstract

This paper concerns the structure of the group of local unitary cocycles, also called the gauge group,
of an E0-semigroup. The gauge group of a spatial E0-semigroup has a natural action on the set of units
by operator multiplication. Arveson has characterized completely the gauge group of E0-semigroups of
type I, and as a consequence it is known that in this case the gauge group action is transitive. In fact, if the
semigroup has index k, then the gauge group action is transitive on the set of (k + 1)-tuples of appropriately
normalized independent units. An action of the gauge group having this property is called (k + 1)-fold
transitive. We construct examples of E0-semigroups of type II and index 1 which are not 2-fold transitive.
These new examples also illustrate that an E0-semigroup of type IIk need not be a tensor product of an
E0-semigroup of type II0 and another of type Ik .
© 2008 Elsevier Inc. All rights reserved.
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0. Introduction

An E0-semigroup is a strongly continuous one-parameter semigroup of unit preserving ∗-
endomorphisms of B(H), the algebra of all bounded operators on a separable Hilbert space H.
In the 1930s Wigner showed that a one-parameter group of ∗-automorphisms of B(H) is always
given by the action of a one-parameter strongly continuous unitary group by conjugation. In
particular, the classification of one-parameter automorphism groups of B(H) up to conjugacy

* Corresponding author.
E-mail addresses: danielm@math.bgu.ac.il (D. Markiewicz), rpowers@math.upenn.edu (R.T. Powers).
0022-1236/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jfa.2008.07.009

https://core.ac.uk/display/82127762?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1512 D. Markiewicz, R.T. Powers / Journal of Functional Analysis 256 (2009) 1511–1543
can be reduced to the well-known multiplicity theory of Hahn–Hellinger of unbounded self-
adjoint operators. In contrast, the classification theory of E0-semigroups up to cocycle conjugacy
(which is the appropriate equivalence relation in this context) has proved to be much richer and
full of surprises (see for example [3,9–11,14,17,20,21]; we recommend Arveson’s book [5] for
an excellent introduction to the theory of E0-semigroups).

One important cocycle conjugacy invariant of an E0-semigroup is its gauge group (or more
precisely the isomorphism class of the gauge group). Given an E0-semigroup α, a cocycle C

is a one-parameter strongly continuous family {C(t): t � 0} satisfying the cocycle identity
C(t + s) = C(t)αt (C(s)) for t, s � 0. The cocycle C is said to be local if it satisfies the ad-
ditional property that C(t) ∈ αt (B(H))′ for all t � 0. It is easy to verify that given two local
cocycles C1 and C2, the expression (C1 · C2)(t) = C1(t)C2(t), for t � 0, defines another local
cocycle. The set of unitary local cocycles is a group when endowed with this operation, and
this group is called the gauge group of the E0-semigroup α. In terms of the product system ap-
proach to the study of E0-semigroups, the gauge group is canonically isomorphic to the group of
automorphisms of the product system associated with α.

A unit for an E0-semigroup α is a strongly continuous one-parameter semigroup of isometries
{U(t): t � 0} which intertwines the E0-semigroup: αt (A)U(t) = U(t)A for all t � 0, A ∈ B(H).
If an E0-semigroup has at least one unit, it is called spatial. If it is spatial and it is generated by its
units, it is called completely spatial or type I. All other spatial E0-semigroups are called type II.
Non-spatial E0-semigroups, also called type III, have been proven to exist by Powers [14], and in
fact it follows from work of Tsirelson [20] that there exists a continuum of pairwise non-cocycle
conjugate examples. The type of an E0-semigroup is also a cocycle conjugacy invariant. We will
only consider spatial semigroups in this paper, although we should note that, to our knowledge,
little is known about the gauge group of a non-spatial E0-semigroup.

Our main goal in this work is to study the action of the gauge group of a spatial E0-semigroup
on the set of units. If U is a unit of α and C is a local unitary cocycle, then U ′(t) = C(t)U(t) is
another unit of α, defining a natural action of the gauge group.

Completely spatial E0-semigroups and their gauge groups are well understood. Every com-
pletely spatial E0-semigroup is cocycle conjugate to a CAR/CCR flow, and they are completely
classified by the index [3,15,19]. Furthermore, their gauge groups were completely characterized
by Arveson [3,5]. One property which becomes apparent upon examining his characterization is
that the gauge group of a completely spatial semigroup acts transitively on the set of units. In
fact, even more can be gleaned from that characterization. If the completely spatial E0-semigroup
has index k, then any pair of (k + 1)-tuples of appropriately normalized and independent units
are related by an element of the gauge group. When the action of the gauge group of a spatial
E0-semigroup on its units has this property, we say that the action is (k + 1)-fold transitive.

Alevras, Powers and Price [1] were the first to break ground on the study of the gauge group
of E0-semigroups of type II. In their work, they characterize all contractive local cocycles (not
just unitary local cocycles) for a certain class of E0-semigroups of type II and index zero. For
semigroups of index zero, the set of units is essentially one-dimensional and the gauge group
action is automatically (1-fold) transitive.

It is natural to inquire whether the action of the gauge group of a spatial E0-semigroup of
index k on the units is always (k + 1)-fold transitive. In this paper we show that this is not the
case, by constructing a class of E0-semigroups of type II and index 1 whose gauge group action
on the set of units is not 2-fold transitive.

It is possible, although we could not verify it, that within the class which we have constructed
there could also be examples of E0-semigroups whose gauge group action on the set of units is
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not transitive. While this article was in preparation, it came to our attention that non-transitive
examples were obtained by Tsirelson [22], using different techniques. We do not know the exact
relationship between his examples and our own. Nevertheless, in the last section we discuss some
features which they have in common.

We also observe that our examples, as well as Tsirelson’s [22], provide a direct answer to an
old question. When Arveson [2] proved that the index is additive with respect to tensor products,
it was natural to inquire whether type IIk semigroups can be decomposed as tensor products of
type II0 and Ik . Alas, that is not the case, as the E0-semigroups which we construct are of type
II1 yet they are not tensor products of type II0 and type I1 semigroups.

Our approach involves a detailed analysis of the E0-semigroups obtained via minimal dila-
tion of certain CP-flows. Bhat [6] proved that CP-semigroups can be dilated to E0-semigroups,
and this result proved very useful for the construction and analysis of new examples of E0-
semigroups (a very incomplete list of work in this direction includes [4,8,12,13,16]). Bhat [7] has
also found a one-to-one correspondence between the compressions of a CP-semigroup and the
compressions of its minimal dilation. Pursuing this correspondence, Powers [18] subsequently
carried out a study of a class of CP-semigroups, called CP-flows, and their minimal dilations to
E0-semigroups. In particular, several results were obtained in [18] for the analysis of the cocycle
conjugacy of the minimal dilations of CP-flows, as well as their contractive local cocycles. We
make full use of this favorable framework, which is in fact quite general, given that all spatial
E0-semigroups arise from the minimal dilation of an appropriate CP-flow (see [18]).

We now provide an outline of the contents of the following sections. In Section 1 we describe
in detail the basic background and terminology, with an emphasis on the material related to [18].
In Section 2 we introduce the class of examples which will be of interest, and describe some of
its key properties. In Section 3 we turn to the analysis of the local cocycles of the E0-semigroups
under consideration. Finally, in the last section we summarize our main results.

1. Background, notation and definitions

We begin with the definition of E0-semigroups of B(H) the set of all bounded operators on
a separable Hilbert space H. For a detailed discussion of E0-semigroups we refer to Arveson’s
excellent book [5].

Definition 1.1. We say α is an E0-semigroup of B(H) if the following conditions are satisfied:

(i) αt is a ∗-endomorphism of B(H) for each t � 0.
(ii) α0 is the identity endomorphism and αt ◦ αs = αt+s for all s, t � 0.

(iii) For each ρ ∈ B(H)∗ (the predual of B(H)) and A ∈ B(H) the function ρ(αt (A)) is a con-
tinuous function of t .

(iv) αt (I ) = I for each t � 0 (αt preserves the unit).

The appropriate notions of when two E0-semigroups are similar are conjugacy and cocycle
conjugacy (which comes from Alain Connes’ definition of outer conjugacy).

Definition 1.2. Suppose α and β are E0-semigroups B(H1) and B(H2). We say α and β

are conjugate, denoted α ≈ β , if there is a ∗-isomorphism φ of B(H1) onto B(H2) so that
φ ◦ αt = βt ◦ φ for all t � 0. We say α and β are cocycle conjugate, denoted αt ∼ βt , if α′ and
β are conjugate where α and α′ differ by a unitary cocycle (i.e., there is a strongly continu-
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ous one-parameter family of unitaries U(t) on B(H1) for t � 0 satisfying the cocycle condition
U(t)αt (U(s)) = U(t + s) for all t, s � 0 so that α′

t (A) = U(t)αt (A)U(t)−1 for all A ∈ B(H1)

and t � 0).

An E0-semigroup αt is spatial if there is a semigroup of isometries U(t) which intertwine
so U(t)A = αt (A)U(t) for A ∈ B(H) and t > 0. The property of being spatial is a cocycle
conjugacy invariant.

An extremely useful and well-known result in the theory of C∗-algebras is the Gelfand–
Segal construction of a cyclic ∗-representation of a C∗-algebra associated with a state of the
C∗-algebra. In the study of E0-semigroups there is a result in the same spirit which says that
every semigroup of unital completely positive maps of B(K) can be dilated to an E0-semigroup
of B(H) where H can be thought of as a larger Hilbert space containing K. We begin with a
review of the properties of completely positive maps.

A linear map φ from a C∗-algebra A into B(H) is completely positive if

n∑
i,j=1

(
fi,φ

(
A∗

i Aj

)
fj

)
� 0

for Ai ∈ A, fi ∈ H for i = 1,2, . . . , n and n = 1,2, . . . . Stinespring’s central result is that if A

has a unit and φ is a completely positive map from A into B(H) then there is a ∗-representation
π of A on B(K) and an operator V from H to K so that φ(A) = V ∗π(A)V for A ∈ A. And π is
determined by φ up to unitary equivalence if the linear span of {π(A)Vf } for A ∈ A and f ∈ H

is dense in K.
Often we speak of one functional or map dominating another. We introduce a word for the

functional or map that is dominated. The word is “subordinate.” If A is an object which is positive
with respect to some order structure we say B is a subordinate of A if B is the same kind of thing
A is and B is positive and B is less than A. For example if we are speaking of the positive
integers the subordinates of 4 are 4, 3, 2, 1. If A is a positive operator then the subordinates of A

are operators B with A � B � 0. Suppose E is a projection. Are the subordinates of a projection
E projections under E or the operators under E? The answer depends on the context.

A CP-semigroup of B(H) is a strongly continuous one-parameter semigroup of completely
positive maps of B(H) into itself. We now state Bhat’s theorem [6] for B(H).

Theorem 1.3. Suppose α is a unital CP-semigroup of B(H). Then there is an E0-semigroup αd

of B(H1) and an isometry W from H to H1 so that

αt (A) = W ∗αd
t (WAW ∗)W

and αt (WW ∗) � WW ∗ for t > 0 and if the projection E = WW ∗ is minimal, which means the
span of the vectors

αd
t1
(EA1E)αd

t2
(EA2E) · · ·αd

tn
(EAnE)Wf

for f ∈ H, Ai ∈ B(H), ti � 0 for i = 1,2, . . . and n = 1,2, . . . is dense in H1, then αd is deter-
mined up to conjugacy.

We use Arveson’s definition of minimality which is easier to state and equivalent to Bhat’s.
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Suppose α is an E0-semigroup of B(H). We characterize the subordinates of α, (i.e. the CP-
semigroups β of B(H) so that the mapping A → αt (A) − βt (A) is completely positive for all
t � 0). The subordinates of α are given by positive local cocycles. A cocycle is a σ -weakly
continuous one-parameter family of operators C(t) satisfying the cocycle relation

C(t + s) = C(t)αt

(
C(s)

)
for all s, t � 0. The cocycle C(t) is local if C(t) ∈ αt (B(H))′ for all t > 0. The local cocycles
and their order structure are a cocycle conjugacy invariant. As first shown by Bhat [6] there is an
order isomorphism from the subordinates of a unital CP-semigroup of B(H) to the subordinates
of its minimal dilation to an E0-semigroup of B(H1) We use the notation of [18].

Theorem 1.4. Suppose α is a unital CP-semigroup of B(H) and αd is the minimal dilation of α

to an E0-semigroup of B(H1) and W is an isometry from H to H1 so that WW ∗ is a minimal
projection for αd and

αt (A) = W ∗αd
t (WAW ∗)W

for A ∈ B(H) and t � 0. Then there is an order isomorphism from the subordinates of α to the
subordinates of αd given as follows. Suppose γ is a subordinate of αd and C(t) = γt (I ) for
t � 0 is the local cocycle associated with γ then the subordinate β of α under this isomorphism
is given by

βt (A) = W ∗C(t)αd
t (WAW ∗)W

for A ∈ B(H) and t � 0.

In this paper we will frequently make use of corners. This is a trick introduced by A. Connes.

Definition 1.5. Suppose α and β are CP-semigroups of B(H) and B(K). Then γ is a corner
from α to β if Θ given by

Θt

[
A B

C D

]
=

[
αt (A) γt (B)

γ ∗
t (C) βt (D)

]

for t � 0 and A ∈ B(H), D ∈ B(K), B a linear operator from K to H and C a linear operator
from H to K is a CP-semigroup of B(H ⊕ K).

Suppose γ is a corner from α to β and Θ is the CP-semigroup of B(H ⊕ K) defined above.
Suppose Θ ′ is a subordinate of Θ of the form

Θ ′
t

[
A B

C D

]
=

[
α′

t (A) γt (B)

γ ∗
t (C) β ′

t (D)

]

for t � 0 for A,B,C and D as stated above. We say γ is maximal if for every subordinate Θ ′ of
the above form we have α′ = α. We say γ is hyper-maximal if for every subordinate Θ ′ of the
above form we have α′ = α and β ′ = β .
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We state Theorem 3.13 of [18] which shows how to determine when two CP-semigroups
dilate to cocycle conjugate E0-semigroups.

Theorem 1.6. Suppose α and β are unital CP-semigroups of B(H) and B(K) and αd and βd

are the minimal dilations of α and β to E0-semigroups. Then αd and βd are cocycle conjugate
if and only if there is a hyper-maximal corner γ from α to β .

If α is a unital CP-semigroup and αd is its minimal dilation to an E0-semigroup then the
corners from α to α come from contractive local cocycles. The following theorem follows from
[18, Theorem 3.16 and Corollary 3.17].

Theorem 1.7. Suppose α is a unital CP-semigroup of B(H) and αd is its minimal dilation to an
E0-semigroup αd of B(H1). The relation between α and αd is given by

αt (A) = W ∗αd
t (WAW ∗)W

for A ∈ B(H) and t � 0 where W is an isometry from H to H1 and αd is minimal over the range
of W . Suppose γ is a corner from α to α. Then there is a unique contractive local cocycle C for
αd so that

γt (A) = W ∗C(t)αd
t (WAW ∗)W

for all A ∈ B(H) and t � 0. Conversely, if C is a contractive local cocycle for αd then γ given
above is a corner from α to α.

Furthermore, C(t) is an isometry for all t � 0 if and only if γ is maximal and C(t) is unitary
for all t � 0 if and only if γ is hyper-maximal.

Also in [18, Theorem 3.16] there is a similar theorem for matrices of corners.

Theorem 1.8. Suppose α is a unital CP-semigroup of B(H) and αd is its minimal dilation to an
E0-semigroup αd of B(H1). The relation between α and αd is given by

αt (A) = W ∗αd
t (WAW ∗)W

for A ∈ B(H) and t � 0 where W is an isometry from H to H1 and αd is minimal over the range
of W .

Suppose n is a positive integer and Θ is positive (n × n)-matrix of corners from α to α.
Then there is a unique positive (n × n)-matrix C of contractive local cocycles Cij for αd for
i, j = 1, . . . , n so that

θ
(ij)
t (A) = W ∗Cij (t)α

d
t (WAW ∗)W

for all A ∈ B(H) and t � 0. Conversely, if C is a positive (n × n)-matrix of contractive local
cocycles for αd then the matrix Θ whose coefficients θ(ij) are given above is a positive (n × n)-
matrix of corners from α to α.

Next we define CP-flows. We believe these are the simplest objects which can be dilated to
produce all spatial E0-semigroups. CP-flows are studied extensively in [18].
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Definition 1.9. Suppose K is a separable Hilbert space and H = K ⊗ L2(0,∞) and U(t) is right
translation of H by t � 0. Specifically, we may realize H as the space of K-valued Lebesgue
measurable functions with inner product

(f, g) =
∞∫

0

(
f (x), g(x)

)
dx

for f,g ∈ H. The action of U(t) on an element f ∈ H is given by (U(t)f )(x) = f (x − t) for
x ∈ [t,∞) and (U(t)f )(x) = 0 for x ∈ [0, t). A semigroup α is a CP-flow over K if α is a
CP-semigroup of B(H) which is intertwined by the translation semigroup U(t), i.e., U(t)A =
αt (A)U(t) for all A ∈ B(H) and t � 0.

Henceforth, unless stated explicitly otherwise, we will arrange our notation so that our CP-
flows will be CP-flows over K and acting on B(H), where H = K ⊗ L2(0,∞), and U(t) will
denote the translation semigroup on H.

In [18, Theorem 4.0A] it is shown that every spatial E0-semigroup is cocycle conjugate to an
E0-semigroup which is also a CP-flow.

We introduce notation for describing CP-flows. Let H = K⊗L2(0,∞) and U(t) be translation
by t. Let

E(t) = I − U(t)U(t)∗ and E(a,b) = U(a)U(a)∗ − U(b)U(b)∗

for t ∈ [0,∞) and 0 � a < b < ∞. We will also write E(t,∞) = U(t)U(t)∗. Let d = d/dx be
the differential operator of differentiation with the boundary condition f (0) = 0. More precisely,
the domain D(d) is all f ∈ H of the form

f (x) =
x∫

0

g(t) dt

with g ∈ H. The hermitian adjoint d∗ is −d/dx with no boundary condition at x = 0, that is to
say, the domain D(d∗) consists of the linear span of D(d) and the functions g(x) = e−xk with
k ∈ K. In summary, we can represent elements f ∈ D(d∗) as f = f0 + f+ where f0 ∈ D(d)

and f+(x) = f (0)e−x . Thus, the space D(d∗) has a natural semi-definite inner product given by
〈f,g〉 = (f (0), g(0)) which induces a (definite) inner product on D(d∗) mod D(d). This leads
to a natural identification D(d∗)/D(d) � K via the map [f ] �→ f (0).

Suppose α is a CP-flow over K and A ∈ B(H). Then, for t > 0, one computes

αt (A) = U(t)AU(t)∗ + E(t)αt (A)E(t) = U(t)AU(t)∗ + B

for all t � 0. Then B commutes with E(s) for all s ∈ [0, t], so B is of the form

(Bf )(x) = b(x)f (x)

and for t > x � 0, b(x) ∈ B(K) depends σ -strongly on A. We now define the boundary rep-
resentation, π0. Let δ be the generator of α. Then for A ∈ D(δ) we have AD(d) ⊂ D(d) and
AD(d∗) ⊂ D(d∗) so A acts on D(d∗) mod D(d). In terms of the identification D(d∗)/D(d) � K
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discussed in the previous paragraph, it follows that if f ∈ D(d∗), then (Af )(0) only depends on
f (0). We call this mapping from π0 : D(δ) → B(K), given by

π0(A)
(
f (0)

) = (Af )(0),

the boundary representation. Note π0 tells you what flows in from the origin. The boundary
representation need not be σ -weakly continuous and even when it is it may not tell the whole
story. If π is a σ -weakly continuous completely positive contraction of B(K ⊗ L2(0,∞)) into
B(K) then there is a minimal CP-flow with that boundary representation and if that flow is unital
then the E0-semigroup induced by the flow is completely spatial (type In) where n is the rank
of π . For a detailed discussion of these properties of the boundary representation, we refer the
reader to [18].

We now define the generalized boundary representation. The resolvent Rα for α is given by

Rα(A) =
∞∫

0

e−t αt (A)dt.

Next we introduce some notation. If φ is a σ -weakly continuous mapping from B(H) to B(K)

we define φ̂ is the predual map from B(K)∗ to B(H)∗ so we have ρ(φ(A)) = (φ̂ρ)(A) for all
A ∈ B(H) and ρ ∈ B(K)∗. We define the mapping Γ as

Γ (A) =
∞∫

0

e−tU(t)AU(t)∗ dt

for A ∈ B(H). Note Rα − Γ is completely positive which we denote by writing Rα − Γ � 0.
Note Γ is the resolvent of a CP-flow with boundary representation π0 = 0.

We need one more bit of notation. We define Λ : B(K) → B(H) for A ∈ B(K) we define
Λ(A) by

(
Λ(A)f

) = e−xAf (x).

We define Λ = Λ(I). Note Γ (I) = I − Λ.
Now we present the main formula.

R̂α(ρ) = Γ̂
(
ω(Λ̂ρ) + ρ

)
for ρ ∈ B(H)∗ and η → ω(η) is the boundary weight map and ω(η) is the boundary weight
associated with η. A boundary weight is a particular example of a T -weight which we define
presently.

Definition 1.10. Suppose T ∈ B(H) is a positive strictly contractive operator (i.e. 0 � T � I and
‖Tf ‖ < 1 for ‖f ‖ � 1 so one is not an eigenvalue for T ). We denote by A(H, T ) the linear space

A(H, T ) = (I − T )
1
2 B(H)(I − T )

1
2
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and by A(H, T )∗ the linear functionals ρ on A(H, T ) of the form

ρ
(
(I − T )

1
2 A(I − T )

1
2
) = η(A)

for A ∈ B(H) with η ∈ B(H)∗. We call such functionals T -weights. The T -norm of a T -weight
ρ denoted ‖ρ‖T is the norm of η. If ρ is a T -weight and ‖ρ‖T � 1 we say ρ is T -contractive.

Suppose T ∈ B(H) is a positive strictly contractive operator and P(λ) is the spectral resolu-
tion of T so

T =
1∫

0

λdP (λ).

If ρ ∈ A(H, T )∗ then ρ restricted to P(λ)B(H)P (λ) is normal for all λ > 0.
Consider now the case when T1 � T2 � 0 and T1 is strictly contractive so T2 is strictly con-

tractive. Define S on the range
√

I − T2 by the relation

S(I − T2)
1
2 f = (I − T1)

1
2 f

for f ∈ H. Note

∥∥S(I − T2)
1
2 f

∥∥2 = (
f, (I − T1)f

)
�

(
f, (I − T2)f

) = ∥∥(I − T2)
1
2 f

∥∥2

for f ∈ H. Then S is a contractive map on the range of
√

I − T2 which is dense in H so S has
a unique bounded extension to a contraction defined on all of H. We also denote this operator
by S. We note S is a contraction which satisfies the operator equation

S(I − T2)
1
2 = (I − T1)

1
2 so (I − T2)

1
2 S∗AS(I − T2)

1
2 = (I − T1)

1
2 A(−T1)

1
2

for A ∈ B(H) so it follows that A(H, T1) ⊂ A(H, T2). We show that A(H, T2)∗ ⊂ A(H, T1)∗.
Suppose ρ ∈ A(H, T2)∗ which means

ρ
(
(I − T2)

1
2 A(I − T2)

1
2
) = η(A)

for all A ∈ B(H) where η ∈ B(H)∗. Then we have

ρ
(
(I − T1)

1
2 A(I − T1)

1
2
) = ρ

(
(I − T2)

1
2 S∗AS(I − T2)

1
2
) = η(S∗AS)

for A ∈ B(H). So we see ρ ∈ A(H, T1) and since S is a contraction we have ‖ρ‖T1 � ‖ρ‖T2 .
Note a 0-weight is just a normal functional.
We caution the reader that the T -weights we consider are not normal weights. A normal

weight on a von Neumann algebra has the property that if 0 � A1 � A2 � · · · is a increasing
sequence of operators which converge strongly to A then ω(A) is the limit of the ω(Ak), where
we allow +∞ as a possible limit. Let H = L2(0,∞) and let ω be the Λ-weight given by

ω
(
(I − Λ)

1
2 A(I − Λ)

1
2
) = (h,Ah)
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for A ∈ B(H) where h(x) = x− 1
2 s(1 − e−x)

1
2 for s ∈ (1,2). For each n = 1,2,3, . . . , let Mn be

the set of functions g in H with support in [1/n,∞) and

∞∫
1/n

x−s/2g(x)dx = 0.

Let Pn be the orthogonal projection onto Mn, and consider Bn = (I − Λ)−1/2Pn. Observe that
Bn is as bounded operator, and moreover An = BnB

∗
n satisfies (I − Λ)1/2An(I − Λ)1/2 = Pn,

for n = 1,2, . . . . Note that ω(Pn) = (Anh,h) = 0 for n = 1,2, . . . and Pn → I as n → ∞, but
it is not true that ω(I) = 0. If we were to assign ω(I) a value it is +∞ since ω is positive and
unbounded. Although T -weights are not in general normal weights we do not think of them as
pathological like non-normal bounded functionals since T -weights are normal when scaled down
by

√
I − T .

In the particular case when H = K ⊗ L2(0,∞) when we speak of boundary weights we mean
the following. Let Λ be the operator corresponding to multiplication by e−x . Then the boundary
algebra A(H) is

A(H) = A(H,Λ) = (I − Λ)
1
2 B(H)(I − Λ)

1
2

and the boundary weights denoted by A(H)∗ are

A(H)∗ = A(H,Λ)∗.

If ω is a boundary weight we say ω is weight contractive if ‖ω‖Λ � 1 and if ω is a positive
boundary weight we say ω is normalized if ‖ω‖Λ = 1. If ω is a boundary weight and we say
ω is bounded we mean ω is bounded as a functional on B(H) (i.e. there exists k > 0 such that
|ω(A)| � k‖A‖ for all A ∈ A(H)).

The mapping ρ → ω(ρ) defined for ρ ∈ B(K)∗ is a boundary weight map if this mapping
is a linear mapping of B(K)∗ into boundary weights on A(H) and this mapping is completely
bounded with the norm on B(K)∗ being the usual norm and the norm on the boundary weights
being the boundary weight norm. A boundary weight map is positive if it is completely positive.
A boundary weight map ω is unital if ω(ρ)(I − Λ) = ρ(I) for all ρ ∈ B(K)∗.

Maintaining the notation of the above definition we observe that U(t)AU(t)∗ ∈ A(H) for all
A ∈ B(H) and t > 0. Recall the mapping Γ defined above. Since Γ is completely positive and
Γ (I) = I −Λ, so Γ (I) ∈ A(H), it follows that Γ (A) ∈ A(H) for all A ∈ B(H). For more details
see the discussion after Definition 4.16 in [18].

Every CP-flow is given by a boundary weight map ρ → ω(ρ). As we have mentioned the
map is completely positive. There is a further complicated positivity condition. The condition
says if you construct an approximation to the boundary representation πt , then πt is completely
positive.

We describe the connection between boundary weight and boundary representation. One can
construct a boundary weight map so that the boundary representation is a given σ -weakly contin-
uous completely positive contraction of B(H) into B(K). Suppose π is a σ -weakly continuous
completely positive contraction of B(H) into B(K). Let

ω = π̂ + π̂Λ̂π̂ + π̂Λ̂π̂Λ̂π̂ + π̂Λ̂π̂Λ̂π̂Λ̂π̂ + · · · .
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This converges as a weight (i.e. the above series converges on the boundary algebra A(H)) and
this is the boundary weight map of a CP-flow. We call this the minimal CP-flow derived from π .
Formally ω = π̂ (I − Λ̂π̂)−1 and solving for π we have

π̂ = ω(I + Λ̂ω)−1.

If a boundary weight associated with a CP-flow is bounded the boundary representation is
well defined as stated in the next theorem (see [18, Theorem 4.27]).

Theorem 1.11. Suppose α is a CP-flow over K and ρ → ω(ρ) is the associated boundary weight
map. Suppose ‖ω(ρ)‖ < ∞ for ρ ∈ B(K)∗ so ω(ρ) ∈ B(H)∗ for all ρ ∈ B(K)∗. Then the map-
ping ρ → ρ + Λ̂ω(ρ) is invertible i.e. (I + Λ̂ω)−1 exists and π̂ given by

π̂ = ω(I + Λ̂ω)−1

is a completely positive contraction from B(K)∗ to B(H)∗. There is a unique CP-flow derived
from π and its boundary weight map is given by

ω = π̂ + π̂Λ̂π̂ + π̂Λ̂π̂Λ̂π̂ + π̂Λ̂π̂Λ̂π̂Λ̂π̂ + · · · .

So when ω(ρ) is bounded for all ρ ∈ B(K)∗ we have

ω = π̂ (I − Λ̂π̂)−1 and π̂ = ω(I + Λ̂ω)−1.

Now we introduce a bit of notation. Suppose ω is a boundary weight and t > 0. We denote
by ω|t the functional given by ω|t (A) = ω(E(t,∞)AE(t,∞)) for A ∈ B(H). Note ω|t (ρ) ∈
B(H)∗, i.e. ω|t (ρ) is a bounded σ -weakly continuous functional. We use the same notation for
operators. If A ∈ B(H) and t > 0 then we denote A|t the operator A|t = E(t,∞)AE(t,∞).
Note for ω a boundary weight and A ∈ B(H) then ω|t (A) = ω(A|t ).

From [18, Theorems 4.23 and 4.27 and Lemma 4.34] we have the following theorem.

Theorem 1.12. Suppose ρ → ω(ρ) is the boundary weight map of a CP-flow over K. Then for
each t > 0 we have ρ → ω|t (ρ) is the boundary weight map of a CP-flow over K. Suppose
ρ → ω(ρ) is a completely positive mapping of B(K) into boundary weights on B(H) satisfying
ω(ρ)(I − Λ) � ρ(I) for ρ positive. Suppose

π̂#
t = ω|t

(
I + Λ̂ω|t

)−1

is a completely positive contraction of B(K)∗ into B(H)∗ for each t > 0. Then ρ → ω(ρ) is the
boundary weight map of a CP-flow over K.

Furthermore, the mapping π̂#
t defined above has the property that if φt (A) = π#

t (E(s,∞)

AE(s,∞)) for 0 < t � s < ∞ and A ∈ B(H) then φt is increasing in t in the sense complete
positivity (i.e., the mapping A → φt (A) − φr(A) for A ∈ B(H) and 0 < t < r � s is completely
positive).

Definition 1.13. If ρ → ω(ρ) is a mapping of B(K)∗ into boundary weights on B(H) so that
π̂# defined above is completely positive for each t > 0 we say this map is q-positive. The family
t
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π#
t of completely positive σ -weakly continuous contractions of B(H) into B(K) is called the

generalized boundary representation.

We remark that in checking that the π#
t are completely positive it is only necessary to check for

small t . If the mapping π#
t is completely positive then π#

s is completely positive for all s � t . Next
we give the order relation for the generalized boundary representation(see [18, Theorem 4.20]).

Theorem 1.14. If α and β are CP-flows over K then β is a subordinate of α (α � β) if and only if
π#

t � φ#
t for all t > 0 where π#

t and φ#
t are the generalized boundary representations of α and β .

Also we have if π#
t � φ#

t then π#
s � φ#

s for all s � t so one only has to check for a sequence {tn}
tending to zero.

In Theorem 1.11 we used the phrase “α is derived from π .” The next theorem (see [18, The-
orem 4.24]) and definition will make this more precise. We need a bit of notation which is given
in the next definition.

Definition 1.15. Let Q0 be the map from K to H given by (Q0k)(x) = e−√
xk. And let Φ be the

mapping of B(K)∗ into B(H)∗ given by Φ(ρ)(A) = ρ(Q∗
0AQ0) for all A ∈ B(H).

Note that Φ(ρ)(U(t)AU(t)∗) = e−tΦ(ρ)(A), Φ(ρ)(Γ (A)) = 1
2Φ(ρ)(A) for t � 0 and

Φ(ρ)(Λ(C)) = 1
2ρ(C) for all ρ ∈ B(K)∗, A ∈ B(H) and C ∈ B(K).

Theorem 1.16. Suppose ρ → ω(ρ) defines a CP-flow over K as described in Definition 1.9 and
δ is the generator of α (i.e., δ is the derivative of αt at t = 0). Suppose π is a completely positive
normal contraction of B(H) into B(K). Then the following are equivalent:

(i) Φ(ρ) ∈ D(δ̂) and δ̂(Φ(ρ)) = π̂(ρ) − Φ(ρ) for each ρ ∈ B(K)∗.
(ii) ω(ρ − Λ̂(π̂(ρ))) = π̂ (ρ) for all ρ ∈ B(K)∗.

(iii) π(A) = π0(A) for all A ∈ D(δ) where π0 is the boundary representation of α.

Definition 1.17. We say a CP-flow α over K is derived from the completely positive normal
contraction π of B(H) into B(K) if it satisfies one and, therefore, all the conditions of Theo-
rem 1.16.

As mentioned earlier for each such π there is a CP-flow α derived from π and the next
theorem (see [18, Theorem 4.26]) gives a condition for uniqueness.

Theorem 1.18. Suppose π is a completely positive σ -weakly continuous linear contraction of
B(H) into B(K). Then for each ρ ∈ B(K)∗ the sum

ω(ρ) = π̂ (ρ) + π̂
(
Λ̂

(
π̂(ρ)

)) + π̂
(
Λ̂

(
π̂

(
Λ̂

(
π̂(ρ)

)))) + · · ·
converges as a weight on A(H) and the mapping ρ → ω(ρ) is the boundary weight map of a
CP-flow α which is derived from π . Furthermore, this α is the minimal CP-flow derived from π

in that if ρ → η(ρ) is the boundary weight map of a second CP-semigroup derived from π then
ω(ρ) � η(ρ) for all positive ρ ∈ B(K)∗. Moreover, if (π ◦ Λ)n(I ) → 0 weakly as n → ∞ then
α defined above is unique (i.e. α is the only CP-flow derived from π ).
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We remark that we believe that this theorem can be strengthened with the stronger conclusion
being that α is a flow subordinate of any CP-flow derived from π . In the examples we construct
in this paper we will show that the stronger result holds.

So far most of the results in this section are proved in [18]. The next two theorems are new.

Theorem 1.19. Suppose α is a CP-flow over K derived from π as described in Definition 1.17 and
β is CP-flow subordinate to α, so the mapping A → αt (A) − βt (A) for A ∈ B(H) is completely
positive for all t � 0. Then there is a unique completely positive normal contraction φ of B(H)

into B(K) which is subordinate to π so that β is derived from φ.

Proof. Assume the hypothesis of the theorem and suppose δα and δβ are the generators of α and
β , respectively. Let γt (A) = U(t)AU(t)∗ for t � 0 and A ∈ B(H). Since β is a subordinate of α

and β is intertwined by U(t) we have the maps t → αt (A) − βt (A) and t → βt (A) − γt (A) and
A ∈ B(H) are completely positive for all t � 0. Suppose ρ ∈ B(K)∗ and ρ � 0. Then we have

ϑt = t−1(α̂t

(
Φ(ρ)

) − Φ(ρ)
) + Φ(ρ) � t−1(β̂t

(
Φ(ρ)

) − Φ(ρ)
) + Φ(ρ)

= νt � t−1(γ̂t

(
Φ(ρ)

) − Φ(ρ)
) + Φ(ρ) = t−1(e−t − 1 + t

)
Φ(ρ)

for t > 0 where the two equal signs are definitions of ϑt and νt . Since α is derived from π we
have

ϑt = t−1(α̂t

(
Φ(ρ)

) − Φ(ρ)
) + Φ(ρ) → δ̂

(
Φ(ρ)

) + Φ(ρ) = π̂ (ρ) = ϑ0

as t → 0+ and the convergence is in norm. Since ϑ0 = π̂(ρ) ∈ B(H)∗ there is a positive trace
class operator Ω0 so that

ϑ0(A) = π̂ (ρ)(A) = tr(AΩ0)

for A ∈ B(H) and for every ρ1 ∈ B(H)∗ with ϑ0 � ρ1 � 0 there is an X ∈ B(H) with 0 � X � I

so that

ρ1(A) = tr
(
AΩ

1
2

0 XΩ
1
2

0

)
for A ∈ B(H) and conversely if X ∈ B(H) and 0 � X � I then ρ1 defined above is in B(H)∗
and 0 � ρ1 � ϑ0. (If we require the null space of X contains Range(Ω0)

⊥ then X is uniquely
determined by ρ1.) Suppose t > 0 and Ωt is the unique positive trace class operator so that

ϑt (A) = (
t−1(α̂t

(
Φ(ρ)

) − Φ(ρ)
) + Φ(ρ)

)
(A) = tr(AΩt)

for A ∈ B(H). From the inequality above we have ϑt � νt � 0 so there is an operator Xt ∈ B(H)

with 0 � Xt � I so that

νt (A) = (
t−1(β̂t

(
Φ(ρ)

) − Φ(ρ)
) + Φ(ρ)

)
(A) = tr

(
AΩ

1
2
t XtΩ

1
2
t

)
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for A ∈ B(H). We will require the null space of Xt contains Range(Ωt )
⊥ so Xt is uniquely

determined. Now let

ηt (A) = tr
(
AΩ

1
2

0 XtΩ
1
2

0

)
for A ∈ B(H). Now we have

‖νt − ηt‖ = sup
{
Re

(
tr
(
A

(
Ω

1
2
t XtΩ

1
2
t − Ω

1
2

0 XtΩ
1
2

0

)))
: A ∈ B(H), ‖A‖ � 1

}
.

We have |tr(AB)| � ‖A‖HS‖B‖HS for A,B ∈ B(H) with ‖A‖HS = tr(A∗A)
1
2 the Hilbert–

Schmidt norm. Then for A ∈ B(H) with ‖A‖ � 1,

∣∣tr(A(
Ω

1
2
t XtΩ

1
2
t − Ω

1
2

0 XtΩ
1
2

0

))∣∣ = ∣∣tr(A(
Ω

1
2
t XtΩ

1
2
t − Ω

1
2
t XtΩ

1
2

0 + Ω
1
2
t XtΩ

1
2

0 − Ω
1
2

0 XtΩ
1
2

0

))∣∣
�

∣∣tr(AΩ
1
2
t Xt

(
Ω

1
2
t − Ω

1
2

0

))∣∣ + ∣∣tr(XtΩ
1
2

0 A
(
Ω

1
2
t − Ω

1
2

0

))∣∣
�

(∥∥AΩ
1
2
t Xt

∥∥
HS + ∥∥AΩ

1
2

0 Xt

∥∥
HS

)∥∥Ω
1
2
t − Ω

1
2

0

∥∥
HS

�
(
tr(Ωt )

1
2 + tr(Ω0)

1
2
)∥∥Ω

1
2
t − Ω

1
2

0

∥∥
HS

and, hence, it follows that

‖νt − ηt‖ �
(‖νt‖ 1

2 + ‖ϑ0‖ 1
2
)∥∥Ω

1
2
t − Ω

1
2

0

∥∥
HS �

(‖ϑt‖ 1
2 + ‖ϑ0‖ 1

2
)∥∥Ω

1
2
t − Ω

1
2

0

∥∥
HS.

Now if UT is the polar decomposition of Ω
1
2
t − Ω

1
2

0 so U∗(Ω
1
2
t − Ω

1
2

0 ) = |Ω
1
2
t − Ω

1
2

0 | =
((Ω

1
2
t − Ω

1
2

0 )2)
1
2 we have

‖ϑt − ϑ0‖ �
∣∣ϑt (U

∗) − ϑ0(U
∗)

∣∣ = ∣∣tr(U∗(Ωt − Ω0)
)∣∣

= ∣∣tr(U∗((Ω 1
2
t − Ω

1
2

0

)(
Ω

1
2
t + Ω

1
2

0

) + (
Ω

1
2
t + Ω

1
2

0

)(
Ω

1
2
t − Ω

1
2

0

)))∣∣
= tr

(∣∣Ω 1
2
t − Ω

1
2

0

∣∣(Ω 1
2
t + Ω

1
2

0

))
� tr

(∣∣Ω 1
2
t − Ω

1
2

0

∣∣2)
= tr

((
Ω

1
2
t − Ω

1
2

0

)2) = ∥∥Ω
1
2
t − Ω

1
2

0

∥∥2
HS.

Hence, we have

‖νt − ηt‖ �
(‖ϑt‖ 1

2 + ‖ϑ0‖ 1
2
)‖ϑt − ϑ0‖ 1

2

for all t > 0. Note ϑ0 � ηt � 0 for each t > 0. Note the set S of η ∈ B(H)∗ with ϑ0 � η � 0 is
compact. This may be seen as follows. For every ε1 > 0 there is a finite rank ξ ∈ B(H)∗ so that
0 � ξ � ϑ0 and ‖ξ − ϑ0‖ < ε1. Given ε > 0 we can by choosing ε1 small enough insure that
for every η ∈ S there is a positive η′ � ξ with ‖η′ − η‖ < ε. Hence, for every ε > 0 there is a
finite-dimensional compact subset of S so that the ε-neighborhoods of this set cover S, thus for
every ε > 0 there is a cover of S with a finite numbers of open balls of radius ε and we obtain that
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S is totally bounded. Since S is complete (it is clearly closed) and totally bounded, it follows that
it is compact. Since S is compact there is a sequence tn → 0+ as n → ∞ so that ηtn converges to
a limit η0 in norm as n → ∞. Since ‖ϑt −ϑ0‖ → 0 as t → 0+ it follows from the above estimate
that νtn → η0 as n → ∞. Hence, we have

∥∥t−1
n

(
β̂tn

(
Φ(ρ)

) − Φ(ρ)
) − (

η0 − Φ(ρ)
)∥∥ → 0

as n → ∞. Now let

μn = 1

tn

tn∫
0

β̂s

(
Φ(ρ)

)
ds

for n = 1,2, . . . . Let δβ be the generator of β . Note μn ∈ D(δ̂β) and

δ̂β(μn) = t−1
n

(
β̂tn

(
Φ(ρ)

) − Φ(ρ)
) → η0 − Φ(ρ)

as n → ∞ where the convergence is in norm. Since μn → Φ(ρ) in norm as n → ∞ it follows
from the fact that δ̂β is closed that Φ(ρ) ∈ D(δ̂β) and δ̂β (Φ(ρ)) = η0 − Φ(ρ). Since ρ was an
arbitrary positive element of B(H)∗ it follows that Φ(ρ) ∈ D(δ̂β) and δ̂β(Φ(ρ)) + Φ(ρ) = φ̂(ρ)

where this equation defines φ. Since α � β � γ in the sense of complete positivity it follows that
π � φ � 0 is the sense of complete positivity. From Definition 1.17 it follows that β is derived
from φ. The uniqueness of φ follows from the defining equation for φ. �
Theorem 1.20. Suppose α is a CP-flow over K and π is a normal completely positive contraction
of B(H) into B(K) and suppose further that π is unital so π(I) = I . Suppose β is a CP-flow over
K derived from π and α � β (i.e. the mapping A → αt (A) − βt (A) for A ∈ B(H) is completely
positive for all t � 0). Then α is derived from π .

Proof. Assume the hypothesis and notation of the theorem. Suppose ρ ∈ B(H)∗ and ρ is posi-
tive. Then defining ϑt and νt as in the proof of the last theorem we have ϑt � νt � 0 for t > 0
and νt → π̂(ρ) in norm as t → 0+. Since ϑt − νt � 0 and αt (I ) � I and π is unital we have

‖ϑt − νt‖ = ϑt (I ) − νt (I ) = t−1Φ(ρ)
(
αt (I ) − I

) + Φ(ρ)(I ) − νt (I )

� Φ(ρ)(I ) − νt (I ) = ρ(I) − νt (I ) → ρ(I) − π̂ (ρ)(I ) = 0.

Hence, ϑt → π̂(ρ) in norm as t → 0+. Since each ρ ∈ B(K)∗ is the linear combination of at
most four positive elements of B(K)∗ we have

t−1(α̂t (Φ(ρ)) − Φ(ρ)
) + Φ(ρ) → π̂ (ρ)

in norm as t → 0+. Thus, Φ(ρ) ∈ D(δ̂) and δ̂(Φ(ρ)) + Φ(ρ) = π̂(ρ) for all ρ ∈ B(K)∗. Hence,
α is derived from π . �

We will want to analyze the action of local cocycles on units. Suppose α is a unital CP-flow
and αd is the minimal dilation of α to an E0-semigroup acting on B(H1) as described in The-
orem 1.3. A unit for αd is a one-parameter semigroup of isometries V (t) which intertwine αd
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so (V (t)A = αd
t (A)V (t) for all A ∈ B(H1) and t � 0). Units for αd are in one to one corre-

spondence with semigroups S(t) acting on H with the property that the semigroup Ωt(A) =
S(t)AS(t)∗ is a trivially maximal subordinate of α (i.e., the mapping A → αt (A)− estΩt (A) for
A ∈ B(H) is completely positive for all t � 0 provided s � 0 and the mapping is not positive for
s > 0 and t > 0). The next two theorems (see [18, Theorems 4.46, 4.50 and 4.51]) describe such
semigroups and the connection between them and units for the dilated E0-semigroup.

Theorem 1.21. Suppose α is a CP-flow over K and S(t) is a strongly continuous one-parameter
semigroup and Ωt(A) = S(t)AS(t)∗ for t � 0 and A ∈ B(H) is a subordinate of α. Then S(t)

is a strongly continuous one-parameter semigroup of contractions with generator −D where
D(D) = {f ∈ D(d∗): f (0) = Vf } and Df = −d∗f +cf where c is a complex number with non-
negative real part and V is a linear operator from H to K with norm satisfying ‖V ‖2 � 2 Re(c).
Furthermore, if π(A) = (2 Re(c))−1V AV ∗ for all A ∈ B(H) and γ is the minimal CP-semigroup
derived from π then α dominates γ. In the case Re(c) = 0 we define π = 0.

Conversely, if c is a complex number with Re(c) > 0 and V is a linear operator from H to
K with norm satisfying ‖V ‖2 � 2 Re(c) and if π(A) = (2 Re(c))−1V AV ∗ for A ∈ B(H) and γ

is the minimal CP-semigroup derived from π and α dominates γ then if D is an operator with
domain D(D) = {f ∈ D(d∗): f (0) = Vf } and Df = −d∗f + cf. Then −D is the generator
of a contraction semigroup S(t) and if Ωt(A) = S(t)AS(t)∗ for t � 0 and A ∈ B(H) and α

dominates Ω.

Theorem 1.22. Suppose α is a unital CP-flow over K and αd is the minimal dilation of α to an
E0-semigroup and suppose the relation between α and αd is given by

αt (A) = W ∗αd
t (WAW ∗)W

for all A ∈ B(H) (with H = K ⊗ L2(0,∞)) and t � 0 where W is an isometry from H to H1

and WW ∗ is an increasing projection for αd and αd is minimal over the range of W. Then
H1 can be expressed as H1 = K1 ⊗ L2(0,∞) and αd is a CP-flow over K1 so that if U(t) and
U1(t) are right translation on H and H1 for α and αd, respectively, then U1(t)W = WU(t) and
U1(t)

∗W = WU(t)∗ for all t � 0. This means that W as a mapping of H = K ⊗ L2(0,∞) into
H1 = K1⊗ L2(0,∞) can be expressed in the form W = W1 ⊗ I where W1 is an isometry from K

into K1.

Suppose S(t) is a strongly continuous semigroup of contractions of H and Ω given by
Ωt(A) = S(t)AS(t)∗ for A ∈ B(H) and t � 0 is a subordinate of α. Further assume Ω is triv-
ially maximal. Then there is a unique strongly continuous one-parameter semigroup of isometries
S1(t) which intertwine αd

t for each t � 0 and

S(t) = W ∗S1(t)W

for all t � 0.

Conversely, if S1(t) is a strongly continuous one-parameter semigroup of isometries which
intertwine αd

t for each t � 0 then if S(t) is as defined in the equation above we have that S(t) is
a strongly continuous one-parameter semigroup of contractions so that Ω defined by Ωt(A) =
S(t)AS(t)∗ for A ∈ B(H) and t � 0 is a subordinate of α which is trivially maximal.
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We end this section with some notation and results which we will need in the next section. As
we saw in Theorem 1.18 the boundary weight map of the minimal CP-flow derived from π is
given by

ω(ρ) = π̂(ρ) + π̂
(
Λ̂

(
π̂(ρ)

)) + π̂
(
Λ̂

(
π̂

(
Λ̂

(
π̂ (ρ)

)))) + · · · .

We introduce some notation. For n ∈ N we write Rn(φ) to denote finite sum and R(φ) to denote
the infinite series

Rn(φ) = I + φ + φ2 + · · · + φn and R(φ) = I + φ + φ2 + · · · .

Then the expression for ω above can be written

ω = π̂R(Λ̂π̂) = R(π̂Λ̂)π̂ .

Formally, R(φ) = (I − φ)−1, however the inverse in question may not exist. The sums above
make sense in that the series

ω(ρ)(A) = ρ
(
π(A)

) + ρ
(
π

(
Λ

(
π(A)

))) + · · ·

converges absolutely for A ∈ A(H). This is seen by setting A = I − Λ and assuming ρ ∈ B(K)∗
is positive. As we saw in Theorem 1.18 the series above for ω defines the minimal CP-flow
derived from π. We know from Theorem 1.12 that the truncated boundary weight map ρ → ω|t
for t > 0 is the minimal CP-flow derived from the truncated boundary representation φ#

t .

2. An almost type I CP-flow

In this section we study CP-flows derived from a particular strongly continuous ∗-representa-
tion π . Let K be the infinite tensor product of L2(0,∞) so K = ⊗∞

k=1 L2(0,∞) with the
reference vector (see [23] for details of infinite tensor products of Hilbert spaces)

F0 = k1 ⊗ k2 ⊗ · · ·

with

ki(x) = λie
− 1

2 λ2
i x

for x � 0 where λi > 0 for i = 1,2, . . . . The Hilbert space K is spanned by product vectors of
the form

F = f1 ⊗ f2 ⊗ · · ·

where

∞∑
‖fi − ki‖2 < ∞. (2.1)
i=1
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The inner product between two such product vectors is given by

(F,G) =
∞∏
i=1

(fi, gi).

We impose the following two conditions on the positive numbers λi :

∞∑
n=1

λ−2
n < ∞ and

∞∑
n=1

|λn − λn+1|2
λ2

n + λ2
n+1

< ∞. (2.2)

We note both these conditions are satisfied for λn = n and the second condition is not satisfied
for λn = 2n. Let S0 be the unitary mapping of H = K ⊗ L2(0,∞) into K given by

S0
(
(f1 ⊗ f2 ⊗ · · ·) ⊗ h

) = h ⊗ f1 ⊗ f2 ⊗ · · · (2.3)

and let π(A) = S0AS∗
0 and Δ = e−x ⊗ e−x ⊗ · · · where e−x is a shorthand for the operation of

multiplication by e−x on L2(0,∞). The first sum condition insures that Δ is not zero and the
second condition insures that S0 is well defined. Note π is a normal ∗-representation of B(H)

on B(K). Suppose n is a positive integer. We define Kn as the tensor product of the Hilbert
spaces L2(0,∞) from n + 1 on with the reference vector Fn0 = ⊗∞

i=n+1 ki . Let Sn be the linear
mapping from K to Kn which takes the product vector F = ⊗∞

i=1 fi ∈ K to the product vector
SnF = ⊗∞

i=1 fi ∈ Kn. From the second sum condition above one finds Sn is well defined and one
checks that Sn is unitary. We define Qn(A) = SnAS∗

n for A ∈ B(K). Let K′
n = ⊗n

i=1 L2(0,∞).
We see that B(K) = B(K′

n) ⊗ B(Kn) and Qm(In ⊗ Qn(A)) = In+m ⊗ Qn+m(A) for A ∈ B(H)

where Ik is the unit in B(K′
k) for n,m,k = 1,2, . . . .

We have the formulae,

π(A ⊗ A0) = A0 ⊗ Q1(A),

Λ(A) = A ⊗ e−x,

π
(
Λ(A)

) = e−x ⊗ Q1(A),

(πΛ)n(A) = e−x ⊗ e−x ⊗ · · · ⊗ e−x ⊗ Qn(A)

for A ∈ B(K) and n = 1,2, . . . where there are n factors of e−x in the last equation. For A =
A1 ⊗ A2 ⊗ · · · we write these formulae:

π
(
(A1 ⊗ A2 ⊗ · · ·) ⊗ A0

) = (A0 ⊗ A1 ⊗ A2 ⊗ · · ·),
Λ(A1 ⊗ A2 ⊗ · · ·) = (A1 ⊗ A2 ⊗ · · ·) ⊗ e−x,

π
(
Λ(A1 ⊗ A2 ⊗ · · ·)) = e−x ⊗ A1 ⊗ A2 ⊗ · · · ,

(πΛ)n(A1 ⊗ A1 ⊗ · · ·) = e−x ⊗ e−x ⊗ · · · ⊗ e−x ⊗ A1 ⊗ A2 ⊗ · · · .

We first note that (πΛ)n(I ) converges to Δ as n → ∞. We have

(πΛ)n(I ) = e−x ⊗ e−x ⊗ · · · ⊗ e−x ⊗ I ⊗ I ⊗ · · ·
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where there are n factors of e−x and we see that (πΛ)n(I ) forms a decreasing sequence of
positive operators which must converge strongly to a limit which is

Δ = e−x ⊗ e−x ⊗ · · · .
As we have mentioned the first sum condition on the λn insures that Δ is not zero.

Next we note that if π(Λ(A)) = A then A is a multiple of Δ (i.e. A = cΔ with c ∈ C). In
fact, we show first that it is enough to prove that if A is positive and π(Λ(A)) = A then A = λΔ

with λ � 0. Note that if π(Λ(A)) = A then if A = A1 + iA2 where A1 and A2 are hermitian
then π(Λ(Ai)) = Ai for i = 1,2. So it is enough to show that if A = A∗ and π(Λ(A)) = A then
A = λΔ with λ real. Next note that if A ∈ B(K) is hermitian and π(Λ(A)) = A and ‖A‖ = 1 then
(πΛ)n(I + A) → Δ + A as n → ∞ and since Δ + A is the strong limit of positive operators
we have Δ + A is positive. If Δ + A = λΔ it follows that A is a multiple of Δ. Hence, it is
sufficient to show that if A is positive and π(Λ(A)) = A then A = λΔ with λ � 0. Suppose then
that A ∈ B(K) is positive, ‖A‖ = 1 and π(Λ(A)) = A. Since (πΛ)n(I − A) → Δ − A � 0 we
have 0 � A � Δ. Recalling the reference vector F0 we have

(F0,ΔF0) = (
k1, e

−xk1
)(

k2, e
−xk2

) · · · = λ2
1

1 + λ2
1

· λ2
2

1 + λ2
2

· · · .

Since Δ � A � 0 we have (F0,AF0) = c(F0,ΔF0) with c ∈ [0,1]. Now since π(Λ(A)) = A it
follows that

A = e−x ⊗ Q1(A) = e−x ⊗ e−x ⊗ Q2(A) = · · ·
and we have ( ∞⊗

i=n+1

ki,Qn(A)

∞⊗
i=n+1

ki

)
= c

λ2
n+1

1 + λ2
n+1

· λ2
n+2

1 + λ2
n+2

· · ·

for n = 1,2, . . . . Now let

F =
∞⊗
i=1

fi and G =
∞⊗
i=1

gi

be product vectors so that fi = gi = ki for i � m. Then we see that

(F,AG) = (
f1, e

−xg1
)(

f2, e
−xg2

) · · · (fm, e−xgm

)
c

λ2
m+1

1 + λ2
m+1

λ2
m+2

1 + λ2
m+2

· · ·

= c(F,ΔG).

Since such vectors F and G are dense in K we have A = cΔ. Then we have proved the following
lemma.

Lemma 2.1. Suppose π is the ∗-representation described above. Let Δ be as described above.
Then Δ = limn→∞(πΛ)n(I ). Furthermore, if A ∈ B(K) and π(Λ(A)) = A then A is a multiple
of Δ (i.e., A = cΔ with c ∈ C).
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We will need a stronger characterization of this property which is provided by the following
lemma.

Lemma 2.2. Suppose ρ ∈ B(K)∗ and ρ(Δ) = 0. Then ‖(Λ̂π̂)n(ρ)‖ → 0 as n → ∞.

Proof. Suppose ρ ∈ B(K)∗ and ρ(Δ) = 0. Suppose ε > 0. Since ρ can be approximated ar-
bitrarily well in norm by a finite sum of functionals ρi of the form ρi(A) = (Fi,AGi) with
Fi,Gi ∈ K for i = 1, . . . , n and the vectors Fi and Gi can be approximated by vectors F ′

i and G′
i

which are finite sums of product vectors of the form f1 ⊗ f2 ⊗ · · · with fi = ki for i > m with m

some large integer it follows that there is a functional η so that ‖ρ − η‖ < 1
2ε(F0,ΔF0) and

η(A) =
n∑

i=1

(Fi,AGi)

and each of the vectors Fi and Gi is of the form

F ⊗
( ∞⊗

i=m+1

ki

)

(i.e. they consist of sums of product vectors with factors fi = ki for i > m). Since we have

∣∣η(Δ)
∣∣ = ∣∣ρ(Δ) − η(Δ)

∣∣ � ‖ρ − η‖ <
1

2
ε(F0,ΔF0).

Now let μ(A) = η(A) − (F0,AF0)η(Δ)(F0,ΔF0)
−1. Note

‖ρ − μ‖ � ‖ρ − η‖ + ‖η − μ‖ � 1

2
ε(F0,ΔF0) + 1

2
ε < ε.

Since (Λ̂π̂)k(μ)(A) = μ((πΛ)k(A)) and (πΛ)k(A) is of the form

(πΛ)k(A) = e−x ⊗ e−x ⊗ · · · ⊗ e−x ⊗ Qk(A)

where there are k factors of e−x , and it follows from the form of μ that μ((πΛ)k(A)) = 0 for
k � m. Hence, ‖(Λ̂π̂)k(ρ)‖ < ε for k � m and we have ‖(Λ̂π̂)k(ρ)‖ → 0 as k → ∞. �

Let α1 be the minimal CP-flow derived from π . If ρ → ω1(ρ) is the boundary weight map
for α1 then

ω1(ρ) = π̂(ρ) + π̂Λ̂π̂(ρ) + π̂Λ̂π̂Λ̂π̂(ρ) + · · · = π̂R(Λ̂π̂)

where the shorthand R(ψ) = I + ψ + ψ2 + · · · was introduced in the last section. We analyze
CP-flows derived from π . We begin with the following observation.

Theorem 2.3. Suppose α is a CP-flow derived from π and ω is the boundary weight map for α.
Then ω is of the form

ω(ρ) = ω1(ρ) + ρ(Δ)ξ
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for ρ ∈ B(K)∗ where ω1 is the boundary weight map for α1 the minimal CP-flow derived

from π and ξ ∈ A(H)∗ is a positive boundary weight on A(H) = (I − Λ)
1
2 B(H)(I − Λ)

1
2 with

ξ(I − Λ) � 1 and α is unital (i.e. αt (I ) = I for t � 0) if and only if ξ(I − Λ) = 1.

Proof. Assume the hypothesis and notation of the theorem. Since α is derived from π we have
(by Theorem 1.16) that ω(ρ − Λ̂π̂(ρ)) = π̂ (ρ) for ρ ∈ B(K)∗. Suppose ρ ∈ B(K)∗. Let ρn =
ρ + Λ̂π̂(ρ) + · · · + (Λ̂π̂)n(ρ). Then we have

ω
(
ρ − (Λ̂π̂)n+1(ρ)

) = π̂(ρ) + π̂Λ̂π̂(ρ) + · · · + π̂(Λ̂π̂)n(ρ).

Now suppose ρ(Δ) = 0. Then by Lemma 2.2 we have ‖(Λ̂π̂)nρ‖ → 0 as n → ∞ so we have
taking the limit as n → ∞ that ω(ρ) = ω1(ρ) for ρ ∈ B(K)∗ with ρ(Δ) = 0. Now suppose
η ∈ B(K)∗ is positive and η(Δ) = 1. Then for arbitrary ρ ∈ B(K)∗ we have

ω(ρ) = ω
(
ρ − ρ(Δ)η

) + ρ(Δ)ω(η) = ω1(ρ) + ρ(Δ)
(
ω(η) − ω1(η)

)
.

Setting ξ = ω(η) − ω1(η) we have ω given in terms of ω1 and ξ as stated in the theorem. Next
we show ξ is a positive. Suppose ρ ∈ B(K)∗ is positive and ρ(Δ) = 1. Then we have

ω
(
(Λ̂π̂)n(ρ)

) = ω1((Λ̂π̂)n
)
(ρ) + ξ

for each n = 1,2, . . . and since ω1((Λ̂π̂)n)(ρ) → 0 as a weight and since (Λ̂π̂)n(ρ) is positive
we have ξ is the limit of positive weights so ξ is positive. For ρ ∈ B(K)∗ we have

ω(ρ)(I − Λ) = ω1(ρ)(I − Λ) + ρ(Δ)ξ(I − Λ)

and calculating ω1(ρ)(I − Λ) we find

ω1(ρ)(I − Λ) = ρ
((

I − π(Λ)
) + (

π(Λ) − (πΛ)2(Λ)
) + · · ·)

= ρ(I) − ρ(Δ).

Hence, we have ω(ρ)(I −Λ) = ρ(I)−ρ(Δ)(1 − ξ(I −Λ)) for ρ ∈ B(K)∗. Since we have then
inequality ω(ρ)(I −Λ) � ρ(I) for positive ρ ∈ B(K)∗ we find ξ(I −Λ) � 1 and ω(ρ)(I −Λ) =
ρ(I) if and only if ξ(I − Λ) = 1. �

It follows from this result that if α is a unital CP-flow derived from π and αd is its minimal
dilation E0-semigroup, then αd is of type II and of index 1. This is because Δ �= 0, so the minimal
CP-flow derived from π is not unital, and therefore it must be a proper subordinate. Now recall
that since α is derived from π and π is σ -weakly continuous, we have that π is the normal
spine of α (see [18, Definition 4.36 and Lemma 4.37]). Furthermore, by [18, Theorem 4.52],
αd is completely spatial if and only if α is the minimal CP-flow derived from its normal spine.
It follows that αd cannot be completely spatial. Finally, we observe that by [18, Theorem 4.49],
the index of αd is precisely the rank of the normal spine of α, and the rank of π is one.

We remark that it was shown in [18, Theorem 4.62] if ν is a positive element of B(H)∗ with
ν(I ) � 1 and ξ is of the form

ξ = (
1 − ν

(
Λ(Δ)

))−1
R(π̂Λ̂)ν
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then ω of the form given in Theorem 2.3 is the boundary weight map of a CP-flow α is unital
if and only if ν(I ) = 1. In a subsequent paper we find necessary and sufficient conditions on ξ

that ω as given in the statement of the above theorem is the boundary weight map of a CP-flow
over K. If ξ satisfies these conditions we say ξ is q-positive. In a subsequent paper we show that
the above formula for ξ can be generalized to positive Λ(Δ)-weights with ν(I −Λ(Δ)) � 1. We
also show that there are more general ξ . For this paper we simply note that there are plenty of
q-positive ξ which yield unital CP-semigroups α.

3. Local flow cocycles

In this section we study the local flow cocycles associated with the CP-flows constructed in
the previous section. Suppose α is a unital CP-flow and αd is the minimal dilation of α to an E0-
semigroup. As we saw in Theorem 1.22 then the αd is also a CP-flow over K1 and the translation
U(t) on the Hilbert space H on which α lives dilate to the translations U1(t) on the Hilbert
space H1 on which αd lives. Recall t → C(t) is a local cocycle for αd C is a cocycle and C(t)

commutes with αd
t (B(H1)) for all t � 0. The cocycle C is a flow cocycle if C(t)U1(t) = U1(t)

for all t � 0. Just as each local unitary cocycle corresponds to a hyper-maximal corner from α

to α, each local unitary flow cocycle for αd the dilation of a CP-flow over K corresponds to a
hyper-maximal flow corner γ from α to α. Here a flow corner from α to α is a corner so that the
matrix Θ in Definition 1.5 is a CP-flow over K ⊕ K. Theorems 1.7 and 1.8 of Section 1 of this
paper are valid if one replaces the word “CP-semigroup” with “CP-flow” and “cocycle” with
“flow cocycle” (see [18, Theorem 4.54]). One ambiguity that occurs in speaking of flow corners
is the following. When one says γ is a maximal flow corner do we mean γ is maximal as a flow
corner or simply maximal as a corner. In [18, Lemma 4.55] it was shown that if α and β are
CP-semigroups and γ is a flow corner from α to β then α and β are CP-flows. It then follows
that the two notions of maximality are the same.

We mention one technical problem. Suppose αd is the dilation of the CP-flow α and t → C(t)

is a contractive local cocycle and C(t)U1(t) = exp(−zt)U1(t) for t > 0 where z is a complex
number with positive real part. Let C′(t) = exp(zt)C(t). Then C′ is a local flow cocycle, how-
ever, it is not clear that it is contractive so there may not be a flow corner associated with it.
Fortunately, Theorem 4.61 in [18] shows that C′ is contractive so there is a local flow corner
associated with it. This means that every contractive local cocycle C is of the form C(t) =
exp(−zt)C′(t) for t � 0 where C′ is a flow cocycle and z is a complex number with non-negative
real part.

Here we introduce some notation which we will use throughout this section. As in the last
section π is the ∗-representation of B(H) on B(K) constructed in the last section. We denote
by ξ a q-positive (usually unital) boundary weight and by α = αξ the CP-flow derived from π

associated with ξ as described in the last section. The boundary weight map for α is

ω(ρ) = ω1(ρ) + ρ(Δ)ξ

for ρ ∈ B(K)∗ where ω1 = R(π̂Λ̂)π̂ . Recall that q-positive means that ω given above is the
boundary weight of a CP-flow over K. As we mentioned in the last section the complete charac-
terization of such ξ will be given in a subsequent paper but for now we simply remark there are
many q-positive ξ as given in the previous section.

If z is a complex number with |z| � 1 we denote by

ωz = zR(zπ̂Λ̂)π̂ = zπ̂R(zΛ̂π̂) = zπ̂ + z2π̂Λ̂π̂ + z3π̂Λ̂π̂Λ̂π̂ + · · · (3.1)
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where the sum converges as a boundary weight since the sum converges for z = 1 where all the
terms are positive.

Next we introduce a family of one-parameter semigroups of isometries which intertwine α.
For z any complex number we denote by Uz the one-parameter semigroup of isometries of H =
K ⊗ L2(0,∞)

Uz(t) = exp(−tDz) where Dz = −d∗ + 1

2
|z|2I

for t � 0 and d is the operation of differentiation defined in the last section and the domain
D(Dz) = {f ∈ D(d∗): f (0) = zS0f } where S0 is the unitary operator mapping H into K defined
by (2.3) in the last section as

S0
(
(f1 ⊗ f2 ⊗ · · ·) ⊗ f0

) = f0 ⊗ f1 ⊗ f2 ⊗ · · ·

for fi ∈ L2(0,∞) and the fi satisfy condition (2.1) and S0 defines π in that π(A) = S0AS∗
0 for

A ∈ B(H). Note U0 = U the standard right translation and D0 = d .
Suppose w and z are complex numbers. We show the Uz are a one-parameter family of isome-

tries and the covariance c(w, z) of Uw with Uz is given by

Uw(t)∗Uz(t) = exp
(
c(w, z)t

)
I = exp

(
1

2

(
2wz − |w|2 − |z|2)t)I (3.2)

for t � 0. For f ∈ D(Dw) and g ∈ D(Dz) we have

d

dt

(
Uw(t)f,Uz(t)g

) = (
d∗Uw(t)f,Uz(t)g

) + (
Uw(t)f, d∗Uz(t)g

)
− 1

2

(|w|2 + |z|2)(Uw(t)f,Uz(t)g
)

for t � 0. Now we have

(
d∗Uw(t)f,Uz(t)g

) + (
Uw(t)f, d∗Uz(t)g

) = ((
Uw(t)f

)
(0),

(
Uz(t)g

)
(0)

)
= (

wS0Uw(t)f, zS0Uz(t)g
)

= wz
(
Uw(t)f,Uz(t)g

)
for t � 0 where we have used the relation between h(0) and S0h for h in D(Dz) or D(Dw) and
the fact that S0 is an isometry. Hence we have

d

dt

(
Uw(t)f,Uz(t)g

) = c(w, z)
(
Uw(t)f,Uz(t)g

)
for t � 0 and since the domains D(Dw) and D(Dz) are dense in H (see the argument in [18,
Lemma 4.44]) Eq. (3.2) follows.

Next we note that S is a one-parameter semigroup, so Ω given by

Ωt(A) = S(t)∗AS(t)
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for A ∈ B(H) and t � 0 satisfies α � Ω (meaning the mapping A → αt (A) − Ωt(A) is com-
pletely positive for A ∈ B(H) and t � 0) if and only if there are complex numbers y, z with
Re(y) � 0 so that

S(t) = e−ytUz(t)

for t � 0. This follows from Theorem 1.21 of Section 1 once one notes that the condition of the
theorem is satisfied if and only if the mapping A → π(A) − (2 Re(c))−1V AV ∗ is completely
positive and since π(A) = S0AS∗

0 for A ∈ B(H) this is the case if and only if V is an appropriate
multiple of S0.

Suppose z ∈ C. We show Uz intertwines α. From the result just established we have the
mapping

βt (A) = αt (A) − Uz(t)AUz(t)
∗

for A ∈ B(H) and t � 0 is completely positive. Suppose t > 0. Then since α is unital we have
βt (I ) = I − Uz(t)Uz(t)

∗. Since Uz(t) is an isometry and βt is positive we have

0 � βt (A) � I − Uz(t)Uz(t)
∗

for A ∈ B(H) with 0 � A � I and consequently

βt (A) = (
I − Uz(t)Uz(t)

∗)βt (A)
(
I − Uz(t)Uz(t)

∗)
and by linearity this extends to all A ∈ B(H). Then we have

αt (A) = Uz(t)AUz(t)
∗ + (

I − Uz(t)Uz(t)
∗)αt (A)

(
I − Uz(t)Uz(t)

∗)
for all A ∈ B(H). And multiplying the above equation on the right by Uz(t) we obtain Uz(t)A =
αt (A)Uz(t) so Uz intertwines α. Summarizing our results to this point we have the mapping
A → αt (A) − V (t)AV (t)∗ for A ∈ B(H) and t � 0 is completely positive where V is a one-
parameter semigroup of contractions then the V (t) are in fact multiples of a semigroup Uz of
isometries which intertwine α.

Now suppose αd is the dilation of α to an E0-semigroup on H1 as described in Theorem 1.22.
Then from Theorem 1.22 we see the mapping

W ∗U1
z (t)W = Uz(t) (3.3)

for t � 0 and z ∈ C give us a bijection from the Uz to intertwining semigroups of isometries U1
z

which intertwine αd where the covariance for the U1
z is the same as the covariance for the Uz

given in Eq. (3.2). Also every intertwining semigroup for αd is of the form V 1(t) = e−ytU1
z (t)

with y, z ∈ C.
Next we describe the action of local cocycles on the units U1

z . One checks that if t → C(t)

is a local cocycle for αd then C(t)U1
z (t) is a intertwining semigroup for αd . Now the action of

the local unitary (respectively contractive) cocycles on the units U1
z restricts to an action of local

unitary (respectively contractive) cocycles on γ , the type I part of αd (see [5, Remark 10.4.2,
p. 347]), which is the “maximal” type I E-semigroup subordinate to αd (necessarily type I1 in
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this case). Every E-semigroup is cocycle conjugate to an E0-semigroup, hence the action at the
level of γ must arise via cocycle conjugacy from an action of a subgroup of the gauge group
(respectively semigroup of local contractive cocycles) of an E0-semigroup of type I1 acting on
its set of units.

Local unitary cocycles generate automorphisms of the product systems associated with an
E0-semigroup and these have been computed in the type I case by Arveson in [3] (see also [5,
Section 3.8]). Going one step further, Bhat [7] computed the positive contractive local cocycles
of an E0-semigroup of type I. The general contractive local flow cocycles for a CP-flow of type I
are characterized in [1, Theorem 2.11]. Now we characterize the action of the contractive local
cocycles on units. If C is a contractive local cocycle for αd then there are complex numbers
a, b, c, y ∈ C with |a| � 1 and Re(y) � 0 so that the action of C on the units U1

z is given by

C(t)U1
z (t) = exp

(
t

(
−y − 1

2
|v + z|2(1 − |a|2) + i Im(cz)

))
U1

az+b(t) (3.4)

for t � 0 with

v = −(
1 − |a|2)−1

(ab + c)

and when |a| = 1 then numbers a, b, c ∈ C above satisfy the additional constraint ac + b = 0, so

C(t)U1
z (t) = e−t (y+i Im(abz))U1

az+b(t).

The action of C∗ is obtained by making the replacements

a → a, b ↔ c and y → y.

In the case when |a| = 1 we parameterize C with complex numbers (y, a, b) not using c so the
action of C∗ in this case is given by

C(t)∗U1
z (t) = e−t (y−i Im(bz))U1

a(z−b)(t).

If the cocycle is isometric then

|a| = 1, ac + b = 0, and Re(y) = 0.

If the cocycle is a flow cocycle then b = c = y = 0 so the action of a flow cocycle on the units
U1

z is given by

C(t)U1
z (t) = e− 1

2 |z|2(1−|a|2)U1
az(t)

for t � 0 and z ∈ C.
If C and C′ are contractive local cocycles whose action on the units is characterized by the

n-tuples (a, b, c, y) and (a′, b′, c′, y′) as describe above then the corresponding numbers for the
product cocycle t → C(t)C′(t) are(

aa′, ab′ + b, a′c + c′, y + y′ + i Im(cb′) − 1
r

)

2
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where r = 0 if either |a| = 1 or |a′| = 1 and otherwise

r = (
1 − |a′|2)−1|a′b′ + c′|2 + (

1 − |a|2)−1∣∣b′(1 − |a|2) − ab − c
∣∣2

− (
1 − |aa′|2)−1∣∣aa′(ab′ + b) + a′c + c′∣∣2

is a non-negative real function of (a, b, c, a′, b′, c′). Given the complexity of the function r above
we wonder if there is a better parameterization of the action of the local cocycles on the units. If
either of the local cocycles above is unitary the number r above is zero so the parameterization
of contractive local cocycles is much more difficult than the parameterization of the unitary local
cocycles.

We caution the reader that action of a local cocycle on the units U1
z does not completely

determine the cocycle since in our case αd is not completely spatial. In the next theorem we
characterize the contractive local flow cocycles which as we have explained is equivalent to
determining the flow corners from α to α. First we prove the following lemma.

Lemma 3.1. Suppose ξ is a unital q-positive boundary weight on A(H) and α is the CP-flow
over K derived from π associated with ξ . Suppose γ is a flow corner from α to α which means
that

Θt

([
A11 A12
A21 A22

])
=

[
αt (A11) γt (A12)

γ ∗
t (A21) αt (A22)

]

for t > 0 and Aij ∈ B(H) for i, j = 1,2 is a CP-flow over K⊕K. Then there is a complex number
z with |z| � 1 so that Θ is derived from Πz given by

Πz

([
A11 A12
A21 A22

])
=

[
π(A11) zπ(A12)

zπ(A21) π(A22)

]

for Aij ∈ B(H) for i, j = 1,2. Furthermore, for each w ∈ C we have

Uzw(t)A = e
1
2 t |w|2(1−|z|2)γt (A)Uw(t)

and

Uw(t)A = e
1
2 t |w|2(1−|z|2)γ ∗

t (A)Uw(t)

for A ∈ B(H) and t � 0.

Proof. Assume the hypothesis and notation of the theorem. Let αd and Θd be the dilation of
α and Θ to E0-semigroups on H1 and H1 ⊕ H1 and the relation between the CP-flow and the
dilated E0-semigroup is as described in Section 1 so

αt (A) = W ∗αd
t (WAW ∗)W

for t � 0 and A ∈ B(H). We will show that there is z ∈ C with |z| � 1 so that Θ is derived from
Πz as defined above.
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First note that U(t) ⊕ U(t) intertwines Θ . Using this we find the boundary representation of
Θ is of the form

Π(A) = Π

([
A11 A12
A21 A22

])
=

[
π(A11) φ(A12)

φ∗(A21) π(A22)

]

for A in the domain of the generator of Θ . Since π is pure meaning the only subordinates of π

are of the form λπ with 0 � λ � 1 and Π is completely positive it follows that φ = zπ for some
z ∈ C with |z| � 1. Note in general the boundary representation is the direct sum of a normal and
a non-normal representation of the domain of the generator but in our case we are assured that
there is no non-normal part because π is unital and therefore Π is normal. Thus the boundary
representation of Θ is Π so Θ is derived from Π .

As we have seen since γ is a flow corner from α to α there is a unique contractive local flow
cocycle C for αd so that

γt (A) = W ∗C(t)αd
t (WAW ∗)W

for all t � 0 and A ∈ B(H). Then as we have seen there is a number y ∈ C with |y| � 1 so that

C(t)U1
w(t) = exp

(
−1

2
t |w|2(1 − |y|2))U1

yw(t)

for t � 0 and w ∈ C. Then we have

γt (A)Uw(t) = W ∗C(t)αd
t (WAW ∗)WUw(t)

= W ∗C(t)αd
t (WAW ∗)U1

w(t)W

= W ∗C(t)U1
wWAW ∗W

= exp

(
−1

2
t |w|2(1 − |y|2))W ∗U1

yw(t)WA

= exp

(
−1

2
t |w|2(1 − |y|2))Uyw(t)A

for t � 0, w ∈ C and A ∈ B(H). Also since C is a local cocycle we have

γ ∗
t (A) = W ∗αd

t (WAW ∗)C(t)∗W = W ∗C(t)∗αd
t (WAW ∗)W

so

γ ∗
t (A)Uw(t) = exp

(
−1

2
t |w|2(1 − |y|2))Uw(t)A

for t � 0, w ∈ C and A ∈ B(H). Hence, we have proved the lemma provided we can show y = z.
We show y = z. Let d2 = d ⊕ d so d2 is the ordinary differential operator d/dx on H ⊕ H.

We use capital letters F and G to denote elements of H ⊕ H and lower case letters f,g to denote
elements of H. Recall that the boundary representation discussed in Section 1 for Θ is given by

Πz(A)F(0) = (AF)(0)
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for F ∈ D(d∗
2 ) and A ∈ D(δ2) where δ2 is the generator of Θ . Suppose w ∈ C and w �= 0. Now

suppose G = {0, g} and g ∈ D(Dw) so g ∈ D(d∗) and g(0) = wS0g. Suppose A ∈ D(δ2) and
Aij ∈ B(H) are the matrix coefficients of A for i = 1,2. Now from what we have shown we have

γt (A12)Uw(t)g = exp

(
−1

2
t |w|2(1 − |y|2))Uyw(t)A12g

for t � 0. Since −Dw is the generator of Uw and g ∈ D(Dw) we have Uw(t)g is differentiable
in t and since A ∈ D(δ2) we have γt (A12) is differentiable in t so the expression on the left-
hand side of the above equation is differentiable in t . Hence, Uyw(t)A12g is differentiable in t so
Ag ∈ D(Dyw) and we have Ag ∈ D(d∗) and

(A12g)(0) = ywS0A12g = ywS0A12
(
w−1S∗

0g(0)
)

= yS0A12S
∗
0g(0) = yπ(A12)g(0).

Since Πz(A)F(0) = (AF)(0) we have

(A12g)(0) = zπ(A12)g(0)

and comparing the two equations we see y = z. �
Theorem 3.2. Suppose ξ is a unital q-positive boundary weight on A(H) and α is the CP-flow
over K derived from π associated with ξ . Suppose γ is a flow corner from α to α which means
that

Θt

([
A11 A12
A21 A22

])
=

[
αt (A11) γt (A12)

γ ∗
t (A21) αt (A22)

]

for t > 0 and Aij ∈ B(H) for i, j = 1,2 is a CP-flow over K⊕K and if Ω is the boundary weight
map for Θ then Ω is of the form

Ω

([
ρ11 ρ12
ρ21 ρ22

])
=

[
ω(ρ11) σ (ρ12)

σ ∗(ρ21) ω(ρ22)

]

for ρij ∈ B(K)∗ for i, j = 1,2. Then there is a unique complex number z with |z| � 1 so if z �= 1
then

σ(ρ) = ωz(ρ)

for ρ ∈ B(K)∗ and if z = 1 then there is a boundary weight ξ ′ so that

σ(ρ) = ω1(ρ) + ρ(Δ)ξ ′

for all ρ ∈ B(K)∗.
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Proof. Assume the hypothesis and notation of the first paragraph of the theorem. Then from the
previous lemma there is a unique z ∈ C with |z| � 1 so that Θ as given in the previous lemma is
derived from Πz. Since Θ is derived from Πz we have repeating the argument of Theorem 2.3
that

σ
(
ρ − zn+1(Λ̂π̂)n+1(ρ)

) = zπ̂(ρ) + z2π̂Λ̂π̂(ρ) + · · · + znπ̂(Λ̂π̂)n(ρ).

Suppose ρ(Δ) = 0. Then we have from Lemma 2.2 that ‖(Λ̂π̂)n(ρ)‖ → 0 as n → ∞ so we have

σ(ρ) = zπ̂R(zΛ̂π̂)(ρ).

Choose a positive ρ1 so that ρ1(Δ) = 1 and we find

σ(ρ) = σ
(
ρ − ρ(Δ)ρ1

) + ρ(Δ)σ(ρ1)

= zπ̂R(zΛ̂π̂)(ρ) + ρ(Δ)
(
σ(ρ1) − zπ̂R(zΛ̂π̂)(ρ1)

)
.

Letting ξ ′ = σ(ρ1) − zπ̂R(zΛ̂π̂)(ρ1) we have

σ(ρ) = ωz(ρ) + ρ(Δ)ξ ′.

Now since σ is derived from zπ we have σ(ρ − zΛ̂π̂(ρ)) = zπ̂(ρ) for ρ ∈ B(K)∗ and since
ωz is also derived from zπ we have the same equation is true for ωz from which it follows that

ρ(Δ)ξ ′ − zΛ̂π̂ρ(Δ)ξ ′ = (1 − z)ρ(Δ)ξ ′ = 0

for ρ ∈ B(K)∗. For z �= 1 the only solution to this equation is ξ ′ = 0. Hence, if z �= 1 we have

σ(ρ) = ωz(ρ) = zπ̂(ρ) + z2π̂Λ̂π̂(ρ) + z3π̂Λ̂π̂Λ̂π̂(ρ) + · · ·

for ρ ∈ B(K)∗. �
Theorem 3.3. Suppose ξ is a unital q-positive boundary weight on A(H) and α is the CP-flow
over K derived from π associated with ξ . Suppose αd is the minimal dilation of α to an E0-
semigroup of B(H1) as given in Theorem 1.6 so

αt (A) = W ∗αd
t (WAW ∗)W

for A ∈ B(H) and t � 0. Then there is a bijection from the units U1
z of αd onto the units of Uz of

α given by

W ∗U1
z (t)W = Uz(t)

for t � 0 and z ∈ C. Suppose t → C(t) is a local unitary local cocycle which fixes U1
0 so that

C(t)U1
0 (t) = U1

0 (t) for t � 0. Then C(t)U1
z (t) = U1

z (t) for t � 0 and all z ∈ C. This means that
the action of the local unitary cocycles on the units contains no rotations.
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Proof. Assume the hypothesis and notation of the theorem. Let

γt (A) = W ∗C(t)αd
t (WAW ∗)W

for A ∈ B(H) and t � 0. From Theorem 1.6 we have γ is a hyper-maximal flow corner from α

to α. Since C(t) is a unitary local cocycle which fixes U1
0 we know from the general properties

of such cocycles discussed before Lemma 3.1 there is a complex number y of modulus one so
that C(t)U1

w(t) = U1
yw(t) for all t � 0 and w ∈ C. Since γ is a flow corner from α to α we know

that there is a complex number z so that

Uzw(t)A = e
1
2 |w|2(1−|z|2)γt (A)Uw(t)

for w ∈ C, t � 0 and A ∈ B(H). Then we have

γt (A)Uw(t) = W ∗C(t)αd
t (WAW ∗)WUw(t)

= W ∗C(t)αd
t (WAW ∗)U1

w(t)W

= W ∗C(t)U1
w(t)WAW ∗W

= W ∗U1
yw(t)WA = Uyw(t)A

for all w ∈ C, t � 0 and A ∈ B(H). Comparing the two equations we see y = z so |z| = 1.
To complete the proof of the theorem all we need do is to show z = 1. Suppose |z| = 1 and

z �= 1. Now we apply Theorem 3.2. Let Θ be the CP-flow described in the theorem. Assuming
the notation of Theorem 3.2 we have σ(ρ) = ωz(ρ) for ρ ∈ B(K)∗. We show this implies that
C is not unitary. From Theorem 1.6 we know C is a unitary cocycle if and only if γ is hyper-
maximal. But γ is not hyper-maximal as can be seen as follows. Let Θ1 be the CP-semigroup of
B(H ⊕ H) given by

Θ1
t

([
A11 A12
A21 A22

])
=

[
ηt (A11) γt (A12)

γ ∗
t (A21) ηt (A22)

]

for t > 0 and Aij ∈ B(H) for i, j = 1,2 where η is the minimal CP-flow derived from π . Note
the boundary weight map Ω1 for Θ1 is of the form

Ω1
([

ρ11 ρ12
ρ21 ρ22

])
=

[
ω1(ρ11) ωz(ρ12)

ωz(ρ21) ω1(ρ22)

]

for ρij ∈ B(K)∗ for i, j = 1,2. Now we see γ is not hyper-maximal since α � η and if γ were
hyper-maximal we would have α = η. Hence, if z �= 1 we have C is not unitary so the action of
the local unitary cocycles does not contain the rotations. �
4. Conclusion

Here we present our conclusions. Suppose K is a separable Hilbert space and H = K ⊗
L2(0,∞) and S is a unitary mapping from H onto K and π(A) = SAS∗ for A ∈ B(H). Note
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π is an irreducible ∗-representation of B(H) on B(K). Suppose Λ is the mapping of B(K) into
B(H) given by

(
Λ(A)F

)
(x) = e−xAF(x)

for A ∈ B(K) and x � 0 for all K-valued function F ∈ H. Let

Δ = lim
n→∞(πΛ)n(I )

where the limit exists in the sense strong convergence since the terms are decreasing. Assume
Δ �= 0. Assume further that for all ρ ∈ B(K)∗ with ρ(Δ) = 0 we have ‖(Λ̂π̂)n(ρ)‖ → 0 as
n → ∞. It follows from this that if π(Λ(A)) = A then A = λΔ.

Then there are unital CP-semigroups α of B(H) which are intertwined by the shifts U and
there boundary weight maps are given by

ω(ρ) = ω1(ρ) + ρ(Δ)ξ

for ρ ∈ B(K)∗ where ω1 is the boundary weight map for the minimal CP-flow derived from π

and it is given by

ω1(ρ) = π̂ (ρ) + π̂Λ̂π̂(ρ) + π̂Λ̂π̂Λ̂π̂(ρ) + · · · = π̂R(Λ̂π̂)

and ξ ∈ A(H)∗ is a positive boundary weight on

A(H) = (I − Λ)
1
2 B(H)(I − Λ)

1
2

with ξ(I − Λ) � 1 and α is unital (i.e. αt (I ) = I for t � 0) if and only if ξ(I − Λ) = 1. The
boundary weight ξ satisfies certain positivity conditions which we analyze in a separate paper. It
was shown in [18, Theorem 4.62] that if ν is a positive element of B(H)∗ with ν(I ) � 1 and ξ is
of the form

ξ = (
1 − ν

(
Λ(Δ)

))−1
R(π̂Λ̂)ν

then ω as given above is the boundary weight map of a CP-flow α is unital if and only if ν(I ) = 1.
Then if α is such a unital CP-flow then α has a Bhat dilation to an E0-semigroup αd . This

E0-semigroup is of index one. The action of the local unitary cocycles on the units for this
E0-semigroup in not two-fold transitive. The Hilbert space for the dilation is of the form H1 =
K1 ⊗ L2(0,∞) and if U1(t) is right translation by t on H1 then U1 is a unit for αd meaning

U1(t)A = αd
t (A)U1(t)

for all A ∈ B(H1) and t � 0. If C(t) is a unitary local cocycle for αd so C(t) ∈ αd
t (B(H1))

′ for
all t � 0 and the C(t) are unitary operators satisfying the relation C(t)αd

t (C(s)) = C(t + s) for
s, t � 0 and if C(t)U1(t) = U1(t) for t � 0 then C(t) = I for all t � 0. This means the action of
the gauge group on the units of αd is a smaller group than for an E0-semigroup type I1. Also, this
means αd is not cocycle conjugate to the tensor product of a semigroup of type II0 with a type I1
for if this was the case the action of gauge group on the units would contain all the Euclidean
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transformations just as the action for an E0-semigroup of type I1. The same reasoning applies to
the E0-semigroups of type II1 corresponding to the examples of product systems constructed by
Tsirelson in [22].

The full action for the gauge group on a type I1 is the Euclidean group whose action on C is
given by z → az + b for a, b ∈ C and |a| = 1. In our examples we have the further restriction
a = 1. Tsirelson has examples where there are the restrictions a = 1 and Im(b) = 0. It is quite
possible in our case there may be further restrictions. It may be that b lies on a one-dimensional
line or even the further restriction b = 0. This would be interesting since it would give an example
of an action which is rigid. That means that if C(t) is a local unitary cocycle and U is a unit then

C(t)U(t) = eiλtU(t)

for t � 0.
We are somewhat embarrassed to report that in order to establish this result all that is required

is to determine whether certain fairly simple first order differential equations with constant coef-
ficients have a bounded solution or not. The equations are parameterized by the complex numbers
(a, b) with |a| = 1. We have shown that if a �= 1 the equations have no solution. If the equations
never have solutions the action is rigid. If the equations have solutions when b lies on a one-
dimensional line we are in the situation Tsirelson found and if the equations have a solution for
all b then we are in the case where we have transitivity of the gauge group on the units but no
two fold transitivity.

As the reader can probably guess the feature that makes these equations interesting and dif-
ficult is that they involve infinitely many variables. We will present them in a longer and more
detailed paper.
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