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Abstract 

Second-order regular variation is a refinement of the concept of regular variation which is 
useful for studying rates of convergence in extreme value theory and asymptotic normality of 
tail estimators. For a distribution tail 1 -~ F which possesses second-order regular variation. WC’ 
discuss how this property is inherited by 1 - F2 and I - F*2. We also discuss the relationship 
of central limit behavior of tail empirical processes, asymptotic normality of Hill’s estimator and 
second-order regular variation. @ 1997 Elscvier Science B.V. 

Kqwwds: Regular variation; Second-order behavior; Tail empirical measure; Extreme 
value theory: Convolution; Maxima; Hill estimator 

I. Introduction 

In this paper we assume that the distribution function F is concentrated on [O. x 1. 

The tail 1 - F(x) is regularly varying with index --x, my >O (written I - F E RL,) if 

,i,n 1 - F(tx) 
,_x 1 _ F(f) =X 

p-1 

’ X>“’ (1.1) 

The distribution tail 1 ~ F is second-order regularly varying with first-order parameter 

-x and second-order parameter p (written 1 -F E 2RV(-x, /I)) if there exists a function 

A(t) + 0, t - 30 which ultimately has constant sign such that the following refnemcnt 

of(l.1) holds: 

I -/.‘(f.r) 
I-r;(t) -x 

-_2 

I 

‘I 
lim 

.4(t) 
= H(x) := (..CY IF ’ du, .Y > 0 (1.2) 

,-2 % I 
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for c # 0. Note that for x > 0 

H(x) = 
cx-’ logx, if p = 0, 

cx -cc.] 
P ’ if p<O. 

It is well known (Geluk and de Haan, 1987, Theorem 1.9) that if (1.2) holds with 
H(x) not a multiple of x-‘, then H satisfies the above representation, IAl E RV, and 
no other choices of p are consistent with A(t) + 0. Moreover convergence in (1.2) is 
uniform in x on compact intervals of (0,oo). See de Haan and Stadtmiiller (1996) for 
a related discussion. 

Second-order regular variation has proven very useful in establishing asymptotic 
normality of extreme value statistics and also for the study of rates of convergence to 
extreme value and stable distributions (de Haan and Resnick, 1996; de Haan and Peng, 
1995a, b, c; Smith, 1982). 

An example of the statistical uses of second-order regular variation is as follows: 
Suppose ZI, . . ,Z, are iid random variables with common distribution F satisfying 
(1.1). A commonly used estimator of CI-’ is Hill’s estimator 

Hk,n := 

where Z,,) > . >Zcn) are the order statistics of the sample. Under the assumption that 
the number of upper order statistics k used in the estimation satisfies k + co, k/n 4 0, 

and under a von Mises condition there exists constants a,if such that 

&Hk,n - ak,; ) =+ N, 

where N is a normal random variable (Mason, 1982; Hall, 1982; Csorgii et al., 1985; 
Hausler and Teugels, 1985; Dekkers and de Haan, 1989; Resnick and Stlrica, 1995; 
Davis and Resnick, 1984; Csiirgo and Mason, 1985). In order to construct confidence 
statements for the inference, one needs to replace Xk,n by LX in the central limit theorem 
and for this one needs to know &uk,rf - K’ ) + 0 as n + 00. A convenient way to 
assure this is by assuming 1 -F E 2RV(-a, p). (S ee also Resnick and Starica, 1997a, b; 
Kratz and Resnick, 1996.) 

A related statistical problem assumes that one observes Xi,. . ,X, where {Xn} is a 
stationary infinite order moving average process of the form 

Xt = 2 CjZt_j, t=0,&1,*2,. 
j=O 

where {Zt} are iid with common distribution satisfying (1.1) and (1.2). Resnick and 
Starid (1995) have proven that the Hill estimator applied to Xi,. . .,X, is a consistent 
estimator of X-‘. In order to assess the performance mathematically of this estima- 
tor and to compare it to competing procedures, the asymptotic normality must be 
investigated. In order to do this successfully, one must understand how second-order 



regular variation behaves under convolution and this was the strongest motivation for 
the present investigation. This time series estimation problem is further discussed in 
Resnick and Starici (1997b). 

First-order behavior of regularly varying tails under convolution is fairly tame: If 
1 ~ F satisfies (1. l), then the convolution tail 1 ~ F*’ satisfies 

1 -E-*(+2(1 -F(t)), (t+CXc). 

Feller ( 197 1) has a straightforward and clear analytical proof and Resnick ( 1986, 1987) 
proves this probabilistically using point processes. However, second-order regularly 
varying tails behave in a much more complicated way. 

In Section 2 we prepare the way by discussing behavior of distribution tails of 
maxima 21 V Z2 of iid random variables having common distribution F satisfying ( 1.2 1. 
The behavior turns out to depend on how 

lim 1 -F(t) 
r-32 A(f) 

behaves. Section 3 gives some results for convolution tails and Section 4 discusses a 
probabilistically equivalent statement to (1.2) involving the central limit theorem and 
shows that in a manner to be made precise in Theorem 4.2, asymptotic normality of 
Hill’s estimator is equivalent to second-order regular variation. 

We end this introduction with two examples. 

Example 1.1 (Log yummu distribution). Suppose X1 ,X2 are iid with standard expo- 
nential density. The log gamma distribution is the distribution of exp{XI + X2). For 
x> 1. 

P[exp{Xr +X2} >x] = P[Xt + ,U, > log.y] 

= exp{ - log X} + exp{ - log X} log .r 

=x-‘( 1 + logx) := 1 - F(x). 

Thus for x > 1 

1 - F(tx) 
1 -F(f) -’ 

-, 

-_I logx 
NX logt 

and thus 

I-F(rr) -1 
lim 

I-F(t)-x 
I-XL l/logt =x 

-’ logx, 

and with A(t) = l/ log t we have x = 1 _/I = 0 and 

lim ’ - F’t’ =O, 
r-x A(t) 
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Example 1.2 (Hall/ Weiss class). Suppose for x 3 1, 2 > 0, p <O that 

1 - F(x) = $“( 1 + 9). 

Then as t + cc 

1 - F(tx) -_1= 

l-F(t) -x x 
-_1 

{ 

1 + (txY _ 1 

1 +tp 1 

NXP(XP - 1)P 

and so we may set A(t) = ptp and 

{ 

0 if Ipl <m, 
&+ lk-’ if IpI = a, 

M if IpI >LX. 

2. Maxima 

As preparation for further work, we begin with a two-dimensional result. 

Theorem 2.1. Let Z,,Z2 be non-negative iid random variables with common distribu- 
tion F satisfjing ( 1.2). Then for x > 0, y > 0 

f{LG>t.rlU[Zl>tYl} _ (x-l + y-“) 
lim 

I -F(f) = H(x) + H(y) - I(xy)_” (2.1) 
f--too A(t) 

provided 

l im  1 -F(t) 
f-m A(t) 

=I, 111<03. (2.2) 

If III = 00, then 

P{[Z, > Lx] u [Zz > QJ]} 
I-F(r) - (x-l + y-“) 

lim 
1 -F(t) 

= - (xy)_“. (2.3) 
f--100 

Proof. We have 

P{ [Zl > txl u [Z2 > VI) 
= 1 - F(tx)E(ty)= 1 - F(tx) + 1 - F(ty) - (1 - F(tx))(l - F(ty)) 

and so 

P{[Zl >txl u V2>tyl} 

1 -F(t) 
- (XC” + y-“) 

=( 1 - F(tx) 
1 - F(t) -x 

_-3L --1 _ (1 - F(tx))(l - F(ty)) 
1 -F(t) 

(2.4) 

and the stated results follow. 0 
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By letting x = y, we immediately get the corollary about tail behavior of distribution 
of maxima. 

Corollary 2.2. Let Zl,Zz be non-nqatice iid rundotn wriahles ,t,ith comwm dimi-, 
hution F .sati.sf_jing (I .2). Then for .x > 0 

P[Z,vZJ>tr] 

I-F(t) ~ 2x-” 
lim = 2H(x) ~ lx-‘” 

i-z A(t) 

,im 1 -F(t) -=I, lll<m, 
r-x A(t) 

(2.5 :I 

(2.611 

P [Z, v/l, > f-r] 
I -F(t) - 2x-” 

lim 2x 
= --x 1 -F(t) (2.711 

1-x 

Remarks. (I ) Changing normalizations in (2.5) yields 

P [Z, vzz > t-r] 
- - 1  

lim 
P[z,vZ,>t] -*?l 

A(t) 
x>o fixl (2.8‘1 

so that P[Z, V Zl>t] E~RV(-x,p). Note that for I#0 we have -~=p sincr 
1 - F(t) N IA(t). Similarly, modifying (2.7) yields 

PlZ, vzz >l.Y] ~2 

lim PlZ, vz, > t] ~ x 1 ^ 
1 -F(t) =iix 

_^(l -.rP). .r>O 
1-1. (2.9‘1 

so that in this case, P[Z, VZ2 > t] E 2RV( --cx, -a). Thus P[Z, > t] and P [Z, V Z, > t 1 
may have different second-order parameters. 

(2) Applying Theorem 2.1 with x replaced by .X/C, and v replaced by JJ/Q when: 
.u>O. ,,>O, c,>O. i= 1,2 yields 

/‘([[,/,>fr;]U[C~~~>>fl’]} 
I -F(t) - (cTxp” + (.;y+) 

A(t) 

=H(xc,‘) + H(yc,‘) - lc~c;(.Y~~)~z (2.101 

if (2.6) is satisfied. The second-order behavior of P[c, Z, V ~222 > t] under condition 
(2.5) is obtained by setting x = y as follows: 

Fyi /L, VC.?L? > 1.x] 

I -E‘(I) 
- (c; + c2y)xP 

A(t) 
= H(.uc,’ ) + H(.rc,’ ) - lc;c:x-2”, x>o, (2.1 I) 

extending (2.5). A similar modification of (2.7) holds 

The following proposition asserts that the relations (2.1) and (2.3) characterize 
second-order regular variation of the underlying distribution tail function. Moreover 
the normalizations A(t) and 1 - F(t) are the only possible. 
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Proposition 2.3. Define for x>O, y>O 

LHS(t x y> := PWl >txl” [Z2 >tylI 2 9 1 -F(t) 
- (x-” + y-“). 

Suppose further there exists a function $(t) >O such that for all x>O, y>O 

lim Lmt, x, Y > 

et> =c(x,y) t-00 
(2.12) 

where $(t) + 0 (t + x) and the function c(x, y) satisfies Ic(x, y)l < 00 for all x, y and 
c(x,x) # alx-” + u2xP2’ Jbr any choice of real al, ~2. Then 1 - F satis$es (1.2) with 
A(t) N c$(t) for some c # 0 and 

I’!% l i(y;” E [0, co) exists. (2.13) 

Proof. Since $(t) + 0 and Ic(.x, y)l < 00 it follows that 

-_I (1 - F(tx))2 
- 

1 -F(t) 
10 (t+33). 

Obviously, for x > 1 we have (1 - F’(tx))2/( 1 --F(t)) + 0 as t + cx, and hence it follows 
that 1 - F E R V-,. Observe that 

LHS(t, 1,l) 

*(t) 
= -(l -F(t)) ~ /_(I 1) 

Il/ct> ’ . 
(2.14) 

Hence if c(l,l)=O we have 1 - F(t)=o($(t)) implying (1 - F(tx))2/(1 - F(t))= 
0($(t)), as t --f cc for x>O. As a consequence, for x>O 

LHS(t,x,x) 
I-F‘(fX) -_1 

l-_Fo-x 
G(t) = ll/ttm 

+O(l)+c(x,x) as t-c0 

Since c(x,x) is not a multiple of x?, it follows from Geluk and de Haan (1987, 
Theorem 1.9) that c(x,x) = cH(x) with c # 0 and H as in (1.2) and hence 1 - F E 2RV 
(-cqp). Therefore, there exists a function A such that (1.2) is satisfied and 

LHT;‘x) = (2H(x) + o(l))% - (x-‘” + o(l))% 

= (2H(x) + o( l))$j + o( 1). 

Let t + 03 and we conclude 

ACtI 4x,x) = 2H(x) ,kim_ m> 

and hence we get 

lim A(t) = ’ 
t+m $(t) 2’ 

Thus, if c( 1,1) = 0, then 1 - F(t) = o(A(t)), t 4 co. 

(2.15) 



In case L.( 1, 1) # 0 we have 1 - F(t) - ~ c( 1, 1 )II/( t), and therefore 

LHS’(t,x,x) 
I -F(tr) 
I-F(t)-x 

_y 
(1 - F(tx))2 1 ~ F(t) 

lb(f) = $(t)/2 (I - F(f))* $(f) 

I -F(t*) 

_rm-X 
_-y 

41/(t)/2 
+x~~2’c(l,l)+o(l)~L.(S._Y) as t+~. 

It follows that for _Y >O 

I-F(f,ll 
I-TO ~ x I 

I//( t)!‘2 
+c(x,x-c(l,l),\.-2~ (t-x) (2.16) 

By assumption the right-hand side is not a multiple of F”, hence (1.2) holds with 
some function A(r)-cl$(t) (t 4 ccl), where CI #O is a constant. n 

Remark. ( I ) In case c(x,x) = cx P2r for some c # 0 it follows that c = c( 1, 1 ) and 

( 1 - F(tx) 
- ,YCX 

1 ~ F(t) )I 
($(f)/2)-+o. I>0 

as t + x. Hence (1 - F(tx))/( 1 - F(t)) -- _c” = o( 1 ~ F(t)). Thus, in this cast if F 
satisfies (1.2), then the limit in (2.13) is infinite. 

3. Convolution 

In the sequel we denote 1 ~ F by F. The results for convolution are more complex 
than for maxima. In order to prove the main result Theorem 3.2 we first need a lemma. 

Lemma 3.1. Suppose ,for i = 1,2 thrrt F, ~2RV(-u,,p~), i.e. F, .sutisySes ( 1.2) u.ith 
uuxiliury ,fknction A,. Further suppose 

F,,?(X) ~ k,F,(x)=(dj+o(l))A,(.x)F,(x) (X1X) 

F,(s - h) - F,(x) = o(Aj(x)~(x)) (x + a). 

a’heve k, > 0, h, d, E [w. Then as x + 3~1 

fi * h(x) - F3(-~1 ~ F4(x) 

=k,kz(m(x) ~ F,(x) - &x))+o 

Proof. By assumption, for E > 0 there exists a > 0 such that for i = 1,2 

F,(x) <c, E;r+2(.x) - k&x) < (d, + i:)Ai(x)&(x), x > a. 
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It follows that for x >a 

J 
x 

F3 * F4(x) - &(x) = F3(x - u) dF4(u) 
0 

J 
I--u 

d &:3(x - u>dF4(u)+ @4(x - a)-F~(x)) 
0 

J 
l-0 d k, 6(x-u)dF4(u)+(d, +E) 

0 

J 
x--a 

X A,(x - u)&(x - u)dF4(u) 
0 

+k2@2(x -a) - F~(x))+o(A~(x)F~(x)) 

=:k,l, +(d, +&)I2 +o(A2(x)F2(x)) (x+ co). 

Now I, is estimated as follows. 

J x--a J x I, = F,(x- u)dF4(u)= - F,(x - u) d&(u) + 0642(~)F2(~)) 
0 0 

J 
x--a d kz 5(x- u)dF,(u)+(d2+E) 

0 J 
x--u 

A2(x - #2(.x - u) dF,(u) 
0 

J 
x--u d k2(m(x)-F,(x))+(d2+E) A2(x - @2(x - u) dF,(u) 

+,,)bi,(~)+O($Ai(x)f7(1)) (x+m). 

Since A~ERL& and for i= 1,2 we have EERV-,, we have 

J x--a A2(x - u)F2(x - u) U,(u) N A~(x)&x) 
0 

(3.1) 

(3.2) 

and since a lower inequality for I, can be proved similarly, combination with (3.2) 
gives 

I, = k2(F, * F2(x) ~ F, (x>> + 6 (x) - F4(4 + d2.42WF2W + 0 

Substituting F4(x) = k2F2(x) + (d2 + o( l))A2(x)F2(x) we find 

I, = k2(F, * F2(x) - F,(x)) + 6 (x) - k2F2(x) + o 
(rr, -) 

c Ai(x)fi(x) 



Similarly, regular variation of A i , F, and Fd implies 

12 -A,(x)F,(x) (x+ cc). (3.4 I 

Since a corresponding lower inequality for (3.1) can be proved similarly, combina- 
tion of (3.l), (3.3) and (3.4) gives an expression for F3 * Fd(.x) ~ /$(.I+). Subtracting 
Fj(.u) = klFl(x) +dlA,(x)Ft(x) + o(A,(x)E’l(x)) then gives the required result. r 

Theorem 3.2. Suppose ZI , Z, uw iid non-neyuticr rundow curiuh1r.r ,l,ith m111~1o~~ 
distribution ,fitnction F satisjjing ( 1 .2) und .suppo.w cl > 0. ~2 > 0. Thrw c,si.ct /iv 
ewh cusr tli’o ,firnctions A” und fi such thut 

P((.,L, +CJZ:>t.x) 
lim F(/) ~ (c; + c;)x-7 

i(t) 
- = P(x) (3.5 I 

l-X 

,fiw x>O. Lkfinr t5. = - r2( 1 - a)/r( 1 -- 2x),f& xc I. If’ 
1. z<l 

2. p> - 1 und tA(t)+m u.s t-+a, then A(t)=A(t) und k(.u)=H(c, lx)+ 

mq’x), 
111. r> I 

I. p< ~ 1 and tA(t)+ i<x us t + cc then j(t)=t-’ and fi(x)=: qi(c~q + 
C,C;)YP’ + l(H(c,‘x) + H(c+)), 

2. p 3 - I und tA(t) + x’ us t 4 x then j(t) =A(t) and R(x) = H(c,- ‘x) + 
H(c,‘x). 

Proof. The proof for I is based on the previous Lemma 3. I and also Lemma 2. I of 
Geluk (1996). It is known (de Haan, 1996) that there exists a distribution function F. 
with F_b E 2RV( -N, p) and Fo(0) = 0 which has a differentiable density ,fi, t RV( -x ~ I ) 
such that 

p(t) - Fe(t) = o(A(t)&t)) (t --) x j. (3.6) 

Let ZF,ZT be iid non-negative random variables with common distribution F,;,. First 
we prove 1.2. We intend to apply Lemma 3.1 to 

F’(t) = P(Z: Gt), F2(t)=P(Z,*<t), 

h(t) = P(ClZl G t), F4(t) = f’(c2Z2 Gt). 

In order to apply the lemma, we first verify its hypotheses. From (3.6) and the fact 
that F satisfies (1.2) it is clear that FI and F2 satisfy (1.2) as well (with the same 
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function A). Note that as t--f 00 for i = I,2 

P(CiZi > t) - C,“P(ZF > t) = F(t/Cj) - CFF()(t) 

at)&(t) 4t)Mt) 

= F(t/ci) - F”(t/Ci)A(t/Ci)~(t/Ci) 

A(t/Ci)F(t/Ci) 4Mxt) 

+ &(t/c;) - @&) 

~(wil(t) 

--+ H($). 

So the first condition of Lemma 3.1 is verified with ki =c;, k2 =c$, dl =H(c,‘), 
d2 = H(c,’ ). The second condition reads 

&(t - b) - &(t) = Fo(t( 1 - b/t)) - (1 - b/t)-“&(t) + (1 ~ h/t)-” - 1 

MY(t) ~&)&) A(t) 

The first term tends to 0 for t + 03 due to the uniform convergence in the second-order 
condition (1.2). Since (1 - b/t)-” - 1 N xb/t and -p <E < 1 the second term clarifies 
as 

(l-b/t)-‘-I_ ab ,. 

A(t) tA(t) 

as t + 00. Since the hypotheses of the Lemma are verified it follows that as t ---$m 

P(ClZ1 +CzZz>t) - P(qZ13t) - P(qZ2>t) 1 ,Fo*2(t) - 2&(t) F(t) 

A(t)f?t) 
‘C,C2 

‘F*(t) 
A(t) +0(l) 

or 

P(ClZ1 + c2z2 > t) - P(ClZ, > t) - P(c2Z2 > t) 

‘mm) 
+ 1(&c; (3.7) 

since 

Fo*2(t) - 2&(t) --j E 

F2(t) -% 
(3.8) 

(Omey and Willekens, 1986) and F(t)/A(t) ---f 1 from the assumptions of 1.2. To finish 
the proof for this case one applies (3.7) with ci replaced by Ci/x (i = 1,2) and adds 

P(c,Z, > tx) - +-T(t) + P(QZ2 > tx) - c;xPF(t) 

A(t)&t) A(t)&t) 
+ H(c,‘x) +H(c,‘x). 

(3.9) 

The proof of I.1 follows the same path, the only difference being that instead of 
Lemma 3.1 we will employ Lemma 2.1 (Gel& 1996). The choice of M from Lemma 
2.1 is CI =2. Defining Fi to F4 as above it follows from (1.2) and (3.6) that the first 
condition in the lemma is verified with kl =c;L, k2 =cg, dl = 0, d2 = 0. The second 



condition reads 

F(J(f ~ h) ~ &t) _ F&( 1 - b/t)) - (1 - b/t)-“&t) ‘4(t) 

F&?(r) - &W&t) F,,(t) 

+(’ -h’t)-” - l 
RI(f) 

The first term on the right-hand side tends to 0 since both factors tend to zero (by 
uniform convergence in (1.2) and by assumption, respectively). The second behav-es 
like ah(tFa(t)))‘. Since we are under the assumption that FERN_/_, with XC I, we 
have that t&(t) + x8 as t + x. Therefore the hypotheses of Lemma 2.1 are verified. 
Thus combination of Lemma 2.1 with (3.8) above gives 

P(C,Z, +C~Z~>t)-P(C,Z,>t)-P(C~Z~>t) ,, 

F2(t) 
--i <,c;c:. (3.10) 

Since in this case A(t)=o(F(t)) (3.9) implies 

P(c,Z, >tx) - c;x-V(t) A(t) 

4mo 
P(c,Z, > tx) - c;x-“F(t) A(t) i o, 

F(t) + -- mm m (3.1 I) 

The proof of 1.1 is finished if we replace c, by c,,i,u (i = 1,2) in (3.10) and add (3.1 1). 
For cases II and III a different approach is needed. Decompose P(clZ, + c>Zz > t) 

as follows: 

P(ClZ, +c2z* >t) 

==RClZI +C2Z2>t,ClZl Vc2Z2>t)+P(c,Z, +c2z2>t.c,z, Vc2Z2<t) 

=eclzI Vc2Z2>t)+P(c,Z, +c2z2>t,c,z, Vc2Z2<t,c,Z, Ac2Z2<tj2) 

+ P(ClZ, + c2z2 > t, c,z, v c2z2 <t, c,z, A c-222 > t/2) 

=p(clz, >t)+P(qZ2>t) - P(c,Z, >t)P(C?Z?>t) 
I’2 rl 

+ I (&(t - u) - Fj(t)) dFb(u) + 
s 

(&t - u) - Fdt)) @i(u) 
0 0 

+ (F (0) ~ mw(~2w2) - F;:(t))> 
where F3 and F4 are defined as above. Therefore 

(fYC,Zl +C2Z2>t) - P(c,Z, >t) - P(c2Z2>t))i(/i(t)F(t)) 

A(dc2) &t/cd 

J’ 

tc2 F((qk2)( 1 ~ 24/t), - F(t,/c2) 

2(t) F(t) 
c&(u) 

0 F(t/c$l(t.!(.2) 

t:2 m/c, I( 1 ~ uilt)) - et/c, > d F 4 ( u )  

F(tlc, )&tic, ) 

m/cl > I F(t) ~WW)) 
j(t) et) - >( E;(t/y2c2 ,) F(t,/&) 

F(t) F(t) F;(t) 

F(t) F(t/c,)F(t/kZ) 

i(t) F2(t) 
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4w(~/C2)m/Q) 
t/2 F((tlcz I( 1 -u/t)) 

F(rlcz) 
- (1 - u/t)-” 

=_ 
A(t) A(l) E’(t) 0 J' A(tIc2) 

de(u) 

“2 
t(( 1 - u/t>-” - 1) dFj(U) 

- (l - u/t)-” dF4(u) / A(t) A(t/q ) F(t/q ) 

s 

t’2 ‘((f’c;$c;;it)) 

i?(t) A(t) F(t) ,, &t/cl ) 

+ 1 F(t/c,) 

.I 

r’2 
_- 
tA(t) F(t) o 

t(( 1 - u/t)-” - 1) dF4(u) 

F(t) I mm)) ml) FWc2)) m2) 

A"(t) F(t) - _ F(t) >( F(t) - _ F(t) 

mc1 FW2) 

F2(t) ) 
1 =A(t)I+- II+AoII*+IIV+ FoV 

A(t) t&t) 2(t) t&t) d(t) . 

The expression of interest becomes 

P(ClZ, + c2z2 > t) - (C’T + cpqt) 

F(t)&t) 

P(ClZI + c2z2 > t) - P(ClZ, > t) - P(QZ* > t) = 
&t)F(t) 

P(c,Z, >1) P(C>Z, >I) 

I A(t) F(t) - cT F:(t) - c; 

44 A(t) + A(t) 
_ 1 

where VI denotes the expression between brackets in the middle term. The second- 
order variation assumption (1.2) implies that V and VI converge as t + co. Under 
the assumption of finite mean we prove that I, II, III, IV also converge. The argument, 
based on Lebesgue’s dominated convergence theorem follows. Due to symmetry we 
consider only I and II. Define 

G 

t 

(u) = m/c2)4 - u-"F(t/c2) 

&t/c, Mth 1 . 

Since (1.2) holds locally uniformly, it follows that for any E >O, there exists a to such 
that, for t>to and all x E [i, l] 

H(X) - cd G,(x) <H(x) + 6. 



The limits of integration in I assure that $ < 1 - u,/t < 1 and therefore G,( 1 - u/t) can 
be bounded as follows: 

*“2--” - I (1 - u/t)” - 1 
____ - E < (1 ~ u/t)_r----- ~- I: 

/’ I’ 

G Gr(l - u/t)<( 1 - u,/t))” 
(1 - u!t)J’ - I + i’ 

0 
< 1:. 

The previous bound together with the fact that G,( 1 ~ u/t) + 0 as t + x implies by 
Lebesgue’s dominated convergence theorem that I i 0 as t - xa. For 11 notice that as 
tix 

t(( I - Cl;‘t)-x ~ 1) + w4 

and that 

o<t(( 1 ~ u/t)_X - 1)62(21 - I)24 

for 0 < u < t:2 since s w (( 1 - s)-~ ~- 1 ),S is non-decreasing on (0, 1). Therefore, 

To summarize one has 

,im P(ClZI + c2z2 > t) - (CT + c;)F(t) 
1-x I’(t)i(t) 

A(t) = (H(c,‘) +H(c;‘)) lim _ 
l-x A(/) 

f r/l(cic; + cTc~) lim 
1 

__ it 2 F(t) 
l-x d(t) 

1 + ‘c;c;(Q-’ - I )-_ 
A(t) 

Making specific choices of A(t) one recovers the different limit functions specified in 
items I1 and 111 of the theorem. 0 

4. Central limit theorem 

The first-order regular variation of distribution tails has an exact probabilistic equiv- 
alent in the weak convergence of associated point processes to a Poisson process limit. 
This has been a very useful tool in studying heavy tailed phenomena which are quite 
complicated functionals of iid random variables. See Resnick ( 1986, 1987). We present 
a probabilistic equivalent of second-order regular variation which is then applied to 
discuss the equivalence of second-order regular variation and asymptotic normality of 
Hill’s estimator. 

The connection between second-order regular variation and the central limit theorern 
stems from the following invariance principle. 
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Proposition 4.1. Suppose {Z,,n> 1) UIY iid non-negative random variables with com- 
mon distribution F whose tail is regularly varying so that (1.1) holds. Let b(t) be 
the quantile function de$ned by 

Let the tail empirical measure be 

so that kv,(A) is the cardinulity of {i : Zi/b(n/k) E A}. Then tfk = k(n) satis$es k --f co 
and k/n + 0, we have 

w,(x) := d&((X, cm]) - Ev,((x, 001)) =+ W(P) (4.1) 

in D((0, ml), where {W(t), t >O} is a standard Brownian motion. 

See Mason (1988), Einmahl ( 1990, 1992), Csargii et al. ( 1986), de Haan and Resnick 
(1993), Resnick and St&i& (1997a). 

Note that 

-h((x, ~1)) = f (1 - F (b (f) x)) . 
Here is a characterization of second-order regular variation based on the central limit 

theorem. The setup in Proposition 4.1 is still in force. 

Theorem 4.2. Suppose 1 - F E RV_,. We have that 1 - F is second-order regularly 
varying $7 for some 8 E [0, 1) there exists a function U E RVo such that U(t) + cx 
as t -+ CC and there exists a function g(x), x> 1 not identically zero such that with 
k = [U(n)] we have for each x > 0 

A 
1 n 
- c EZ,,b(n/k)@, 001 - x-l 
k 

=+ W(x_“> + g(x) 
i=l 

in D(O,oo). In this case, 1 - FE 2RV(-cc,p) with 

(j = 2lYl -c&/2 

a+2bl p= 1-d’ 

and 
I--F(LT) -_a 

l-_Fo-x 
A(t) 

+ g(x) 

where the function A is spectjied as follows. Define 

h(t)= t - E R&-o, 
u(t) 

where O<l -061, 

(4.2) 

(4.3) 

(4.4) 

(4.5) 



Proof. Suppose first that 1 - F E 2RV( --x, p) and (I .2) holds. Then 

ii(t) E R!-$,. her&., 

so that 

A(Nt)) E R”;;,,. 

Define 

4 V(x) = ~ 
A(h(x)) E “5-4 

so that 

V- ERVZ, 
l/,1 

and set 

We may set (1=2/pl/(cx+21pl) and then O<U<l. Thus U(t)/t+O as tix. Further- 
more we claim that U(t) + CC. If I(‘1 >O, this claim is obvious. If not, note L’(t) - ‘-x 
iff t2/V+(t)+cx iff V2(t)/ti x iff lQ’(b(t)) + XI which follows from the fact that 
/4(t) - 0. 

Now we may set k = [U(n)] confident that k + cc and k.in + 0. Also wc observe 
that 

v’h(h(nik)) = fiJklnA(b(n/k)) 

as II - CQ. So it follows that 
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=+ w(x-“) + M(x), 

so the desired result holds with g = H. 
Conversely, suppose 

fi 
i 

1 n 
k c Kz,,b(n,k)(X, 001 - XP 

) 
* W(xP) + g(x). 

i=l 
Referring to Proposition 4.1, we conclude that 

Define 

SO 

n ( ) - Nu(n>, 
x U(n) 

where U E RF& 1 >Q30 and 

h(t) := -!- 
u(t) 

ERJb> h+(t) ERVl/+e). 

It follows that 

x(t) - U(h-(t)) 6 RVh 

so 

Therefore 

and a standard argument (Geluk and de Haan, 1987) allows the conclusion that 

I--F(u-) -_I 

I--F(t) -x 
A(t) 

+ Y(X) 

and with 

-c&/2 
p= l-0’ 

we get 1 - F E 2RV(-,,p) as claimed. 0 



Remark. Examining Theorem 4.2, one sees that (4.2) in fact holds in D(O.ix] and 
with q = H. 

We now discuss the relationship between asymptotic normality of Hill’s estimator 
and second-order regular variation. 

Theorem 4.3. Suppose 1 - F E R IL, und thut the ran Mises udition holds: F IUI.S 

LI tknsit~~ F’ strtisf~~~iny 

,im .uF’(x) 
I--X I -F(x) 

= x. 

&(Hx.,, - C’) =+ N(c,u2). (4.7 ) 

Proof. Suppose 1~ F E 2RV(-x, p) so that (1.2) holds. From Theorem 4.2, there exists 
I/ E R&J. L’(t) 4 x and with k = [U(n):] we have 

in D(0, x]. Applying Vervaat’s lemma (Vervaat. 1972) to the convergence 

Jis =+ W(x) + H(.x-’ “) 

in D[O, x), we get on taking inverses 

dx =+ -(W(x) + H(x-’ ‘)) 

and thus 

in D[O, X) and 

(4.X) 

(4.0) 

(4.10) 

(4.1 I ) 

in R,. In fact, (4.8), (4.10) and (4.11) hold jointly in D(O,x] x D[O,x) x R:. Ap- 
plying composition of the third and the first components of this joint convergence 
yields 
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in D(0, co] x [w. Remembering that H( 1) = 0, we get by addition 

d2 $2 ( ~Z,,Z,I+,,(X~ ml -P 
i=l ) 

=& $ i i=l 

“Z,/Z,i.I,(X, ml - (f$ ,) +qg-g-‘;) 
=+ W(P) + H(x) - x? W( 1) 

and so a continuous mapping argument (map x(.) H slW x(s)/s ds) yields (cf. Resnick 
and Staricl, 1997a) 

Note 

s 

(x. 

I 
H(x)? # 0 

and so the limit is normal with non-zero mean as required. 
Conversely, suppose (4.7) holds. From Davis and Resnick (1984) or Csiirgii and 

Mason (1985) we have 

and the convergence to types theorem yields 

(1 -f(s))? - ;) +c#O 

from which it follows that 

s,%E&-~ 

A(t) “c 

where A(t) is defined as in (4.6). Second-order regular variation then follows from the 
following proposition and the proof of Theorem 4.3 is complete. 0 

The following result is the second-order version of Karamata’s theorem. It is similar 
to the second remark following de Haan’s (1996) Theorem 1. 

Proposition 4.4. Suppose F is a distribution concentrating on [O,oo). Then 

1 -F E~RV(-cc,p) 

ifs there exists a function A(t) sutisfying A > 0, A(t) + 0 and A E RV, for some p <O 
such that 

lim s,=j++: 
t-CC A(t) 

+c#O, (4.12) 

where c is a non-zero constunt. 



Proof. Begin by assuming (4.12) and for specificity suppose that c >O. Then there 
exists a function V E RV, such that 

J,“(l ~ F(x))+ 1 

1 - F(t) 
= a + V(t). 

Thus 
I 

= (l ~- F(t))‘t = I 

x-1 I( v(t)’ 

So integrating from 1 to x gives for some k > 0 

ZL ds 
(1 - F(s))-=kexp 

s 

and therefore we get a representation for 1 - F, namely, 

k \ 
1 ~ F(x)= 

1 ds 

r-1 + V(X) exp r--I + V(s) s 

We may now use this representation to prove the second-order regular variation. We 
have for x > 1 

and writing 

x- + V(t) 
=1+ 

v(t) - V(tx) 

x-1 + V(tx) r-1 + V(tx) 

we get the second-order ratio in (4.13 ) equal to 

exp[cc JF * +] - 1 f- V(t)- V(tx) 
V(t) V(t)(x-’ + V(tx)) exp 11 = n-y1 + II]. 

Since V(t) 4 0, 

/’ 

\ xV(t.s) ds 

, 1 + aV(ts) s 
10 

and therefore as t ---) cc 

xV(t~) ds ~- 
l+zv(ts) s 

V(t) 

and 

II_+99) +%(I-x”). 
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So the limit of the second-order ratio is of the form 

k’x-’ 

as desired. 
Conversely, suppose 1 - FE 2RV(-2,~) so that (1.2) holds. Write 

J’ Oc (++ -S-“) ds 

A(f) = I A(t) S’ 
The result follows by applying dominated convergence to the integral on the right. For 
p = 0, this step is justified by Theorem 1.2O(ii) of Geluk and de Haan (1987) and for 
p < 0 the justification is Theorem 1.8 of Geluk and de Haan. ??
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