
386 Biophysical Journal Volume 101 July 2011 386–395

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Productive Cooperation among Processive Motors Depends Inversely
on Their Mechanochemical Efficiency
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and Michael R. Diehl†‡*
†Department of Bioengineering and ‡Department of Chemistry, Rice University, Houston, Texas
ABSTRACT Subcellular cargos are often transported by teams of processive molecular motors, which raises questions
regarding the role of motor cooperation in intracellular transport. Although our ability to characterize the transport behaviors
of multiple-motor systems has improved substantially, many aspects of multiple-motor dynamics are poorly understood. This
work describes a transition rate model that predicts the load-dependent transport behaviors of multiple-motor complexes
from detailed measurements of a single motor’s elastic and mechanochemical properties. Transition rates are parameterized
via analyses of single-motor stepping behaviors, load-rate-dependent motor-filament detachment kinetics, and strain-induced
stiffening of motor-cargo linkages. The model reproduces key signatures found in optical trapping studies of structurally defined
complexes composed of two kinesin motors, and predicts that multiple kinesins generally have difficulties in cooperating
together. Although such behavior is influenced by the spatiotemporal dependence of the applied load, it appears to be directly
linked to the efficiency of kinesin’s stepping mechanism, and other types of less efficient and weaker processive motors are pre-
dicted to cooperate more productively. Thus, the mechanochemical efficiencies of different motor types may determine how
effectively they cooperate together, and hence how motor copy number contributes to the regulation of cargo motion.
INTRODUCTION
Cytoskeletal motors are molecular machines that consume
ATP as fuel to produce the forces necessary to move vesic-
ular and protein cargos directionally within the viscous and
crowded environments of eukaryotic cells (1). These
proteins are therefore central to mechanisms that control
the spatiotemporal distributions of subcellular commodities
in the cytoplasm. Various microtubule motors are highly
processive and can transport cargos against piconewton-
sized forces and over micron-sized distances before disasso-
ciating from their filament, which suggests that they can
function efficiently when acting independently as single-
motor molecules (2,3). Nevertheless, processive motors
often operate in groups in vivo (4–6), which raises questions
regarding the extent to which collective motor dynamics
influences intracellular transport processes. Cells may rely
on the combined action of motors to surmount transport
challenges that require high-force production or long-
distance transport (7), and there is evidence that some trans-
port defects associated with motor mutations can be more
pronounced when cargo transport is driven by large numbers
of motors (8). Collective motor dynamics may also help to
regulate cargo motion (9,10). Many cargos move bidirec-
tionally because they are transported by multiple, oppositely
directed kinesin and dynein motors. Cells may tune the
number/ratio of kinesins and dyneins such that one motor
team has a net advantage over the other in controlling the
direction in which these cargos are transported (10,11).
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The role played by multiple-motor dynamics in intracel-
lular transport naturally depends on the extent to which
grouping motors together enhances their transport proper-
ties (i.e., increased force production, velocity, or cargo-fila-
ment affinity compared with single-motor molecules). Until
recently, it has been challenging to characterize these depen-
dencies because it is often difficult to determine the number
of motors that are bound to moving cargos. However,
several groups have developed experimental methods to
facilitate more-detailed studies of the impact of motor
number and various biochemical and mechanical factors
on cargo transport (12–15). In two of these studies, our labo-
ratory examined the collective dynamics of structurally
defined motor complexes composed of two kinesin-1 mole-
cules (14,15). This work showed that two interacting kine-
sins generally do not transport cargos over the distances or
produce the forces that would be expected of a cooperative
team. Instead, despite kinesin’s efficiency and high proces-
sivity, kinesin complexes tend to transport their cargos while
primarily using only one motor at a time (i.e., the motors
seem to cooperate negatively).

Although the weak dependence of cargo transport on ki-
nesin copy number can be attributed to geometric effects
that reduce the ability of multiple motors to share their
applied loads (15,16), it is unclear why such effects are so
pronounced for multiple kinesins. When transporting
a cargo, motors can bind to a range of different filament
lattice sites, many of which are positioned far apart from
one another (tens of motor step-size units). Yet, load sharing
only occurs if motors occupy closely spaced microtubule
lattice site positions. To cooperate productively, trailing
kinesins therefore face the challenge of catching up to their
doi: 10.1016/j.bpj.2011.05.067
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FIGURE 1 Stepping, binding, and detachment transitions enumerated in

the discrete-microstate model. (A) Illustration depicting a two-kinesin

complex in a specific bound configuration; on-microtubule spacing ¼
32.8 nm, on-bead spacing ¼ 50 nm, Fap ¼ 5 pN. (B) Reaction coordinates

used to calculate two-state motor stepping rates. Substeps involve displace-

ments both along and perpendicular to the microtubule axis. For stepping

mode A, the positions of transition states (TSn) for each substep and the

intermediate state (IS) correspond directly to those reported by Fisher

and Kim (23). For stepping mode B, the position of the second transition

state (TS2) was moved toward the final microtubule lattice site position

(xiþ1). This alteration caused the forward stepping rate to decrease more

rapidly with increasing load. (C) Illustration of microstate transitions

involving motor binding and detachment.
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continually advancing leading partners before either motor
releases from the microtubule. Naturally, a motor’s microtu-
bule-bound lifetime will influence this process (16).
However, both the mechanical (elastic) and mechanochem-
ical properties of motors are known to vary nonlinearly with
force, and the evolution of a motor complex’s microtubule-
bound geometry should also depend on interdependent rela-
tionships between these properties. Furthermore, the applied
loads imposed on cargos in cells may either be relatively
static or highly dynamic, as is the case when antagonistic
motors compete and stretch their cargos (11,17). In the latter
circumstance, the role of loading rates must also be consid-
ered. Thus, understanding the cooperative dynamics of
multiple kinesins, as well as other processive motor types,
will ultimately require detailed and accurate parameteriza-
tion of transport models to account for competing factors
that influence their dynamics.

Herein, we present a model of multiple motor dynamics
that predicts a cargo’s load-dependent transport properties
from detailed measurements of single-motor velocities,
detachment rates, and elasticities. Using these data, one
can account for single-motor stepping behaviors, load-
rate-dependent kinetics describing motor-filament detach-
ment, and strain-induced stiffening of motors and their
resultant nonlinear, force-dependent elasticities. As a test
case, we examined the transport properties of our structur-
ally defined two-kinesin complexes (15). Our model repro-
duces key signatures found in optical trapping experiments,
in particular the observation that multiple-kinesin transport
is driven primarily by a single, unassisted motor molecule.
Although this behavior arises from generic kinetic and
geometric constraints that affect multiple-kinesin dynamics
in a variety of transport scenarios, the model also predicts
that this behavior is influenced by spatiotemporal properties
of the applied load in a static trap. In contrast, processive
motors whose stepping mechanism is less efficient than
kinesin’s are found to cooperate more productively regard-
less of whether they experience variable or constant loads,
and even though the geometric constraints that cause
multiple kinesins to cooperate negatively still apply. There-
fore, the sensitivity of cargo transport to motor copy number
appears to depend inversely on the efficiency of a motor’s
mechanochemistry.
DISCRETE-MICROSTATE MODEL

General modeling procedure

In the model presented here, we examine the progression of
cargos against applied loads by computationally solving
a system of master equations that describe the time-depen-
dent transitions of multiple-motor complexes between
different microtubule-bound configurations, or microstates
(Fig. 1). The forces in each microstate are expected to be
balanced because all of the linkages are assumed to reach
their mechanical equilibrium rapidly relative to the time
between the stepping (15,18,19), binding, and detachment
events that drive the system from one microstate to the
next. The rate at which a motor complex transitions between
microstates depends on the difference in the stored mechan-
ical energy of the final and initial configurations of the
system (DEconfig), which we calculate using our previously
described mechanical modeling/energy minimization proce-
dure (15). Below, we describe how these energies and tran-
sition rates are calculated from fits to single-kinesin optical
trapping data. A complete description of the modeling
procedure is provided in the Supporting Material.
Defining the microstate energies of multiple-
motor systems using single-kinesin stiffness data

In our previous study (15), we determined the force-depen-
dent elasticity (stiffness) of a kinesin motor from power
Biophysical Journal 101(2) 386–395
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spectral analyses of bead positional fluctuations along the
microtubule axis (x axis). These data are not a direct
measurement of the motor’s stiffness; rather, they serve as
a projection of the motor’s axial stiffness along the microtu-
bule axis (if stretched from head to tail), and hence the
measured stiffnesses are influenced by the angle between
the motor’s stalk and the microtubule. We therefore fit the
data to a function kM(lax) describing the stiffness of a single
kinesin via a regression routine that uses the mechanical
model to determine the vectorial component of kM(lax)
along the microtubule axis (i.e., the projection kM,x(lax))
over a range of applied loads. The unstretched head-to-tail
length of the motor (lo) is assumed to be 50 nm. We find
that kM(lax) can be approximated by a sigmoid function,
which may reflect the fact that the kinesins are anchored
to the beads via multiple mechanical elements.

The fitted function kM(lax) allows the effects from strain-
induced stiffening of motor linkages (Fig. 2 A) (15,20) to be
accounted for in our calculation of Econfig. The configura-
tional energy of a microstate is the sum of the potential
energy of the bead in the trap and the work required to
stretch each motor from its unstrained length (lo) to the
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FIGURE 2 Parameterization of motor elasticity, stepping, and detach-

ment kinetics. (A) Experimental measurements and a best fit describing

the force-dependent elasticity kM,x(lax) of the single-kinesin construct that

is incorporated into the multiple-motor systems (15). (B) Single-motor

F-V curves determined via a best fit of the kinesin-1 optical trapping data

using stepping mode A (solid line) and the corresponding curve calculated

for motors that advance via stepping mode B (dashed line). (C) Single-

kinesin detachment rates measured in an optical trap. Best fits are shown

using a two-state detachment model describing load-rate-dependent motor

unbinding (solid line), the corresponding steady-state detachment behavior

(dashed line), and Kramer’s theory (dotted line).
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extended length (lax) found in the force-balanced microstate
configuration:

Econfig ¼ 1

2
kTðxT � xbÞ2þ

X
M

Zl0þDlax

l0

k*FMk dl; (1)

where kT is the spring constant of the trap, (xT – xb) is the
displacement of the bead from the trap center,

*
FM is the

force pointing along the stalk of that motor from its attach-
ment site on the bead to its microtubule-binding site, and
Dlax is the magnitude of a motor’s extension from its
unstretched length (l0).
Modeling configuration-dependent motor
stepping rates

Even if the loads experienced by a motor are the same, the
angle between its stalk and the microtubule can differ
greatly when cargo transport is driven by a single motor
and multiple motors. Because stalk angles affect motor
velocity (21,22), one should calculate the motor stepping
rates using a model that accounts for the work done against
vectorial loads. The model developed by Fisher and Kim
(23) assumes that kinesin’s forward and backward stepping
motions consist of two separate biochemical transitions
(substeps) corresponding to displacements of the molecule
in two dimensions (x and z). Because the substeps involve
motions of the molecule perpendicular to the axis of the
microtubule (Fig. 1 B), loads in this direction influence
the stepping rates. The position of the transition state in
each substep determines the splitting of the work done along
the reaction coordinate between the forward and reverse
transitions. For each transition, conservation of energy
allows thework to be calculated from the difference inEconfig

from the beginning to the end of the motor stepping path via
the following equations:

uþ ¼ u0þe
�DEconfigði/TS1;iÞ=kbT ;

uþþ ¼ u0þþe
�DEconfigðISi/TS2;iÞ=kbT (2)

0 �DEconfigðISi/TS1;iÞ=kbT
w ¼ w e ;

w ¼ w0 e�DEconfigðiþ1/TS2;iÞ=kbT : (3)

In these equations, u and w refer to forward and backward
substep transition rates, respectively, as defined in
Fig. 1 B. The notation i / TS1,i indicates a partial step of
the motor from position i to the transition state at TS1,i, so
that DEconfig(i / TS1,i) ¼ Econfig(TS1,i) � Econfig(i). From
these rates, effective full-step transition rates and average
motor velocities can be calculated:

u ¼ uþ � uþþ
uþ þ uþþ þ w þ w

(4)
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w � w

w ¼

uþ þ uþþ þ w þw
(5)

VM ¼ d � ðu� wÞ; (6)
where d is the total step size of the motor molecule (d ¼
8.2 nm for kinesin).

Assuming that motors step asynchronously, we calculate
their load-dependent stepping rates using the predetermined
DEconfig values that describe transitions of motor complexes
between different microtubule-bound configurations as
each motor proceeds through all of its substep transitions,
without any movement of the other motors. Thus, the
only difference between this treatment and that of single-
motor molecules is that some of the change in configuration
energy is stored in the motor’s partner(s) according to the
definition of Econfig.
Specifying distinct motor stepping behaviors

To specify kinesin’s stepping rates, we assume that the posi-
tions of kinesin’s stepping intermediate (IS) and transition
(TS1 and TS2) states correspond to the values previously
reported by Fisher and Kim (23) (stepping mode A in
Fig. 1 B). The forward and backward stepping rates were
determined from fits to measured single-kinesin optical
trapping data (Fig. 2 B). Here, we used our mechanical
modeling procedure to calculate force-dependent DEconfig

values for a single motor moving along its stepping path
through each IS and TS position. We then approximated
the single-kinesin data using a generic fitting algorithm,
with the unloaded transition rate prefactors in Eqs. 2 and
3 used as fit parameters. This is likely the most appropriate
adaptation of the motor stepping model for the analyses
presented here. Our truncated kinesin-1 constructs should
possess the same basic stepping mechanism as wild-type
kinesins, but their zero-load, substep transition rates describe
all other biochemical aspects of the reaction, which could be
affected by other experimental factors.

The single-kinesin F-V fit presented in Fig. 2 B shows
reasonable agreement with the measured trend and
yields unloaded motor transition rates that reflect kinesin’s
strong directional bias: ðu0þ ¼ 1:59� 1014; u0þþ ¼ 61:7;
w0¼ 0:654; w0 ¼ 1:69Þ. To evaluate how the curvature of
a motor’s F-V relationship influences multiple-motor behav-
iors, we also generate an F-V curve for motors that possess
a slightly modified stepping reaction coordinate (Fig. 1 B,
stepping mode B), such that the position of the second tran-
sition state TS2 in the original coordinate is moved toward
the final lattice site of the step (i þ 1) by a distance of
3.0 nm. This alteration increases the amount of work per-
formed during the second forward substep, and primarily
increases the sensitivity with which the composite forward
stepping rate decreases with increasing load (24). Using
the unloaded stepping rates obtained via single-kinesin
fits, such behavior produces the concave upward F-V curve
plotted in Fig. 2 B.
Microstate transitions via motor detachment
and binding

Average motor-microtubule detachment rates are commonly
assumed to follow a load dependence described by Kramer’s
theory: koff ¼ k0off expðFap,Dsd=kbTÞ, where Dsd is the
distance a motor must move to release from the microtubule.
However, this function does not reproduce our measure-
ments of single-kinesin detachment rates (Fig. 2 C, dotted
line, and Fig. S1 A). This disagreement likely stems from
the time dependence of the applied load in the static
trapping experiments (bond affinities between biomacromo-
lecules typically increase with increasing loading rate) (25).
Furthermore, we find much weaker agreement between our
theoretical and experimental data when motor detachment is
parameterized using this fit (Fig. S2 B). To address this, we
treat motor-microtubule detachment as a two-state process
that occurs along a reaction coordinate possessing two
different energetic barriers (Fig. S1). We determine the
barrier heights and positions of the coordinate’s interme-
diate and transition states by fitting single-kinesin detach-
ment data using a procedure that solves a system of rate
equations that describe the time-dependent probability that
a motor will occupy each of these states.

Because the above treatment allows a reaction coordinate
describing motor detachment to be approximated, we can
calculate detachment rates for various transport scenarios
in which motors may experience different loading rates.
For example, if the loading rate is negligible, the model
predicts that motors will detach much more rapidly than
the rates measured in the trapping assays (Fig. 2 C, dashed
line).

Capturing the load-rate dependence of detachment transi-
tions for multiple-motor systems ultimately requires
detailed and cumbersome simulations to calculate the prob-
ability that a motor will occupy the different intermediate
states along its unbinding reaction coordinate. These proba-
bilities depend on the time-dependent progression of the
loads motors experience as they bind and step along the fila-
ment, and hence the different trajectories taken by motors
within a multiple-motor system. Nevertheless, one can
approximate the influence of load rate by considering the
generic constraints that dictate load-sharing behaviors. For
example, the loading rate experienced by a motor will
depend not only on how fast the bead moves and the trap’s
spring constant, but also on how load distributions within
the complex shift in time. In general, the load assumed by
a trailing motor will increase slowly because this motor
has to catch up to the leading motor in the complex to
take on the applied load. Analogously, the associated shift
in the transport burden from the leading to the trailing motor
can decrease the loading rate experienced by the leading
Biophysical Journal 101(2) 386–395
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FIGURE 3 Predicting two-kinesin behaviors in an optical trap. (A) Histo-

grams describing the force-dependent detachment distributions for the two-

kinesin complex. Bin amplitudes are normalized by the peak bin in the

cumulative histogram (gray). (B) The probabilities that a two-kinesin

complex will adopt load-bearing microstates (red line) and nonload-bearing
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motor; loads can even decrease on this motor. At low
applied load, detachment rates for both motors will there-
fore tend toward the load-rate-independent detachment
curve in Fig. 2 C instead of the fitted (load-rate-dependent)
function. Yet, at high loads, we expect shifts in load distri-
butions to affect multiple-motor dynamics to a lesser
degree; in this regime, cargo transport necessitates load
sharing. These considerations are important for approxi-
mating the observed detachment force and rate dependen-
cies (see Section S5), and they allow the development of
a much simpler model of multiple-motor dynamics that
incorporates load-rate-dependent effects.

Unloaded motor-microtubule binding rates were assigned
their previously reported values (kon[1/2](Fap¼0)¼ 4.7 s�1).
However, as in our earlier discrete state transition-rate model
(26), these rates depend on the difference in the configuration
energies of a motor complex before and after individual
motors bind the microtubule filament. These energy differ-
ences are calculated via the same procedure used to deter-
mine DEconfig for motor stepping and detachment. Of note,
motor binding rates are now also influenced by forward
bead displacements that arise from shifts of load distributions
between the microtubule-bound motors within a complex,
and are reduced by the work required to produce these
displacements.
microstates (blue line) as a function of applied load. Optical trapping data

are presented as triangles. The load-bearing probabilities are calculated

as the fraction of beads at a given force that are driven by two microtu-

bule-bound motors, each bearing at least 35% of the applied load. The

nonload-bearing population fraction consists of both single- and two-

motor-bound populations that do not meet this load-sharing criterion. A

velocity distribution Fap ¼ 5 pN is also provided; the color code is identical

in each plot. (C) Average bead velocities for single kinesins (red line) and

a two-kinesin complex (blue line). (D) Calculated average motor binding

(kon[1/2]) and detachment (koff[2/1]) transition rates. Experimentally

measured two-kinesin velocities and detachment rates are indicated by

the blue circles in C and D.
RESULTS AND DISCUSSION

Comparisons between theory and experiment

When our model is parameterized by the fits to our single-
kinesin-1 data, it reproduces several key results found in
our previous optical trapping studies of two kinesins (15).
First, two-kinesin complexes most commonly detach at
forces near the 7 pN stalling force of a single-kinesin motor
(Fig. 3 A). These distributions are qualitatively similar to our
measured detachment force distributions. However, one
should be cautious when making comparisons between the
measured and predicted detachment behaviors of multiple-
motor complexes because they can detach partially during
a single run before full detachment occurs, and the experi-
menter’s choice of which events are counted can influence
the resultant detachment force distributions and interpreta-
tions. Therefore, in Fig. 3 A we break down these detach-
ment events into those caused by the release of a leading
(gold), trailing (blue), or singly bound motor (red) within
a complex, and also show them as the sum of all events
(gray). This distribution shows that both partial and full
complex detachments are most prevalent at or near the stall-
ing force of a single kinesin.

In a characterization of how effectively motors cooperate,
the central issue is the amount of time in which cargo trans-
port is driven by one motor within a complex compared with
the time in which two (or more) load-bearing motors drive
transport. Our previous velocity analyses allowed us to
Biophysical Journal 101(2) 386–395
measure these times and the associated microstate probabil-
ities. Predictions from the model presented here approxi-
mate our observed trends when it is assumed that, to
exhibit load-sharing behavior, both motors must bear at least
35% of the applied load (Fig. 3 B). Here, the force depen-
dence of microstate probabilities appears to reflect the
progression of a motor complex in the optical trap. In our
calculations, bead transport starts with the binding of
a single-motor molecule. As the simulation progresses, the
second motor binds and the probability that the system
will adopt microstates with a single load-bearing motor
decreases until the applied load reaches 2 pN. Our experi-
mental analyses cannot be performed in this force regime.
However, as found experimentally, the probability that the
system will adopt a single-load-bearing motor microstate
increases between applied loads of 2 and 7 pN. This indi-
cates that two-kinesin complexes do not adapt well to
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FIGURE 4 Microstate distributions and their dependence on stepping

mode. (A) 2D plots showing the probability that a two-kinesin complex

will adopt specific two-motor-bound configurations (top) at various time

points when transporting cargos against the increasing load of an optical

trap. Microstates are designated by the microtubule-bound positions of

each motor; i and j are the lattice site positions of motors 1 and 2, respec-

tively. Intensities along the diagonal represent microstates in which motors
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1–7 pN in increments of 1 pN. The inset in each plot displays the probability

that a complex will adopt a load-sharing microstate (better than 35/65 split-

ting the applied load). (B) The equivalent plots for complexes composed of

mode B motors.
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increasing loads in this regime, and do not cooperate by
occupying load-sharing microstates in which motors are
bound close together on the microtubule.

Similar agreement between experiment and theory is
found in analyses of average bead velocities and two-motor
detachment rates at low applied loads, providing additional
verification that the model captures the extent of load sharing
in this region (Fig. 3 C). Average cargo velocities follow the
single-kinesin F-V relationship closely up to 7 pN, after
which there is a dramatic increase in bead velocity.

As in our static trapping experiments, the transition
rate describing the partial detachment of a complex,
koff[2/1](Fap), is nonmonotonic and has a peak near the
peak detachment force of the two-motor complex
(Fig. 3 D). Although this feature persists regardless of our
treatment of how loading rates affect motor detachment,
the best agreement with the data is found when the influ-
ences of load-rate-dependent effects are distinguished based
on the status of the motor as described in the Materials and
Methods section (Fig. S2 and Fig. S3). This result further
justifies our motor detachment fitting approach, but also
illustrates that two-kinesin transport against the increasing
load of the static trap is much more complicated than that
of a single-motor molecule. In this case, one must consider
the interrelationships among loading rates, load distribu-
tions, cargo velocities, and motor detachment to correctly
describe cargo detachment behaviors.

In the vicinity of the koff[2/1](Fap) peak, measured
detachment rates are significantly higher than those pre-
dicted if it is assumed that motors share their load equally
(i.e., koff[2/1](Fap) ¼ 2*koff[1/0](Fap/2)) and that motor
detachment is parameterized using the highest possible
(load-rate-independent) curve in Fig. 3 D (the gray dashed
curve). Such rates therefore provide strong evidence against
load sharing, and further support the notion that when the
static trap’s load is smaller than kinesin’s stalling force,
cargo transport by a two-kinesin complex is primarily driven
by one motor at a time.

Despite their agreement at low applied loads, there are
still some significant differences between our experimental
measurements and current model predictions. Measured
two-kinesin velocities are appreciably higher than their
calculated values above 7 pN (Fig. 3 C). Previous analyses
of bead displacement sizes indicated that the motors may
coordinate/synchronize their stepping mechanics at large
applied loads (15), and this behavior is not incorporated
into the model presented here. One would expect such posi-
tive (synergistic) cooperation to depend on the separation
distance between motors on the microtubule (e.g., if this
behavior stems from specific local intermotor interactions).
Our model predicts that motors within the two-kinesin
complexes will bind to closely spaced microtubule lattice
sites at forces beyond the stall force of a single kinesin
(Fig. 4 A). Such behavior is necessary to support the type
of cooperation that may be occurring in our experiments,
and thus the model’s framework could be used to explore
these effects.

We also examined how multiple-kinesin dynamics is
influenced by the positions of the motors on the cargo
(bead) and the presence of a third motor molecule
(Fig. S4 and Fig. S5). In both cases, the detachment force
distributions and cargo velocities follow the same trends
predicted for the two-kinesin complexes. This implies that
the deviations between predicted and measured two-kinesin
velocities at high forces cannot be explained simply by
Biophysical Journal 101(2) 386–395



392 Driver et al.
variability in the structure of our complexes or the presence
of a third motor. Of interest, the calculated three-kinesin
velocities are only slightly higher than those produced in
two-kinesin simulations between 7 and 12 pN, and, as
with the two-motor systems, three-kinesin velocities exhibit
a load dependence that suggests these complexes will not
employ all of their motors until the applied load exceeds
twice the stalling force of a single kinesin. Given this result,
we do not anticipate that effects from the coordination
between locally grouped motors described above would
yield significant differences between two- and three-kinesin
velocities at high loads (7–14 pN). This is because, to
contribute to cargo motion, the third kinesin would face
an even more formidable challenge of chasing down two
synergistically coupled motor partners.
Evolution of microstate densities and their
load-rate dependencies

The apparent inability of two kinesin motors to cooperate
effectively is surprising, particularly considering the extent
of the behavior and the resultant dependencies of the cargo
velocities and detachment rates on the applied load. The
unstrained binding rate of the second motor in the system
(<kon[1/2](Fap ¼ 0) > 4.7 s�1) greatly exceeds its detach-
ment rate (0.31 s�1), suggesting that, from a thermodynamic
point of view, two-motor-bound configurations of the
system should be more prevalent than single-motor-bound
configurations. However, the extent to which multiple-kine-
sin dynamics is also influenced by the spatiotemporal
dependence of the applied load in the static trap must also
be addressed. To explore this issue, we examined the
dynamics of two-kinesin complexes while they transported
cargos against a constant load (mimicking trapping assays
employing force-feedback).

Comparisons of cargo transport by two kinesins against
increasing (static trap) and constant (force-feedback) loads
revealed both significant similarities and differences
between these two transport scenarios. In both cases, the
average microtubule binding rates <kon[1/2](Fap)>
decrease with increasing load (Fig. 3 D; Fig. S5 B). Thus,
the energetic costs (DEconfig) associated with binding transi-
tions influence transport significantly in both circumstances.
Overall, this constraint creates a strong preference for
unbound motors to bind microtubule sites positioned far
behind the leading motor. Such behavior is reflected in
microstate probability distributions describing how often
a two-motor complex will occupy different two-motor-
bound configurations (Fig. 4 A). For both the increasing-
and constant-load cases, intermotor separation distances
are relatively large and broadly distributed below kinesin’s
stall force. Given the widths and similarities of these distri-
butions, it is not surprising that much of the negative coop-
erative behavior observed in the static trapping experiments
is also found in the constant-load simulations, implying that
Biophysical Journal 101(2) 386–395
kinesins will not necessarily cooperate more productively
when loading rates are negligible.

Despite the similarly weak response of bead transport to
kinesin number in both cases, there are still several impor-
tant differences between the static trap and constant-load
simulations. Most strikingly, neither the rapid changes in
bead velocities at kinesin’s stall force nor the nonmonotonic
dependence of koff[2/1] in the static trap are reproduced in
the constant-load simulations (Fig. S5). Accordingly, there
are significant differences in how the probabilities of two-
motor-bound and load-sharing microstates change with the
applied load for each simulation (Fig. 4 A and Fig. S6 A).
The rapid increase in load-sharing microstate probabilities
at kinesin’s stalling force observed in the static trap is not
found when applied loads are held constant. Furthermore,
load-sharing microstates are more probable in constant-
load simulations at low applied loads, but much less prob-
able at high applied loads. Note that in addition to this
behavior, the probability that both motors will be fila-
ment-bound decreases gradually with increasing load. Over-
all, these differences indicate that the two-kinesin
complexes cooperate more effectively when cargo transport
occurs against constant applied loads that are small.
However, this behavior changes at high applied loads, and
more-productive cooperation via load sharing is actually
predicted for the static trap.

The above comparison between static-trap and constant-
load simulations highlights significant mechanistic differ-
ences between cargo transport by single kinesins and
multiple-kinesin complexes. As indicated by our detach-
ment rate fits (Fig. 2 C), motor-filament affinities are typi-
cally enhanced when single motors transport cargos
against variable (time and spatially dependent) applied
loads because they cannot relax (i.e., advance along their
unbinding reaction coordinate) fast enough to keep up
with the changing load. However, several new pathological
factors determine how the multiple-motor dynamics is influ-
enced by the spatiotemporal dependence of an applied load.
For example, the partial detachment of a multiple-motor
complex is accompanied by a backward displacement of
the cargo to a new, lower force in the static trap. This
process therefore raises the average number of bound
motors at high forces and lowers it at low forces, and in
turn contributes significantly to the discontinuities/nonmo-
notonic behavior (of <v> and koff[2/1]) observed in the
static trap. Furthermore, the measured detachment force
distribution and koff[2/1] trend cannot be reproduced
when motor detachment rates are parameterized by the
single-motor (load-rate-dependent) fit. Here, our analyses
indicate that time-dependent changes in load distributions
tend to lower the loading rates experienced by the motors
when the applied load is small, and hence the affinity
enhancements found in single-motor assays will not influ-
ence multiple-motor dynamics. Together, these effects can
actually result in decreased cargo-filament affinities relative
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to constant-load behaviors despite the presence of a nonzero
loading rate. Finally, the energetic costs associated with
motor binding appear to accentuate these effects by creating
a tendency for motors to attach to lattice sites positioned
well behind their bound partners. Thus, the rate at which
separation distances between motors evolve in time will
be critical for determining how multiple motors respond to
variable applied loads.
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Motor mechanochemistry tunes collective
motor function

To assess how the stepping behaviors of processive molec-
ular motors influence their collective dynamics, we also
performed the above analyses for complexes composed of
less-efficient motors that advance via stepping mode B
(Figs. 1 B and 2 B). Here, the mode B motor’s elastic prop-
erties and zero-load stepping rates correspond to those
determined from our single-kinesin assays. However,
because the motors now move much more slowly against
the applied load of the trap, motor detachment is assumed
to follow the load-rate-independent curve in Fig. 2 C.

Despite the assumption of increased motor-microtubule
detachment rates, the alteration to kinesin’s stepping mech-
anism introduced in mode B results in more effective
multiple-motor cooperation than is observed with kinesins
(Fig. 4 B, Fig. S6 B, and Fig. S7). The microstate probabil-
ities are much more narrowly distributed, and configurations
that should support load sharing are much more prevalent,
even at early time points. Similar behavior is produced in
constant-load simulations. Motor-microtubule binding rates
still decrease with increasing force in both cases. However,
the curve describing the average motor-filament detachment
rates (<koff[2/1](Fap)>) does not contain a peak, and simply
increases monotonically while following the equal-load-
sharing trend much more closely (Fig. S5 B). In turn, such
behavior results in a stronger dependence of cargo detach-
ment forces and average velocities on motor number
(Fig. S7).

The enhanced load-sharing ability of mode B motors indi-
cates that although the high sensitivity of forward stepping
rates to increasing load generally reduces the efficiency of
individual motors under load, it actually assists in
multiple-motor cooperation. This effect largely stems from
the greater differential (proportionally) in motor velocities
between leading (primary-load-bearing) and trailing (non-
or weakly participating) motors, meaning that the rate at
which the distance between the motors closes is greater
with respect to the rate at which the cargo advances against
the increasing load. To explore this issue, we tracked the
temporal evolution of average cargo velocities under
constant load after microstate distributions were allowed
to reach their steady state at one force and then were sub-
jected to an instantaneous increase of 1 pN in the applied
load. After this jump, cargo velocities relaxed to their
steady-state levels at the increased load in an approximately
exponential manner that could be fit to yield an exponential
time constant (Supporting Material). Although the absolute
relaxation time constants (Fig. 5 A, left) are larger (longer)
for stepping mode B than for mode A, they are shorter
when normalized by the average time that it takes the cargo
to advance forward a distance of 8.2 nm (Fig. 5 A, right).
This means that when teams of motors with mode B step-
ping mechanics work against variable loads, they will be
more capable of optimizing their intermotor separation
distances before the load changes, and therefore defines
a new optimum configuration. Moreover, the normalized
relaxation time constants decrease monotonically for
mode B motors, whereas mode A motors display a peak at
8 pN, which is close to the force where the largest discrep-
ancy between the steady-state and static-trap distributions is
found. This result strongly suggests that motors that advance
via mode A (kinesin-1) are frustrated kinetically from
assuming microtubule-bound configurations in which they
share their applied load, and that such behavior significantly
hampers the function of the two-motor complex.

To further survey how multiple-motor cooperativity
depends on the properties of a processive motor’s stepping
and detachment reaction coordinate, we examined how
average two-motor detachment forces and cargo velocities
depend on both the position of TS2 along a motor’s stepping
coordinate (which tunes motor stepping efficiency against
Biophysical Journal 101(2) 386–395
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an applied load) and its critical detachment force (Fd),
which, as defined in the single-state Kramer’s model, tunes
a motor’s microtubule-bound lifetime (Fig. 5 B). Although
such analyses rigorously require more-exact treatments of
motor detachment kinetics, we chose to use the single-state
model because it simplifies the calculations. Furthermore, to
facilitate comparison between motor types, we normalized
the two-motor detachment forces and cargo velocities (at
a constant load of 5 pN) by the average detachment
forces/velocities of their single-motor counterparts. Plots
of these values show that the weakest cooperative behavior
(Fpeak(2)/Fpeak(1)¼ 1; n 2/n1¼ 1.0) occurs when the stepping
and detachment reaction coordinates approximate those ex-
pected for kinesin-1 (the corner of the plot near the origin).
As suggested by our mode B motor simulations, there is
a persistent increase in detachment/velocity enhancements
over single motors as they become less efficient (as the loca-
tion of TS2 moves away from the initial motor position on
the stepping coordinate). Also, not surprisingly, motors
that remain attached to the microtubule more tenaciously
(large Fd) also cooperate more effectively. Thus, both char-
acteristics should allow motor teams to share the applied
load more equitably, because to accomplish this, a trailing
motor must catch its leading partner before either detaches.
However, what is striking is that a motor’s stepping mecha-
nism is equally as important as (and potentially even more
important than) its detachment behavior in determining
collective motor function.
CONCLUSIONS

We developed a theoretical framework that allows one to
parameterize the collective dynamics of multiple-motor
complexes using fits to single-motor optical trapping data
nearly exclusively. All floating parameters are determined
from single-kinesin fits, except for the unloaded motor-fila-
ment binding rate. With this treatment, differences between
configuration-dependent strain energies of the complexes
can be calculated and used to specify transition rates that
determine how rapidly a complex’s filament-bound geom-
etry evolves in the presence of an applied load.

Although the deviations from measured multiple-kinesin
velocities at loads exceeding kinesin’s stall force suggest
that motor coordination must be considered to describe
multiple-kinesin dynamics at high loads, most model
predictions support the idea that geometric and kinetic
constraints largely limit how effectively a group of kinesins
can cooperate as a team. Overall, it is difficult for multiple-
kinesin complexes to adopt microtubule-bound configura-
tions that support load sharing, both when loads increase
in time and when they remain constant. However, these
difficulties are exacerbated at low applied loads (Fap <
7 pN) by dynamic effects associated with the spatial and
temporal dependence of the loads that multiple-kinesin
complexes experience. Such effects could not be delineated
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in our previous experimental analyses, and were overlooked
because motor-filament affinities are normally expected to
increase when loading rates are appreciable. However, the
results presented here show that unique load-rate dependen-
cies can be produced when cargos are transported by teams
of processive motors, and that the time it takes for a motor
complex’s microtubule-bound geometry to evolve in
response to a load plays a critical role in determining the
forces and velocities produced by the system.

One might expect a group of fast and efficient motors
like kinesin to be able to cooperate effectively when trans-
porting cargos because they should be able to adjust their
bound geometry rapidly via motor stepping. However, we
find that less-efficient processive motors whose velocities
drop more rapidly with increasing load are actually more
capable of cooperating productively. Even though the abso-
lute relaxation time of such motor systems is longer than
those calculated for multiple kinesins given the same elastic
load (the trap’s spring), the applied load on the cargo does
not increase as rapidly in this case. Consequently, less-effi-
cient motors not only possess microstate distributions at
steady state that lead to better load-sharing behaviors,
they also have more time to adjust their bound geometry,
and hence can develop load-sharing configurations more
readily.

The differences between the collective motor behaviors
described above may have important implications for
mechanisms that regulate cargo motion. First, they suggest
that motor stepping efficiency can distinguish how sensi-
tively cargo transport depends on the number of processive
motors grouped together on a cargo. Furthermore, motor
stepping efficiencies may play a role in bidirectional trans-
port, where oppositely directed teams of kinesin and dynein
compete antagonistically to drive cargo motion. In this
case, the direction and magnitude of the applied load will
change in time as the number of motors competing against
each other changes, and because the cargo itself will be
deformed (stretched) during this process (11,17). Further-
more, there is evidence that dynein stalls at significantly
lower forces than kinesin (11). This inefficiency is consis-
tent with observations that dynein’s stepping patterns are
much more irregular than kinesin’s (backward stepping
influences dynein’s average F-V) (27). Thus, although
more dyneins will be required to produce the forces of
a single kinesin, a team of inefficient dyneins should still
be able to compete with a stronger kinesin team because
of the former’s greater ability to cooperate effectively.
With this behavior, the number of dyneins, but not kinesins
(beyond binary responses), would serve as a regulator of
bidirectional transport. To date, dynein’s mechanochem-
istry has not been characterized in detail, and hence con-
firming such ideas requires further investigation.
Nevertheless, the experimental and theoretical advances
described here should provide a framework for investi-
gating such behavior.
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Five sections, seven figures, and references are available at http://www.
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