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a b s t r a c t
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establish an easily verifiable criteria for the existence of at least four positive periodic
solutions for a discrete time delayed predator–prey systemwith nonmonotonic functional
response and harvesting.
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1. Introduction

The dynamic relationship between predators and their prey has long been and will continue to be one of the dominant
themes in both ecology andmathematical ecology due to its universal existence and importance [1]. Since so, it has attracted
many scholars’ attention, and many authors have studied this class of models in the literatures, see [2–11]. Generally
speaking, the traditional Lotka–Volterra type predator–prey model with ratio-dependent functional response is described
as follows:

x′(t) = x[a− bx] − cyg(x/y),
y′(t) = y[−d+ fg(x/y)], (1.1)

where x(t) and y(t) stand for the densities of the prey and predator, respectively, a, c, d, f are the prey intrinsic growth rate,
capture rate, death rate of the predator, the conversion rate, respectively, a/b gives the carrying capacity of the prey, g(u)
is the functional response function. Since realistic models require the inclusion of the effect of changing environment and
delays, this motive us to consider the following nonautonomous ratio-dependent predator–prey system with delays:

x′(t) = x(t)[a(t)− b(t)x(t)] − c(t)y(t)g
(
x(t)
y(t)

)
,

y′(t) = y(t)
[
−d(t)+ f (t)g

(
x(t − τ(t))
y(t − τ(t))

)]
,

(1.2)
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where τ(t) denotes the delays in the conversion of prey to predator. In particular, considering (1.2) with Monod–Haldane
nonmonotonic functional response (i.e. g(u) = u

m2+u2
, see [2]), we obtain the following delayed predator–prey system:

x′(t) = x(t)
[
a(t)− b(t)x(t)−

c(t)y2(t)
m2y2(t)+ x2(t)

]
,

y′(t) = y(t)
[
f (t)x(t − τ(t))y(t − τ(t))
m2y2(t − τ(t))+ x2(t − τ(t))

− d(t)
]
.

To make the model more realistic, now we consider the harvesting rate of prey in the above model and get the following
model:

x′(t) = x(t)
[
a(t)− b(t)x(t)−

c(t)y2(t)
m2y2(t)+ x2(t)

]
− h(t),

y′(t) = y(t)
[
f (t)x(t − τ(t))y(t − τ(t))
m2y2(t − τ(t))+ x2(t − τ(t))

− d(t)
]
.

(1.3)

In this paper, we will consider a discrete analogue of system (1.3). First, with the help of differential equations with
piecewise constant argument(for details, see [3]), we get the following discrete analogue of system (1.3):

x(k+ 1) = x(k) exp
{
a(k)− b(k)x(k)−

c(k)y2(k)
m2y2(k)+ x2(k)

−
h(k)
x(k)

}
,

y(k+ 1) = y(k) exp
{
f (k)x(k− τ(k))y(k− τ(k))
m2y2(k− τ(k))+ x2(k− τ(k))

− d(k)
}
.

(1.4)

In recent years, the powerful and effective method of coincidence degree has been applied to study the existence of a
periodic solution ormultiple periodic solutions in delayed differential populationmodels and a number of good results have
been obtained, for papers on a periodic solution, see [4,5], on multiple periodic solutions, see [6,7]. Since so much progress
has been made in delay differential models, one question arises naturally: can we apply this powerful method to study
the existence of periodic solutions for discrete analogues of these models governed by difference equations? Motivated
by this problem, recently many authors have studied discrete models in the literature, see [2,11,12]. However, there are
few papers on multiple periodic solutions of discrete models. For system (1.4), to the best of our knowledge, there is no
result on multiple periodic solutions in the literature. So, in this paper, our purpose is to study the existence of multiple
positive periodic solutions for system (1.4) by applying the continuation theorem of coincidence degree theory. Therefore,
we assume that all parameters in system (1.4) are positive ω-periodic sequences, ω is a fixed positive integer denoting the
common period of all the parameters in system (1.4). Since the nonmonotonic functional response is more difficult to deal
with, we will employ some new arguments in our discussion. Our main result is presented in Section 2.

2. Existence of four positive periodic solutions

For the reader’s convenience, we first summarize a few concepts from the book by Gaines and Mawhin [13].
Let X and Z be real normed vector spaces. Let L : Dom L ⊂ X → Z be a linear mapping and N : X × [0, 1] → Z be

a continuous mapping. The mapping L will be called a Fredholm mapping of index zero if dim Ker L = codim Im L < ∞
and Im L is closed in Z . If L is a Fredholm mapping of index zero, then there exist continuous projectors P : X → X and
Q : Z → Z such that Im P = Ker L and Im L = KerQ = Im (I − Q ), and X = Ker L

⊕
Ker P, Z = Im L

⊕
ImQ . It follows

that L /Dom L∩Ker P:(I − P)X → Im L is invertible and its inverse is denoted by Kp. If Ω is a bounded open subset of X , the
mapping N is called L−compact on Ω̄ × [0, 1], if QN(Ω × [0, 1]) is bounded and Kp(I − Q )N : Ω × [0, 1] → X is compact.
Because ImQ is isomorphic to Ker L, there exists an isomorphism J : ImQ → Ker L.
In the proof of our existence result, we need the following continuation theorem.

Lemma 2.1 (Continuation Theorem, Gaines andMawhin [13]). Let L be a Fredholmmapping of index zero and let N be L-compact
onΩ × [0, 1]. Suppose
(a) for each λ ∈ (0, 1), every solution x of L x = λN(x, λ) is such that x 6∈ ∂Ω ∩ Dom L;
(b) QN(x, 0) 6= 0 for each x ∈ ∂Ω ∩ Ker L;
(c) deg {JQN(x, 0),Ω ∩ Ker L, 0} 6= 0.
Then the equation L x = N(x, 1) has at least one solution lying in Dom L ∩Ω .
For the sake of convenience, we introduce some notations

Iω = {0, 1, . . . , ω − 1}, Z0 = {0,±1,±2, . . . ,±n, . . .},

ḡ =
1
ω

ω−1∑
k=0

g(k), gL = min
k∈Iω
g(k), gM = max

k∈Iω
g(k),

where g(k) is an ω-periodic sequence of real numbers defined for k ∈ Z0.
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Now we introduce two assumptions:

(H1) aL > cM

m2
+ 2
√
bMhM ,

(H2) f̄ > 2md̄e2(ā+d̄)ω.

We also introduce twelve positive numbers:

l± =
aL − cM

m2
±

√(
aL − cM

m2

)2
− 4bMhM

2bM
, p± =

aM ±
√
a2M − 4bLhL

2bL
,

i± =
f̄ e2(ā+d̄)ω ±

√
f̄ 2e4(ā+d̄)ω − 4m2d̄ 2

2d̄
, x± =

ā±
√
ā2 − 4b̄h̄
2b̄

,

j± =
f̄ ±

√
f̄ 2 − 4m2d̄ 2e4(ā+d̄)ω

2d̄e2(ā+d̄)ω
, u± =

f̄ ±
√
f̄ 2 − 4m2d̄ 2

2d̄
.

In order to apply coincidence theory to our study of system (1.4), wewill state the following definitions and propositions.
For details and proof, see [14].
Define lω =

{
u = (u1, u2)T = {(u1(k), u2(k))T} : ui(k+ ω) = ui(k), k ∈ Z0, i = 1, 2

}
. For a = (a1, a2)T ∈ R2, define

|a| = max{a1, a2}. Let ‖u‖ = maxk∈ω |u(k)|, for u ∈ lω . Equipped with above norm ‖ · ‖, lω is a finite- dimensional Banach
space.
Let

lω0 =

{
u = {(u1(k), u2(k))T} ∈ lω :

ω−1∑
k=0

ui(k) = 0, i = 1, 2

}
,

lωc = {u = {(u1(k), u2(k))
T
} ∈ lω : ui(k) = ui ∈ R, i = 1, 2},

then it follows that lω0 and l
ω
c are both closed linear subspaces of l

ω and

lω = lω0
⊕
lωc , dim lωc = 2.

Now we reach the position to state our main result in this paper.

Theorem 2.1. Assume that (H1) and (H2) hold. Then system (1.4) has at least four positive ω-periodic solutions.

Proof. Since we are concerned with positive periodic solutions of system (1.4), we make change of variables:

x(k) = ex1(k), y(k) = ex2(k). (2.1)

Then system (1.4) becomes
x1(k+ 1)− x1(k) = a(k)− b(k)ex1(k) −

c(k)e2x2(k)

m2e2x2(k) + e2x1(k)
−
h(k)
ex1(k)

,

x2(k+ 1)− x2(k) = −d(k)+
f (k) exp{x1(k− τ(k))+ x2(k− τ(k))}

m2 exp{2x2(k− τ(k))} + exp{2x1(k− τ(k))}
.

(2.2)

We make change of variables in system (2.2) as follows:

u1(k) = x1(k), u2(k) = x1(k)− x2(k). (2.3)

Then system (2.2) becomes
u1(k+ 1)− u1(k) = a(k)− b(k)eu1(k) −

c(k)
m2 + e2u2(k)

−
h(k)
eu1(k)

,

u2(k+ 1)− u2(k) = a(k)+ d(k)− b(k)eu1(k) −
c(k)

m2 + e2u2(k)
−
h(k)
eu1(k)

−
f (k)eu2(k−τ(k))

m2 + e2u2(k−τ(k))
.

(2.4)

It is easy to see that system (2.4) is equivalent to system (2.2), we prefer to study system (2.4) in the sequel because it is
more convenient for our further discussion.
Now let us define X = Z = lω, (Lu)(k) = u(k+ 1)− u(k) and

N(u, λ)(k) =

a(k)− b(k)eu1(k) − λ
c(k)

m2 + e2u2(k)
−
h(k)
eu1(k)

a(k)+ d(k)− b(k)eu1(k) − λ
c(k)

m2 + e2u2(k)
−
h(k)
eu1(k)

−
f (k)eu2(k−τ(k))

m2 + e2u2(k−τ(k))
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for u ∈ X and k ∈ Z0. It is trivial to see that L is a bounded linear operators and

Ker L = lωc , Im L = lω0 ,

as well as

dimKer L = 2 = codim Im L;

then it follows that L is a Fredholm mapping of index zero. Define

Pu =
1
ω

ω−1∑
k=0

u(k), u ∈ X, Qz =
1
ω

ω−1∑
k=0

z(k), z ∈ Z .

It is not difficult to show that P and Q are continuous projects such that

Im P = ker L and Im L = KerQ = Im (I − Q ).

Furthermore, the generalized inverse(to L)Kp : Im L→ Ker P
⋂
Dom L exists and is given by

Kp(z) =
ω−1∑
s=0

z(s)−
1
ω

ω−1∑
s=0

(ω − s)z(s).

Obviously, QN and Kp(I − Q )N are continuous. Since X is a finite-dimensional Banach space, it is not difficult to show
that Kp(I − Q )N(Ω̄ × [0, 1]) is compact for any bounded set Ω̄ × [0, 1] by using Arzela–Ascoli theorem. Moreover,
QN(Ω̄ × [0, 1]) is bounded. Thus, N is L-compact on Ω̄ with any open bounded setΩ ⊂ X .
Corresponding to the operator equation Lu = λN(u, λ), λ ∈ (0, 1), we have

u1(k+ 1)− u1(k) = λ
[
a(k)− b(k)eu1(k) − λ

c(k)
m2 + e2u2(k)

−
h(k)
eu1(k)

]
,

u2(k+ 1)− u2(k) = λ
[
a(k)+ d(k)− b(k)eu1(k) − λ

c(k)
m2 + e2u2(k)

−
h(k)
eu1(k)

−
f (k)eu2(k−τ(k))

m2 + e2u2(k−τ(k))

]
.

(2.5)

Summing both sides of (2.5) from 0 to ω − 1 gives

0 =
ω−1∑
k=0

[u1(k+ 1)− u1(k)] = λ
ω−1∑
k=0

[
a(k)− b(k)eu1(k) − λ

c(k)
m2 + e2u2(k)

−
h(k)
eu1(k)

]
,

and

0 =
ω−1∑
k=0

[u2(k+ 1)− u2(k)] = λ
ω−1∑
k=0

[
a(k)+ d(k)− b(k)eu1(k) − λ

c(k)
m2 + e2u2(k)

−
h(k)
eu1(k)

−
f (k)eu2(k−τ(k))

m2 + e2u2(k−τ(k))

]
.

From the above two equations, we get

ω−1∑
k=0

a(k) =
ω−1∑
k=0

[
b(k)eu1(k) + λ

c(k)
m2 + e2u2(k)

+
h(k)
eu1(k)

]
, (2.6)

and

ω−1∑
k=0

d(k) =
ω−1∑
k=0

f (k)eu2(k−τ(k))

m2 + e2u2(k−τ(k))
. (2.7)

From (2.5)–(2.7), it follows that

ω−1∑
k=0

|u1(k+ 1)− u1(k)| ≤
ω−1∑
k=0

[
a(k)+ b(k)eu1(k) + λ

c(k)
m2 + e2u2(k)

+
h(k)
eu1(k)

]
= 2āω, (2.8)

and
ω−1∑
k=0

|u2(k+ 1)− u2(k)| ≤
ω−1∑
k=0

[
a(k)+ d(k)+ b(k)eu1(k) + λ

c(k)
m2 + e2u2(k)

+
h(k)
eu1(k)

+
f (k)eu2(k−τ(k))

m2 + e2u2(k−τ(k))

]
= 2(ā+ d̄)ω. (2.9)
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Since (u1, u2)T ∈ X , there exists ξi, ηi ∈ Iω such that

ui(ξi) = min
k∈Iω
ui(k), ui(ηi) = max

k∈Iω
ui(k), i = 1, 2. (2.10)

(2.6) together with (2.10), implies that

āω >
ω−1∑
k=0

b(k)eu1(k) ≥ eu1(ξ1)b̄ω

and

āω >
ω−1∑
k=0

h(k)
eu1(k)

≥
h̄ω
eu1(η1)

,

that is

u1(ξ1) < ln
ā
b̄
≤ ln

aM

bL

and

u1(η1) > ln
h̄
ā
≥ ln

hL

aM
.

Combining this with (2.8) gives for k ∈ Iω ,

u1(k) ≥ u1(η1)−
ω−1∑
k=0

|u1(k+ 1)− u1(k)| > ln
hL

aM
− 2āω := H1 (2.11)

and

u1(k) ≤ u1(ξ1)+
ω−1∑
k=0

|u1(k+ 1)− u1(k)| < ln
aM

bL
+ 2āω := H2. (2.12)

From the first equation of (2.5) and (2.10), we have

u1(ξ1 + 1)− u1(ξ1) = λ
[
a(ξ1)− b(ξ1)eu1(ξ1) − λ

c(ξ1)
m2 + e2u2(ξ1)

−
h(ξ1)
eu1(ξ1)

]
≥ 0,

and

u1(η1 + 1)− u1(η1) = λ
[
a(η1)− b(η1)eu1(η1) − λ

c(η1)
m2 + e2u2(η1)

−
h(η1)
eu1(η1)

]
≤ 0,

which implies that

bLe2u1(ξ1) − aMeu1(ξ1) + hL < 0

and

bMe2u1(η1) −
(
aL −

cM

m2

)
eu1(η1) + hM > 0.

So we get

ln p− < u1(ξ1) < ln p+ (2.13)

and

u1(η1) < ln l− or u1(η1) > ln l+. (2.14)

It is easy to verify that

H1 < ln p− < ln l− < ln l+ < ln p+ < H2. (2.15)

(2.7) together with (2.10) implies

ω−1∑
k=0

d(k) <
eu2(η2)

m2

ω−1∑
k=0

f (k),
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and
ω−1∑
k=0

d(k) <
1

eu2(ξ2)

ω−1∑
k=0

f (k),

that is

u2(η2) > ln
m2d̄
f̄

and u2(ξ2) < ln
f̄
d̄
,

this combined with (2.9) gives for k ∈ Iω ,

u2(k) ≥ u2(η2)−
ω−1∑
k=0

|u2(k+ 1)− u2(k)| > ln
m2d̄
f̄
− 2(ā+ d̄)ω := H3, (2.16)

and

u2(k) ≤ u2(ξ2)+
ω−1∑
k=0

|u2(k+ 1)− u2(k)| < ln
f̄
d̄
+ 2(ā+ d̄)ω := H4. (2.17)

From (2.7) and (2.10), we obtain

ω−1∑
k=0

d(k) <
eu2(η2)

m2 + e2u2(ξ2)

ω−1∑
k=0

f (k),

and
ω−1∑
k=0

d(k) >
eu2(ξ2)

m2 + e2u2(η2)

ω−1∑
k=0

f (k),

that is

u2(η2) > ln
d̄
f̄
(m2 + e2u2(ξ2)),

and

u2(ξ2) > ln
d̄
f̄
(m2 + e2u2(η2)).

From this and (2.9), we get

u2(k) > ln
d̄
f̄
(m2 + e2u2(ξ2))− 2(ā+ d̄)ω,

and

u2(k) < ln
d̄
f̄
(m2 + e2u2(η2))+ 2(ā+ d̄)ω.

In particular, we have

u2(ξ2) > ln
d̄
f̄
(m2 + e2u2(ξ2))− 2(ā+ d̄)ω,

and

u2(η2) < ln
d̄
f̄
(m2 + e2u2(η2))+ 2(ā+ d̄)ω.

This implies

d̄e2u2(ξ2) − f̄ e2(ā+d̄)ωeu2(ξ2) +m2d̄ < 0,

and

d̄e2(ā+d̄)ωe2u2(η2) − f̄ eu2(η2) +m2d̄e2(ā+d̄)ω > 0.
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Solving the above two inequalities gives

ln i− < u2(ξ2) < ln i+ (2.18)

and

u2(η2) < ln j− or u2(η2) > ln j+. (2.19)

It is easy to verify that

H3 < ln i− < ln j− < ln j+ < ln i+ < H4. (2.20)

Obviously, ln i±, ln j±, ln l±, ln p±,H1,H2,H3 and H4 are independent of λ.
Now let us consider QN(u, 0)with u = (u1, u2)T ∈ R2. Note that

QN(u1, u2; 0) =

ā− b̄eu1 − h̄
eu1

ā+ d̄− b̄eu1 −
h̄
eu1
−

f̄ eu2

m2 + e2u2

 .
Since ā > 2

√

b̄h̄, f̄ > 2md̄, we can show that QN(u1, u2; 0) has four distinct solutions:

(u11, u
1
2) = (ln x+, ln u+), (u

2
1, u

2
2) = (ln x+, ln u−), (u

3
1, u

3
2) = (ln x−, ln u+), (u

4
1, u

4
2) = (ln x−, ln u−).

It is easy to verify that

ln l+ < ln x+ < ln p+, ln p− < ln x− < ln l−; ln j+ < ln u+ < ln i+, ln i− < ln u− < ln j−.

Let

Ω1 =

{
u = (u1, u2)T ∈ X

∣∣∣∣u1(k) ∈ (ln p−, ln l−)u2(k) ∈ (ln i−, ln j−)

}
,

Ω2 =

u = (u1, u2)T ∈ X
∣∣∣∣∣∣∣
min
k∈Iω
u1(k) ∈ (ln p−, ln p+)

max
k∈Iω
u1(k) ∈ (ln l+, H2)

u2(k) ∈ (ln i−, ln j−)

 ,

Ω3 =

u = (u1, u2)T ∈ X
∣∣∣∣∣∣∣
u1(k) ∈ (ln p−, ln l−)
min
k∈Iω
u2(k) ∈ (ln i−, ln i+)

max
k∈Iω
u2(k) ∈ (ln j+, H4)

 ,
and

Ω4 =

u = (u1, u2)
T
∈ X

∣∣∣∣∣∣∣∣∣∣

min
k∈Iω
u1(k) ∈ (ln p−, ln p+)

max
k∈Iω
u1(k) ∈ (ln l+, H2)

min
k∈Iω
u2(k) ∈ (ln i−, ln i+)

max
k∈Iω
u2(k) ∈ (ln j+, H4)

 .

It is easy to see that (u11, u
1
2) ∈ Ω4, (u

2
1, u

2
2) ∈ Ω2, (u

3
1, u

3
2) ∈ Ω3, (u

4
1, u

4
2) ∈ Ω1 and Ωi are open bounded subset of X .

With the help of (2.13)–(2.15) and (2.18)–(2.20), it is not difficult to verify thatΩi
⋂
Ωj = ∅ andΩi satisfies condition (a) of

Lemma 2.1 for i, j = 1, 2, 3, 4, i 6= j. Moreover, when u ∈ ∂Ωi
⋂
Ker L, i = 1, 2, 3, 4, QN(u, 0) 6= (0, 0)T, so condition (b)

of Lemma 2.1 holds.
Finally, we will show that condition (c) of Lemma 2.1 holds. By taking J = I since Ker L = ImQ , a direct computation

gives for i = 1, 2, 3, 4,

deg
{
JQN(u, 0),Ωi ∩ Ker L, (0, 0)T

}
= deg

{(
ā− b̄eu1 − h̄e−u1 , ā+ d̄− b̄eu1 − h̄e−u1 −

f̄ eu2

m2 + e2u2

)T
,Ωi ∩ Ker L, (0, 0)T

}

= sign

∣∣∣∣∣∣∣
−b̄eu

i
1 + h̄e−u

i
1 0

−b̄eu
i
1 + h̄e−u

i
1
f̄ eu

i
2(e2u

i
2 −m2)

(e2u
i
2 +m2)2

∣∣∣∣∣∣∣
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= sign

[(
−b̄eu

i
1 + h̄e−u

i
1

) f̄ eui2(e2ui2 −m2)
(e2u

i
2 +m2)2

]
= sign

[(
ā− 2b̄eu

i
1

)
(2d̄eu

i
2 − f̄ )

]
.

Then

deg
{
JQN(u, 0),Ω1 ∩ Ker L, (0, 0)T

}
= sign

[(
ā− 2b̄x−

)
(2d̄u− − f̄ )

]
= −1,

deg
{
JQN(u, 0),Ω2 ∩ Ker L, (0, 0)T

}
= sign

[(
ā− 2b̄x+

)
(2d̄u− − f̄ )

]
= 1,

deg
{
JQN(u, 0),Ω3 ∩ Ker L, (0, 0)T

}
= sign

[(
ā− 2b̄x−

)
(2d̄u+ − f̄ )

]
= 1,

deg
{
JQN(u, 0),Ω4 ∩ Ker L, (0, 0)T

}
= sign

[(
ā− 2b̄x+

)
(2d̄u+ − f̄ )

]
= −1.

So far we have proved thatΩi satisfies all the assumptions in Lemma 2.1. Hence, system (2.4) has at least fourω-periodic
solutions. According to the equivalence of system (2.4) and system (2.2), we conclude that system (2.2) has at least four
different ω-periodic solutions. Thus, system (1.4) has at least four different positive ω-periodic solutions. This completes
the proof. �
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