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This study aimed to assess the adhesion, detachment kinetic and biofilm formation of Staphylococcus
aureus isolates from food services surfaces on stainless steel and polypropylene surfaces when cultivated
in a vegetable-based broth at 7 and 28 �C, and the efficacy of peracetic acid (30 mg/L) and sodium
hypochlorite (250 mg/L) in removing the bacterial cells from the matrix of the preformed biofilm. The
isolates adhered over 4 Log cfu/cm2 regardless the surface kind and incubation temperature. Cell
detachment was around 3 Log cfu/cm2 over the first six contacts with agar characterizing a high
persistence of cells on the tested surfaces. Number of cells (5e7 Log cfu/cm2) needed for biofilm
formation was noted at all experimental systems already after 3 days of incubation. A range of 2.0e3.3
and 1.5 to 2.1 Log cfu/cm2 was observed in the reduction of cells in biofilm matrix caused by peracetic
acid and sodium hypochlorite, respectively. The isolates of S. aureus revealed high capability to adhere
and form biofilm on the tested surfaces in both assayed incubation temperature.
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1. Introduction

Worldwide there is a concern about the impact of microbial
foodborne diseases on the human behalf (White, Zhao, Simjee,
Wagner, & McDermott, 2002). The importance of contaminated
surfaces in spreading pathogenic microorganisms to foods is
already well established in food processing, catering and domestic
environment (Vasseur, Rigaud, Hébraud, & Labadie, 2001; Vautor,
Abadie, Pont, & Thiery, 2008). One of the most common ways for
bacteria to live is adhering onto surfaces and forming organized
communities named biofilms (Jenkinson & Lappin-Scott, 2001;
Malheiros, Passos, Casarin, Serraglio, & Tondo, 2010). Stainless steel,
glass, rubber and polypropylene surfaces can be contaminated
either by spoilage or pathogenic bacteria, which under certain
conditions adhere to these surfaces, initiating the cell growth and
leading to the biofilm formation (Murga et al., 2001).

According to Costerton, Steward, and Greenberg (1999) biofilms
are cell aggregates embedded in an organic extracellular polymeric
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matrix that confers resistance to involvedmicroorganisms. Bacteria
aggregated to form biofilms have greater resistance to the envi-
ronmental stress than the planktonic counterparts, including the
sensitivity to sanitizers (Fux, Wilson, & Stoodley, 2004; Spoering &
Lewis, 2001). Bacterial aggregates detached from biofilms retain
the high level of resistance to antimicrobials and may contain
enough number of cells to represent a potential infectious dose. The
formation of biofilms on food-contact surfaces is known as
a potential risk to the consumer’s health, particularly, if the cross
contamination of food occurs after a bactericidal procedure
(Spoering & Lewis, 2001).

Staphylococcus aureus has been frequently found in surfaces of
food processing plants being responsible for outbreaks related to
the consumption of fresh and processed foods worldwide (Balaban
& Rasooly, 2000; Braga et al., 2005; Nostro et al., 2004). The
establishment of the food poisoning caused by S. aureus depends on
the ability of the strain to survive in/on a colonized substrate,
multiply under a variety of conditions and produce several extra-
cellular substances (Pastoriza, Cabo, Bernárdez, Sampedro, &
Herrera, 2002). Although some researchers have observed the
ability to adhere and form biofilm by Staphylococcus genera
(Hussain, Becker, Von Eiff, Peters, & Hermann, 2001; Ku�zman,
Ró _zalski, Walenka, Ró _zalska, & Wysoki�nka, 2007), the most
studies have been addressed to clinical aspects related to the
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Table 1
Physico-chemical characteristics of vegetable-based broth.

Physico-chemical parameters Values

Proteins 0.18%
Fat 0.11%
Moisture 98.32%
Carbohydrates 1.39%
Ashes e

pH (T: 27.5 �C) 5.69
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biofilm formation by Staphylococcus intermedius on medical
implants and materials (Herrera, Cabo, González, Pazos, &
Pastoriza, 2007; Marques et al., 2007).

Currently, there is a lack of information about the capacity of
S. aureus from food service surfaces of adhering and forming biofilm
when exposed to different environmental conditions, and about the
efficacy of sanitizers in removing the cells forming the biofilm.
Regarding these aspects, this study was carried out with the aim of
evaluating the ability of S. aureus isolates from food services surfaces
to adhere and form biofilms on stainless steel and polypropylene
surfaces when cultivated in a vegetable-based broth under different
temperatures (7 and 28 �C). Still, it was observed the effect of the
sanitizers peracetic acid and sodium hypochlorite in reducing the
number of bacterial viable cells on a preformed biofilm.

2. Material and methods

2.1. Test isolates

S. aureus S3, S. aureus S28 and S. aureus S54 obtained from the
Microorganism Collection, Laboratory of Food Microbiology, Health
Sciences Center, Federal University of Paraíba (João Pessoa, Brazil)
were used as test isolates. The ones were isolated from different
surfaces of Food and Nutrition Services by the standard procedures
(Downes & Ito, 2001). Stock cultures were kept on Nutrient Agar e
NA (Difco, Brazil) slants under refrigeration (7 � 1 �C).

Inocula used in antimicrobial assays were obtained from over-
night cultures grown on NA slants at 37 �C. A loopfull of the culture
was diluted in sterile saline solution (0.85 g/100 mL) to have a final
concentration of approximately 8 Log of colony forming unity per
mL (cfu/mL) adjusted according to the turbidity of 0.5 McFarland
standard tube (Oliveira, Stamford, Gomes Neto, & Souza, 2010).
Fig. 1. Kinetics of adhesion of S. aureus S3, S28 and S54 to polypropylene and stainless ste
(-: polypropylene 7 �C, B: polypropylene 28 �C, :: stainless steel 7 �C, : stainless steel
2.2. Test surfaces and experimental conditions

AISI 304 stainless steel (2 � 2 � 0.2 cm) and polypropylene
coupons (2 � 2 � 0.4 cm) were used as test surfaces. The coupons
were individually cleaned, sanitized and sterilized according to
procedure described by Marques et al. (2007).

The adherence, detachment and biofilm formation of the test
isolates on polypropylene and stainless steel surfaces and inocu-
lated in a vegetable-based broth was assessed in two different
incubation temperatures, 7 and 28 �C.
2.3. Preparation of vegetable-based broth

A mixture (1:1:1) of vegetables (carrot, lettuce and tomato)
containing 300 g was mashed with 600 mL of distilled water using
a domestic blender and vacuum filtered using Whatman no.1 filter
paper. The material was sterilized by filtration using a Millipore
0.22 mm. The obtained broth was stored at �20 �C in aliquots of
50 mL and when required one aliquot was thawed under refriger-
ation (7 � 1 �C) and used for the experimental assays.

The vegetable broth was characterized regarding its physico-
chemical characteristics (moisture, protein, fat, carbohydrate,
ashes and pH value) according to procedures described by IAL
(2005). Physico-chemical characteristics of the vegetable-based
broth used in the assays are shown in Table 1.
2.4. Adhesion to surfaces and quantification of adhered cells

An aliquot of 100 mL of the growth media was mixed to 50 mL of
the bacterial inoculum, plated onto the center of each coupon and
incubated under the pre-established temperatures. After 24, 48 and
72 h of incubation, coupons (two for each treatment) were with-
drawn and immersed in sterile peptone water e SPW (0.1 g/
100 mL) during 15 s for releasing non-adhered cells. The cells
adhered to the coupons were collected by thoroughly rubbing their
surfaces with two moistened swabs, which were resuspended in
SPW by vigorously vortexing for 30 s. The mixture was serially
diluted (10�1e10�5) in SPW and aliquots of 100 mL were spread
plated onto sterile NA plates. The plates were incubated for 24 h at
37 �C (Herrera et al., 2007; Rode, Langsrud, Holck, &Moretto, 2007).
After the incubation period, the number of viable cells was counted
and the results were expressed in Log cfu/cm2.
el surfaces in vegetable-based broth at 7 �C and 28 C over 72 h of incubation
28 �C).



Fig. 2. Kinetics of separation of S. aureus S3, S28 and S54 of polypropylene and stainless steel surfaces in vegetable-based broth at 7 �C and 28 �C over 72 h of incubation
(-: polypropylene 7 �C, B: polypropylene 28 �C, :: stainless steel 7 �C, : stainless steel 28 �C).
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2.5. Detachment of adhered cells

An aliquot of 100 mL of the growth media was mixed to 50 mL of
the bacterial inoculum and plated onto the center of each coupon,
followed for incubation under the pre-established temperatures.
After 24, 48 and 72 h of incubation, coupons (two for each treat-
ment) were withdrawn and immersed in SPW during 15 s for
releasing non-adhered cells. Each coupon was placed on a sterile
NA plate, and after 2 min, removed and placed onto a second sterile
NA plate. This procedure was repeated through 7 sterile NA plates.



Fig. 3. Biofilm formation by S. aureus S3 on polypropylene and stainless steel surfaces
in vegetable-based broth at 7 �C and 28 �C over 15 days of incubation (-: poly-
propylene 7 �C, B: polypropylene 28 �C, :: stainless steel 7 �C, : stainless steel
28 �C). Dotted line means the lower bacterial count (Log cfu/cm2) needed for biofilm
formation according to Wirtanen et al. (1995).

Table 2
Effect of peracetic acid (30 mg/L) and sodium hypochlorite (250 mg/L) on the count
(Log cfu/cm2) of S. aureus S3 (grown in vegetable-based broth at 7 and 28 �C)
adhered onto polypropylene and stainless steel surfaces.

Sanitizers Temperature Control Treated Fraction
reduction

Polypropylene
Peracetic acid 7 �C 4.9a 2.2b 2.7

28 �C 5.1a 1.8b 3.3
Sodium hypochlorite 7 �C 4.9a 3.4b 1.5

28 �C 5.1a 3.2b 1.9
Stainless steel
Peracetic acid 7 �C 5.2a 2.9b 2.3

28 �C 5.9a 3.9b 2.0
Sodium hypochlorite 7 �C 5.2a 3.1b 2.1

28 �C 5.9a 4.1b 1.8

Values followed for the same letters in each row differ significantly (p < 0.05)
according to the Student t-test.

Q.G. da Silva Meira et al. / Food Control 25 (2012) 469e475472
The number of detached cells on the NA plates with order number
of 1, 2, 3, 4, 5, 6, and 7 was found by transferring the agar blotting
from each plate to 10 mL of SPW followed by blending using
a Stomacher. The mixture was serially diluted (10�1e10�5) in SPW
and aliquots of 100 mL were spread plated ontoNA plates. The plates
were incubated for 24 h at 37 �C (Herrera et al., 2007). After the
incubation period, the number of viable cells was counted and the
results expressed in Log cfu/cm2.

2.6. Biofilm development and quantification

The level of biofilm formation by S. aureus S3 on polypropylene
and stainless steel surfaces incubated in vegetable broth at 7 �C and
28 �C over 15 days was assessed. For this, five stainless and five
polypropylene coupons were immersed in sterile Petri dishes
containing 20 mL of the growth media and 2 mL of the bacterial
inoculum. The Petri dishes were sealed and incubated statically at
the pre-established temperatures. After 3, 6, 9, 12 and 15 days of
incubation, the coupons were withdrawn and washed with SPW to
remove the non-adhered cells. Once again, the coupons were
immersed in a fresh medium containing the same amount of
inoculum, being the process repeated four times, completing a 15-
day period.

At each incubation interval, two coupons of each treatment
were submitted to bacterial count in biofilm matrix. For this, the
biofilmwas scraped with two moistened sterile swabs, which were
resuspended in 9 mL of SPW by vortexing for 30 s. Serial dilutions
were prepared in SPW and aliquots of 100 mL were spread plated
onto sterile NA plates, followed for incubation at 37 �C for 24 h
(Marques et al., 2007). After the incubation period, the number of
viable cells was counted and the results expressed in Log cfu/cm2.

2.7. Sanitizer application

The efficacy of the sanitizers sodium hypochlorite (250 mg/L)
and peracetic acid (30 mg/L) in removing the cells of S. aureus S3
from the biofilm matrix grown in the vegetable-based broth at 7
and 28 �C was assessed. For this, five coupons were allowed to
develop biofilm according to the experimental conditions before
cited. After 15 days of incubation, the coupons were washed in
SPW, immersed for 30 s in sterile Petri dishes containing 20 mL of
the sanitizer solution. Afterwards, the coupons were drawn of the
sanitizer solution and immersed for 3 s in a neutralizing solution
(0.1 M Na2S2O3). The remaining cells were counted after scraping
by the use of two sterile moistened swabs, which were resus-
pended by vigorously vortexing in 9 mL of SPW. Serial dilutions
were prepared in SPW and aliquots of 100 mL were spread plated
onto NA plates and incubated at 37 �C for 24 h (Ammor et al., 2004).
After the incubation period, the number of viable cells was counted
and the results expressed in cfu/cm2. In control assays, the solu-
tions of the sanitizers were replaced by sterile distilled water. The
efficiency of each sanitizer was calculated regarding the difference
between the counts obtained for the control surfaces and for the
surfaces exposed to the sanitizers.

2.8. Procedures for scanning electron microscopy

Samples submitted to biofilm formation on polypropylene and
stainless steel surfaces at 28 �C according to the procedure before
cited, and after exposition to the sanitizers or distilled water, were
observed for remaining of viable cells in biofilm matrix using
scanning electron microscopy. The coupons were pre-fixed with
glutaraldehyde (2 mL/100 mL) for 2 h at 4 �C, and post fixed with
osmium tetroxide (2 g/100 mL) for 30 min at 30 �C. Afterwards, the
cells were washed twice with PBS, dried at a critical point in liquid
CO2 under 95 bar pressure, gold covered (Fine coat ion sputter JFC-
1100, JEOL Ltd., Tokyo, Japan) and examined with a scanning elec-
tron microscope (FEI QUANTA 200F) as previously described
(Kumar & Anand, 1998; Zoltai, Zottola, & McKay, 1981).

2.9. Statistical analysis

Counts were converted to decimal Logarithmic values (Log cfu/
cm2) to nearly match the assumption of a normal distribution.
Counts obtained for adhesion, detachment and biofilm formation
were submitted to Analysis of Variance (ANOVA) followed by
Duncan test to determine significance influence of the incubation
temperature and contact surface. Counts obtained for the effect of
the sanitizers (before and after the application) on the biofilm
matrix were compared using paired Student’s t-test. Data were
analyzed using the software Statistica 7. A probability value
p < 0.05 was accepted as indicating significant difference.

3. Results and discussion

The number of adhered cells of S. aureus S3, S28 and S54 to
polypropylene and stainless steel surfaces over 72 h of incubation



Fig. 4. Electronic microphotography of S. aureus S3 cells adhered on polypropylene (A, B, C) and stainless steel surfaces (D, E, F) when incubated in vegetable-based broth at 28 �C for
15 days, after the application of water (A, D e control), peracetic acid e 30 mg/L (B, E) and sodium hypochlorite e 250 mg/L (C, F).
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at 7 and 28 �C is shown in Fig. 1. Regarding that the substrate and
the extrinsic characteristics have been reported to interfere on the
bacterial adherence, a food-based media (vegetable-based broth)
and two incubation temperatures (7 and 28 �C) were tested
regarding their possible influence on cell adherence and biofilm
formation by isolates of S. aureus onto polypropylene and stainless
steel surfaces. The temperature of 7 and 28 �C were chosen
regarding the common temperature used to store pre-prepared
vegetable products and the usual temperature found in Brazilian
Food and Nutrition Services, respectively. Using liquid and/or solid
food-based media as substrate for assessing the microbial growth
(in planktonic or sessile form) may be useful for obtaining more
realistic results than the use of laboratorial media when regarded
a better feature of the nutrient availability in foods and their
interactionwith the surrounded environment (Herrera et al., 2007).

The highest numbers of adhered cells on polypropylene and
stainless steel surfaces were found for S. aureus S54 in all experi-
mental conditions. S54 showed an initial decrease in number of
adhered cells on polypropylene surface at 28 �C after 48 h of
incubation, followed for an increase after 72 h. S. aureus S3 revealed
numbers of adhered cells around 5 Log cfu/cm2 over the assessed
incubation periods, with exception on stainless steel surfaces at
28 �C (counts around 4.5 Log cfu/cm2).
The number of adhered cells of S. aureus S28 presented two
different phases: an initial, with the number of cells on poly-
propylene and stainless steel surfaces ranging from 4.6 to
5.8 Log cfu/cm2 and 4.1 to 5.0 Log cfu/cm2, respectively, after 24 and
48 h of incubation; and a second comprising 48e72 h of incubation,
when the cell counts decreased from 5.8 to 5.4 Log cfu/cm2 and 5.0
to 3.9 Log cfu/cm2, respectively.

Herrera et al. (2007) noted similar behavior in S. aureus when
inoculated in phosphate buffer solution (mimicking a nutrient-
lacking media) over 25 h at 25 �C. The results of the present
study are in agreement with these findings which suggested that
under static conditions adherent cells may be present in high
numbers, but do not always increase over the incubation time. This
behavior could be related with the cell division process and/or
redistribution of adhered cells forming the biofilm
(Kusumaningrum, Riboldi, Hazeleger, & Beumer, 2003; Stoodley,
Sauer, Davies, & Costerton, 2002).

There was no clear influence of the surface kind and incubation
temperature on the adherence of the tested isolates. For S. aureus S3
highest numbers (p < 0.05) of adhered cells were found on poly-
propylene in comparison to stainless steel at both tested temper-
atures. For S. aureus S28, highest numbers (p < 0.05) of adhered
cells were found in polypropylene at 28 �C and stainless at 7 �C.
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Malheiros et al. (2010) in assays of adherence of S. aureus on
polyethylene and stainless steel surfaces when incubated in
syntheticmedia noted increase in counts of adhered cells at 20 �C in
comparison to lower incubation temperatures (7, 10, 12 and 15 �C).
Rode et al. (2007) noted highest attachment capacity in S. aureus on
polystyrene when cultivated in synthetic media at sub-optimal
temperatures (20, 25 and 30 �C). Morton, Greenway, Gaylarde,
and Surman (1998) states that regardless the microbial specie or
assayed surface, the adhesion process occurs at maximum intensity
when bacteria are kept next to or at their optimum growth
temperature.

The cell detachment (kinetic of detachment) from poly-
propylene and stainless steel surfaces for S. aureus S3, S28 and S54
at 7 and 28 �C are shown in Fig. 2. Bacterial counts revealed linear
decrease in detachment rate over the contact sequence in all
experimental systems. For the most systems, detached cells were
around 3 Log cfu/cm2 over the first six contacts to the agar, sug-
gesting high persistence of cells on the surfaces over 72 h. In
general, no influence (p > 0.05) of the surface kind and incubation
temperature on the detachment of the tested strains was noted.
These data regarding the detachment of S. aureus over a lot of
contacts to a blot agar suggest a high risk source for cross
contamination of foods as they passes the contaminated surfaces.

According to Heydron et al. (2000) and Cheng, Zhang, Chen,
Bryers, and Jiang (2007) the maturation of a bacterial biofilm
occurs between three to six days after the initial adhesion, and only
after 10 days an increased population density with pronounced
production and deposition of exopolysaccharide is reached (mature
biofilm). Regarding these aspects, the levels of biofilm formation by
S. aureus S3 on polypropylene and stainless surfaces over 15 days at
7 and 28 �C were assessed (Fig. 3).

The results showed a similar capacity for biofilm formation
when S. aureus S3 was submitted to the different combinations of
surface kinds and growth temperatures. The obtained counts
indicated the biofilm formation on polypropylene and stainless
steel surfaces at 7 and 28 �C already after 3 days of incubation. The
highest numbers of cells (5.5e5.8 Log cfu/cm2) was found after six
days, with exception on polypropylene at 7 �C. For the most
systems, the number of viable cells in the biofilm matrix followed
a linear decrease after 6-day incubation. Highest intensity of bio-
film formation on stainless steel and polypropylene was found at
28 �C.

Ronner and Wong (1993) and Wirtanen, Ahola, and Mattila-
Sandholm (1995) state that a minimum of 5.0e6.0 Log cfu/cm2 is
needed for the formation of biofilm, and lower counts could indi-
cate only an adhesion process. The literature about the biofilm
formation by S. aureus on polypropylene and stainless steel surfaces
is still scarce becoming difficult to make an extensive comparative
discussion of the obtained results. Marques et al. (2007) assessing
the biofilm formation by S. aureus on stainless steel and glass
surfaces immersed in Brain Heart Infusion broth found bacterial
counts of 7 and 8 Log cfu/cm2, respectively, after 15 days of
cultivation.

Counts of S. aureus S3 cells adhered to polypropylene and
stainless surfaces after application of peracetic acid (30 mg/L) and
sodium hypochlorite (250 mg/L) are shown in Table 2. When
compared both sanitizers, peracetic acid was found as the most
effective in reducing the viable cell count in the biofilm matrix. Log
reduction caused by peracetic acid ranged from 2.0 to 3.3 Log cfu/
cm2, while for sodium hypochlorite it was from 1.5 to 2.1. However,
in all experimental systems both tested sanitizers decreased
(p < 0.05) the counts of cells adhered to the tested surfaces in
comparison to the control assay.

The electron microphotography of polypropylene and stainless
steel surfaces after the application of peracetic acid and sodium
hypochlorite is shown in Fig. 4. It might be observed that the
findings of electronic microscopy are in accordance with the results
obtained in the analysis of viable cell counts on the tested surfaces
when some remaining cells were found after application of per-
acetic acid (B, E) and sodium hypochlorite (C, F). Based on the ob-
tained results, peracetic acid (30 mg/L) and sodium hypochlorite
(250 mg/L), under the conditions used in this study, were not
efficient in completely removing the cells of S. aureus forming
a biofilm on polypropylene and stainless steel surfaces.

Even regarding the limitations of this study in assessing the
adhesion, detachment and biofilm formation of a monospecies
inoculum under static condition, it could be concluded that the
assayed isolates of S. aureus presented highlighted capacity to
adhere and form biofilm on stainless steel and polypropylene
surfaces when immersed in a food-based broth at 7 and 28 �C.
Moreover, the sanitizers peracetic acid and sodium hypochlorite
were not efficient in totally removing the viable cells of S. aureus
forming a mature biofilm. These results encourage further
researches focusing on the capability of S. aureus to adhere, detach
and form biofilm on surfaces of equipment and utensils used in
food and nutrition services and the efficacy of classical and alter-
native sanitizers to reduce the number of cells in the biofilmmatrix.
Acknowledgments

The authors are grateful to CNPq (Conselho Nacional de
Desenvolvimento Científico e Tecnológico, Brazil) for the scholar-
ship of the first author, and to CETENE (Centro de Tecnologias
Estratégicas para o Nordeste, Recife, Brazil) for the technical
support in electronic microscopy analysis.
References

Ammor, S., Chevallier, I., Laguet, A., Labadie, J., Tallon, R., & Dufour, E. (2004).
Investigating the selective bactericidal effect of several decontaminating solu-
tions on bacterial biofilms including useful, spoilage and/or pathogenic
bacteria. Food Microbiology, 21, 1e17.

Balaban, M. S., & Rasooly, A. (2000). Staphylococcal enterotoxins. International
Journal of Food Microbiology, 61, 1e10.

Braga, L. C., Shupp, J. W., Cummings, C., Jett, M., Takahashi, J. A., Carmo, L. S., et al.
(2005). Pomegranate extract inhibits Staphylococcus aureus growth and
subsequent enterotoxin production. Journal of Ethnopharmacology, 96, 335e339.

Cheng, G., Zhang, Z., Chen, S., Bryers, J. D., & Jiang, S. (2007). Inhibition of bacterial
adhesion and biofilm formation on zwitterionic surfaces. Biomaterials, 28,
4192e4199.

Costerton, J. W., Steward, P. S., & Greenberg, E. P. (1999). Bacterial biofilms:
a common cause of persistent infections. Science, 284, 1318e1322.

Downes, F. P., & Ito, K. (2001). Compendium of methods for the microbiological
examination of foods (4th ed.). Washington: APHA.

Fux, C. A., Wilson, S., & Stoodley, P. (2004). Detachment characteristics and oxacillin
resistance of Staphylococcus aureus biofilm emboli in a in vitro catheter infection
model. Journal of Bacteriology, 186, 4486e4491.

Herrera, J. J. R., Cabo, M. L., González, A., Pazos, I., & Pastoriza, L. (2007). Adhesion
and detachment kinetics of several strains of Staphylococcus aureus subsp.
aureus under three different experimental conditions. Food Microbiology, 24,
585e591.

Heydron, A., Nielsen, A. T., Hentzer, M., Stemberg, C., Givskov, M., Ersboll, B. K., et al.
(2000). Quantification of biofilm structures by the novel computer program
COMSTAT. Microbiology, 146, 2395e2407.

Hussain, M., Becker, K., Von Eiff, C., Peters, G., & Hermann, M. (2001). Analogs of the
extracellular adherence protein (Eap) are conserved and prevalent in clinical
Staphylococcus aureus isolates. Clinical Diagnostic and Laboratorial Immunology,
8, 1271e1276.

IAL e Instituto Adolfo Lutz. (2005).Métodos físico-químicos para análise de alimentos
(4a Ed.). Brasília: Ministério da Saúde.

Jenkinson, H. F., & Lappin-Scott, H. M. (2001). Biofilms adhere to stay. Trends in
Microbiology, 9, 9e10.

Kumar, C., & Anand, S. K. (1998). Significance of microbial biofilms in food industry:
a review. International Journal of Food Microbiology, 42, 9e27.

Kusumaningrum, H. D., Riboldi, G., Hazeleger, W. C., & Beumer, R. R. (2003). Survival
of foodborne pathogens on stainless steel surfaces and cross-contamination to
foods. International Journal of Food Microbiology, 85, 227e236.

Ku�zman, L., Ró _zalski, M., Walenka, E., Ró _zalska, H., & Wysoki�nka, H. (2007). Anti-
microbial activity of diterpenoids from hairy roots of Salvia sclarea L.:



Q.G. da Silva Meira et al. / Food Control 25 (2012) 469e475 475
salvipisone as a potential anti-biofilm agent active against antibiotic resistant
Staphylococci. Phytomedicine, 14, 31e35.

Malheiros, P. S., Passos, C. T., Casarin, L. S., Serraglio, L., & Tondo, E. C. (2010).
Evaluation of growth and transfer of Staphylococcus aureus from poultry meat to
surfaces of stainless steel and polyethylene and their disinfection. Food Control,
21, 298e301.

Marques, S. C., Rezende, J. G. O. S., Alves, L. A. F., Silva, B. C., Alves, E., Abreu, L. R.,
et al. (2007). Formation of biofilm by Staphylococcus aureus on stainless steel
and glass surfaces and its resistance to some selected chemical sanitizers.
Brazilian Journal of Microbiology, 38, 538e543.

Morton, L. H. G., Greenway, D. I. A., Gaylarde, C. C., & Surman, S. B. (1998).
Consideration of some implications of the resistance of biofilms to biocides.
International Biodeterioration and Biodegradation, 41, 247e259.

Murga, R., Foster, T. S., Brown, E., Pruckler, J. M., Fields, B. S., & Donlan, R. M. (2001).
Role of biofilms in the survival of Legionella pneumophila in a model potable-
water system. Microbiology, 147, 3121e3126.

Nostro, A., Blanco, A. R., Cannatelli, M. A., Enea, V., Flamini, G., Morelli, I., et al.
(2004). Susceptibility of methicillin-resistant staphylococci to oregano essential
oil, carvacrol and thymol. FEMS Microbiology Letters, 230, 191e195.

Oliveira, C. E. V., Stamford, T. L. M., Gomes Neto, N. J., & Souza, E. L. (2010). Inhibition
of Staphylococcus aureus in broth and meat broth using synergies of phenolics
and organic acids. International Journal of Food Microbiology, 137, 308e311.

Pastoriza, L., Cabo, M. L., Bernárdez, M., Sampedro, G., & Herrera, J. R. (2002).
Combined effects of modified atmospheres packaging and lauric acid on the
stability of pre-cooked fish products during refrigerated storage. European Food
Research and Technology, 215, 189e193.
Rode, T. M., Langsrud, S., Holck, A., & Moretto, T. (2007). Different patterns of biofilm
formation in Staphylococcus aureus under food-related stress conditions.
International Journal of Food Microbiology, 116, 372e383.

Ronner, A. B., & Wong, A. C. L. (1993). Biofilm development and sanitizer inactiva-
tion of Listeria monocytogenes and Salmonella typhimurium on stainless steel
and buna-N rubber. Journal of Food Protection, 56, 750e758.

Spoering, A. S., & Lewis, K. (2001). Biofilms and planktonic cells of Pseudomonas
aeruginosa have similar resistance to killing by antimicrobial. Journal of Bacte-
riology, 183, 6746e6751.

Stoodley, P., Sauer, K., Davies, D. G., & Costerton, J. W. (2002). Biofilms as complex
differentiated communities. Annual Review in Microbiology, 56, 187e209.

Vasseur, C., Rigaud, N., Hébraud, M., & Labadie, J. (2001). Combined effects of NaCl,
NaOH, and biocides (monolaurin and lauric acid) on inactivation of Listeria
monocytogenes and Pseudomonas spp. Journal of Food Protection, 64, 1442e1445.

Vautor, E., Abadie, G., Pont, A., & Thiery, R. (2008). Evaluation of the presence of the
bap gene in Staphylococcus aureus isolates recovered from human and animal
species. Veterinary Microbiology, 127, 407e411.

White, D. G., Zhao, S., Simjee, S., Wagner, D. D., & McDermott, P. F. (2002). Anti-
microbial resistance of foodborne pathogens. Microbes and Infection, 4,
405e412.

Wirtanen, G., Ahola, W., & Mattila-Sandholm, T. (1995). Evaluation of cleaning
procedures in elimination of biofilm from stainless steel surface in process
equipment. Food Bioproducts and Process, 73, 9e16.

Zoltai, P. T., Zottola, E. A., & McKay, L. L. (1981). Scanning electron microscopy of
microbial attachment to milk contact surfaces. Journal of Food Protection, 44,
204e208.


	Influence of temperature and surface kind on biofilm formation by Staphylococcus aureus from food-contact surfaces and sens ...
	1. Introduction
	2. Material and methods
	2.1. Test isolates
	2.2. Test surfaces and experimental conditions
	2.3. Preparation of vegetable-based broth
	2.4. Adhesion to surfaces and quantification of adhered cells
	2.5. Detachment of adhered cells
	2.6. Biofilm development and quantification
	2.7. Sanitizer application
	2.8. Procedures for scanning electron microscopy
	2.9. Statistical analysis

	3. Results and discussion
	Acknowledgments
	References


