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Cyclin J is a cyclin family member that appears to have evolved before the metazoan radiation. Its
evolutionary conservation argues for an important role but functional characterizations of Cyclin J have
remained very limited. In Drosophila, Cyclin ] is expressed only in females. Using transgenic Drosophila lines
expressing Cyclin ] versions with N- or C-terminal GFP extensions, we demonstrate that it is expressed
exclusively in the germline. After low level expression in all nuclei within the germarium, it gets highly
enriched in the germinal vesicle within the oocyte until stage 12 of oogenesis, followed by disappearance

Keywords:

Drjésophila after germinal vesicle breakdown before the first meiotic division. Surprisingly, Cyclin J is not required for
Oogenesis female fertility. Chromosome segregation during female meiosis, as well as the rapid early embryonic cell
Meiosis cycles after fertilization, occurs normally in the complete absence of Cyclin J. Cyclin ] with EGFP fused at

Syncytial cycles
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either N- or C-terminus binds to Cdk1l and not to Cdk2. However, in contrast to the other known Cdk1
partners, the A- and B-type cyclins, Cyclin J is not degraded during mitosis.

© 2009 Elsevier Inc. All rights reserved.

Introduction

The first cyclin proteins were identified because of their rapid and
complete disappearance during the early cleavage divisions in
invertebrate embryos (Evans et al., 1983). Additional members of
this eukaryotic protein family were subsequently identified and
shown to function as regulatory subunits that associate with Cyclin-
dependent protein kinases (Cdks) (Morgan, 2007). Various Cyclin-
Cdk complexes are involved in the control of progression through the
cell cycle or in other fundamental cellular processes like transcription.
The originally described, rapid proteolysis during mitosis is only
observed for the so-called mitotic cyclins. Based on sequence
comparisons these cyclins have also been classified as A- and B-type
cyclins. In Drosophila, as in other animal species, the mitotic cyclins
bind to Cdk1 (Knoblich et al., 1994). The Cdk1 complexes are of special
importance for the control of progression through mitosis. Activation
of Cdk1 which depends on complex formation with mitotic cyclins
results in entry into mitosis and transforms the cellular organization
from interphase to metaphase architecture. Progression into anaphase
and exit from mitosis requires inactivation of Cdk1 which results from
ubiquitin-dependent degradation of the mitotic cyclins after activa-
tion of the Anaphase-Promoting Complex/Cyclosome (APC/C) ubi-
quitin ligase (Peters, 2006).

Cdk2 is involved in the control of progression into S phase (Woo
and Poon, 2003). In mammalian cells, Cdk2 associates with A- and E-
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type cyclins. In Drosophila, Cyclin A-Cdk2 complexes have not been
observed, while Cyclin E-Cdk2 complexes are clearly present in vivo
(Knoblich et al., 1994; Meyer et al., 2000). This apparent difference
might have evolved in the context of diversification of regulatory
mechanisms controlling mitotic and endoreduplication cycles, respec-
tively. While endoreduplication normally occurs only in very few cell
types in mammals, this form of genome amplification by periodic S
phases without intervening mitoses is extensively exploited during
development and adult life of Drosophila melanogaster and many
other organisms (Edgar and Orr-Weaver, 2001). Drosophila Cyclin E
and Cyclin A can both trigger entry into S phase (Knoblich et al., 1994;
Sprenger et al., 1997) and at the same time contribute to a block to re-
replication (Follette et al., 1998; Sauer et al., 1995; Weiss et al., 1998).
While this blocking effect is eliminated by mitotic degradation in case
of Cyclin A, Cyclin E degradation is not coupled to mitosis and involves
different pathways (Hwang and Clurman, 2005; Sauer et al., 1995). In
D. melanogaster, Cyclin E might therefore have been selected as the
unique Cdk2 regulator that works for S phase regulation in both
mitotic and endocycles.

In contrast to A-, B- and E-type cyclins, the role of Cyclin J has not
yet been characterized in detail. Cyclin ] was originally identified in a
yeast two hybrid screen for Drosophila proteins that interact with
Drosophila Cdk1/Cdc2 and Cdk2/Cdc2c (Finley et al., 1996). Cyclin ]
mRNA and protein were detected exclusively during oogenesis and
early embryogenesis (Kolonin and Finley, 2000). Microinjection of
antibodies against Cyclin ] as well as aptamers into early Drosophila
embryos was reported to cause severe mitotic defects. These findings
are consistent with the idea that Cyclin J provides a function
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specifically required during the special early cycles at the start of
Drosophila embryogenesis where progression through the cell cycle is
extremely rapid, omitting gap phases and cytokinesis.

Based on its expression pattern, Cyclin ] might also function during
oogenesis. Drosophila oogenesis starts with an asymmetric division of
germline stem cells at the distal end of an ovariole (for a detailed
description of oogenesis see Spradling, 1993). The differentiating
daughter cell, progresses through four cell division cycles with
incomplete cytokinesis resulting in 16-cell clusters interconnected
by ring canals. Fifteen cells of the cluster develop into nurse cells and
one into an oocyte. The oocyte enters meiosis and remains arrested in
a special diplotene stage with the chromatin compacted into a
karyosome for most of oogenesis. The nurse cells progress through
several endoreduplication cycles. Egg chambers are completed by the
formation of an enveloping epithelial layer of somatic follicle cells at
the proximal end of the germarium. During their travel from the distal
germarium to the proximal end of the ovariole, egg chambers progress
through 14 stages during which the oocyte acquires abundant
maternal stores as well as an egg shell. During stage 13, fully grown
oocytes enter into the first meiotic division. After germinal vesicle
breakdown and spindle formation, they arrest in metaphase of
meiosis [ in stage 14. Completion of meiosis occurs only after egg
activation which is triggered by egg laying.

To evaluate whether Drosophila Cyclin | might function already
during oogenesis, we have generated Drosophila females that
completely lack this cyclin. Surprisingly, their fertility was found to
be normal. Our genetic characterization demonstrates therefore that
Cyclin ] is not required for progression through the mitotic cycles of
the germline cells at the start of oogenesis. Moreover, it is entirely
dispensable for meiosis and the syncytial cycles at the onset of
embryogenesis. Like the Drosophila A- and B-type cyclins, Cyclin ]
appears to associate with Cdk1 and not with Cdk2. But in contrast to
the other Cdk1 partners this unusual cyclin is not degraded during
mitosis.

Materials and methods
Fly strains and genetics

P{wHy}CycJP¢29792 " pBac{5HPw™}CycJ*'® and Df(3L)Exel6095
which deletes Cyc] were obtained from the Bloomington Drosophila
Stock Center at Indiana University. PBac{RB}e01160 and PBac{XP}
d07385 were obtained from the Exelixis Collection at the Harvard
Medical School and used for the generation of Df(3L)AJ14/TM3, Ser as
described by (Parks et al., 2004; Thibault et al., 2004). CycE®'%72 (Lilly
and Spradling, 1996) was kindly provided by Mary Lilly (NIH,
Bethesda, MD, USA). The lines with CycA®®®! (Sigrist and Lehner,
1997), CycA™°™ (Lehner and O'Farrell, 1989), CycB?, CycB>, CycB3>
(Jacobs et al., 1998), CycE**, CycP?> (Knoblich et al., 1994), P{prd-
GAL4} (Brand and Perrimon, 1993), P{mata4-GAL-VP16}V2H (Hacker
and Perrimon, 1998), P{UAS-Cdk1-myc}Il.1 or P{UAS-Cdk2-myc}Ill.2
(Meyer et al., 2000) or with two gEGFP-Mps1 transgene insertions (1.1
and I1.2) resulting in expression of EGFP-Mps1 under control of the
Mps1 cis-regulatory region (Fischer et al., 2004) have been described.
Lines with the transgenes gCycJ, gEGFP-CycJ, gCycJ-EGFP, UAS-EGFP-
CycJ, UAS-CycJ-EGFP, gcall-EGFP, garmi, or gCG14971 were obtained
after P element-mediated germline transformation with the con-
structs described below. Selected transgene insertions were com-
bined with Df(3L)AJ14 by meiotic recombination. Df(3L)AJ14, garmi
1.8, gCG14971 1110 can be kept as a homozygous stock. The
presence or absence of various genes on the original Df(3L)AJ14
chromosome and its derivatives was confirmed by PCR assays using
the following gene-specific primer pairs: IV35 (5-CGATGGTGGTTC-
CAAGACC-3’) and V36 (5'-GCCTGGTCTATTGATCATCG-3’) for an
elF5B fragment, V37 (5-CGAGCAGCACTATTCATTCC-3') and IV38
(5’-GGAATGTTCTCCGCTTCACC-3’) for an armi fragment, IV39 (5'-

GTCGCGTCGCTTCAGCACG-3’) and V40 (5'-TTTCGCGCAGTTCA-
TAATGCAG-3') for a CG14971 fragment, AF22 (5’-CCTGGCTAAGACG-
CACTGG-3’) and AF23 (5'-GCTATATGAAGACAAGTGATGG-3’) for a
Cy¢] fragment, XP5 (5’-AATGATTCGCAGTGGAAGGCT-3’) and RB3
(5’-TGCATTTGCCTTTCGCCTTAT-3’) for the amplification of the XP-RB
hybrid transposon.

C(1;Y), y' v! f! B': y*/C(1)RM, y? su(wa)! w® flies were kindly
provided by Terry Orr-Weaver (Whitehead Institute for Biomedical
Research, Cambridge, MA, USA). Males from this stock were used for
the analysis of X chromosome non-disjunction during meiosis in
oocytes as described (Kerrebrock et al., 1992). The different genotypes
of the females analyzed were w' (for control), or PfwHy}CycJP¢?979,
or +/+; Df(3L)AJ14, garmi 1.8, gCG14971 1110, or gCycJ .41/ +; Df
(3L)Aj14, garmi II1.8, gCG14971 II1.10. For these genotypes, the
corrected total X non-disjunction rate (Kerrebrock et al., 1992)
determined from more than 1300 progeny was found to be 0.22%,
1.07%, 0.41% and 0.44%, respectively.

For our analysis of genetic interactions between CycJ and CycE, we
crossed virgin females of the genotype Df(3L)AJ14, garmi IIL8,
gCG14971 II1.1/Df(3L)AJ14 (CycJ-deficient), or CycE’”? (CycE hypo-
morph), or CycE®%72; Df(3L)AJ14, garmi II.8, gCG14971 1111/ Df(3L)AJ14
(double mutant) with w' males and counted the number of progeny
which was found to be 440 (+/—40s.d,n=3),135 (+/—11s.d,n=3)
and 127 (4/—34 s.d, n=2) with CycJ-deficient, CycE hypomorph and
double mutant females, respectively. Genotypes and results of the
experiments addressing genetic interaction between Cyc] and CycA,
CycB and CycB3 are provided in Supplementary Figure 1.

Plasmid constructions

The DNA fragments used for the CycJ, armi and CG14971 transgene
constructs were derived from the BACR0O9B04 clone (Hoskins et al.,
2000). A5 kb Bglll fragment including most of armi was subcloned into
BamH1 and BgllI cut pSLfa1180, resulting in cloning intermediate 1. A
neighbouring 4 kb Bglll fragment with the remainder of armi, Cyc] and
a small part of CG14971 was subcloned into Bglll cut pLitmus28,
resulting in intermediate 2. The rest of CG14971 was enzymatically
amplified using the primer pair IV5 (5’-CAATGGCCCAAGTTAT-
CTCATTCG-3") and IV6 (5-CCA GGCGGCCGC ACTCTGACAACTTT-
TTGGTGCG-3’) introducing a Notl site. The resulting PCR product
was cut with Bglll and Notl and inserted into the corresponding sites
within the intermediate 1, resulting in intermediate 3. The CycJ gene
was deleted from intermediate 2 with an inverse PCR with the primer
pair IV3 (5’-CCGA GCGGCCGC ACCCATTGAAACACGCC-3") and IV4 (5'-
CGAA GCGGCCGC AGCAGCGTTCCCAGAC-3') followed by digestion
with Notl and re-ligation, resulting in the intermediate 4. The Bglll
fragment from the intermediate 4 was subsequently inserted into the
Bglll site within the intermediate 3, resulting in intermediate 6. To
arrive at the garmi construct, we first transferred a 2.2 kb Sall-Xbal
fragment with the 5’ region of armi from intermediate 6 into Xhol and
Xbal cut pCaSpeR4, resulting in intermediate 7. The construct was
completed by transposing a 3.8 kb Xbal-Notl fragment with the 3’
region of armi from intermediate 6 into the corresponding sites of
intermediate 7. To arrive at the gCG14971 construct, we transposed a
4.2 kb Notl fragment from intermediate 6 into the Notl site of
pCaSpeR4. The gCyc/ construct was obtained by inserting the 4 kb BglII
fragment from intermediate 2 into the BamHI site of pCaSpeR4. For the
gEGFP-Cyc] construct, we first subcloned a 0.5 kb Sall fragment
including the translational start site from intermediate 2 into the
corresponding site of pBluescript KS+ followed by introduction of an
Nhel site at the translational start of Cy¢J by inverse PCR using the
primer pair IV48 (5'-GGCG GCTAGC ATGGAGCAGAAAGTGGCTGCC-3")
and V49 (5-GGAG GCTAGC TGTATCGAAATTGAATGCAATGCC-3’).
After inserting the EGFP coding sequence as an Xbal fragment into
this newly created site, the modified Sall fragment containing the
EGFP sequence was used to replace the original Sall fragment in
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intermediate 2, followed by transposition of the Bglll fragment into
the BamHI site of pCaSpeR4. For the gCycJ-EGFP construct, an Nhel site
was introduced into intermediate 2 immediately upstream of the
translational stop of CycJ by inverse PCR using the primer pair V50
(5'-GGCG GCTAGC TAGTAAAAGGGAAAAACGAAACTATTAC -3’) and
IV51 (5'-GAGG GCTAGC ATCTTTGGCTACACTCTCCACTTTG-3'). After
insertion of the EGFP coding sequence as an Xbal fragment into this
newly created site, the Bglll fragment was transposed in the BamHI
site of pCaSpeR4 These constructs for CycJ expression without or with
EGFP at either N- or C-terminus under control of the genomic CycJ cis-
regulatory region contain the complete intergenic regions up- and
downstream from CycJ as well as the genomic 5’ and 3’ UTRs.

The pUAST-EGFP-Cyc] construct was obtained by enzymatic
amplification of the Cyc] sequence from the gEGFP-Cyc] construct
with the primer pair JoK10 (5'-AGCTGTAC GCGGCCGC CATGGAGCA-
GAAAGTGGC-3') and JoK11 (5’-TTTTCC GGTACC CTAATCTTTGGCTA-
CACTCTC-3’") which introduced flanking Notl and Kpnl sites,
respectively. After digestions with these enzymes, the PCR fragment
was transposed into the corresponding sites within pUAST-EGFP-MCS
(Schittenhelm et al., 2007). The pUAST-CycJ-EGFP construct was
obtained by amplification of the Cyc] sequence from the gEGFP-Cyc]
construct with the primer pair JoK10 and JoK12 (5’-TCCCTT GGTACC
ATCTTTGGCTACACTCTCCAC-3") which also introduced flanking Notl
and Kpnl sites, respectively. After digestions with these enzymes, the
PCR fragment was transposed into the corresponding sites within
pUAST-MCS-EGFP (Schittenhelm et al, 2007). The Cyc] region in
pUAST-EGFP-CycJ and pUAST-CycJ-EGFP was completely sequenced and
found to be correct.

Sequence comparisons

The cyclin tree (Fig. 1) was constructed using the on-line version of
T-REX (Makarenkov, 2001); www.trex.uqam.ca) based on a Clustal W
alignment for which only cyclin box regions without N-terminal
extensions were used in case of A-, B- and E-type cyclins. The J-type
cyclins do not have an N-terminal extension preceding the cyclin box
region. Accession numbers of the used Cyclin J sequences are

DmJ

AgJ Mb J

Mm D2
Mm D1
Hs JI Mm D3
Mm JI
_—DmD
PRt Mm B2
Mm E1 Mm B1
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Dm B3

Fig. 1. Cyclin ] homologs in metazoans. A tree based on predicted amino acid sequences
illustrates that Cyclin ] homologs are encoded in unicellular flagellate and metazoan
genomes. A duplication resulting in Cyclin ] (J) and Cyclin J-like (JI) has occurred in
mammals. Apart from Cyclin ] sequences, additional cyclins of the A-, B-, D- and E-type
families were included. Ag: Anopheles gambiae; Dm: Drosophila melanogaster; Hs:
Homo sapiens; Mb: Monosiga brevicollis; Mm: Mus musculus; Nv: Nematostella vectensis.

NP_061957.2, AAH35871.3, NP_766427.1, NP_001038995.1,
NP_523903.1, XP_001641369.1, XP_001237463.2, EDQ87852.1.

Immunoprecipitation, immunoblotting and immunofluorescence

Oocytes for immunoprecipitation experiments were mass isolated
(Page and Orr-Weaver, 1997) from gCycJ-EGFP 11.6, or gEGFP-Cyc] 11116,
or gcall-EGFP IL1, or gEGFP-Mps1 IL1, 1.2 females before extract
preparation. Embryos were collected for 3 h on apple agar plates from
crosses of UAS-Cdk1-myc IIL.1, UAS-Cdk2-myc II.2 males with females,
which were either mata4-GAL-VP16/CyO or mata4-GAL-VP16, UAS-
EGFP-Cyc] 11.1/CyO or mata4-GAL-VP16, UAS-CycJ-EGFP 11.2/Cy0, and
aged for 3 h at 25 °C. Immunoprecipitation from native oocyte and
embryo extracts as well as protein identification by mass spectroscopy
was done essentially as described (Schittenhelm et al., 2007) using
affinity-purified rabbit antibodies against GFP (IS28) in combination
with Protein-A-Sepharose beads (Affi-Prep, Biorad). The proteins
immunoprecipitated from either ovary or embryo extracts which were
analyzed by immunoblotting (Fig. 4A or C, respectively) were isolated
using an amount of extract which was 16 or 80 times more,
respectively, than the amount of extract loaded for parallel analysis.

For immunoblotting, oocytes were mass isolated from gCycJ-EGFP
1.6 females before fixation in a 1:1 mixture of methanol and heptane.
Fixed oocytes were transferred to a 1:1 mixture of glycerol and EB
buffer (Edgar et al., 1994). After DNA labelling with Hoechst 33258
(1 pg/ml), oocytes were sorted according to their developmental stage
with an inverted fluorescence microscope.

Immunoblots were probed with affinity-purified rabbit antibodies
against GFP (IS28) at a dilution of 1:3000, affinity-purified rabbit
antibodies against Cdk2 at 1:4000, mouse monoclonal antibodies
against GFP (Roche) at 1:500, a mouse monoclonal antibody against a
PSTAIR peptide (SIGMA, P7962) at 1:50,000 and a mouse monoclonal
antibody against a human myc peptide (9E10) at 1:15.

For fluorescence microscopy, ovaries were dissected from gEGFP-
Cyd] I11.6 females as described (Page and Hawley, 2001). Oocytes were
fixed for 20 min in 2% paraformaldehyde in phosphate buffered saline
containing 0.5% Nonidet-P40. After DNA labelling with Hoechst 33258
(1 pg/ml), ovaries were analyzed with an Olympus FluoView 1000
laser scanning confocal microscope. For immunofluorescent labeling
of embryos, we collected eggs for 1 h on apple agar plates and aged at
25 °C. Eggs were collected from a cross of CycA“S™R!, prd-GAL4/TM3, Sb
P{35U7)2 females with UAS-CycJ-EGFP II; CycA“®™R!/TM3, Ser males
and aged for 7 h. Eggs were also collected from a cross of Df(3L)Aj14,
garmilll.8, gCG14971 I11.10/ Df(3L)AJ14 females with w! males and aged
for 1 h. Embryos were fixed essentially as described previously (Karr
and Alberts, 1986). For immunofluorescent labeling we used mouse
monoclonal antibody DM1A anti-a-tubulin (Sigma) at 1:8000, rabbit
serum against Drosophila Cyclin A at 1:3000. Secondary antibodies
were Cy5-conjugated goat antibodies against mouse IgG (Jackson
Immunochemicals) and Alexa 568-conjugated goat antibodies against
rabbit IgG (Molecular Probes). For the DNA staining of embryos, we
also used Hoechst 33258 at 1 ug/ml. Embryos were analyzed with a
Zeiss Cell Observer HS wide field fluorescence microscope.

Results
Cyclin | has evolved before the metazoan radiation

When originally identified in Drosophila (Finley et al., 1996), Cyclin
J did not appear to have homologs in other species. However,
subsequent additions to Genbank have revealed that this cyclin type
is not restricted to Drosophila. While not recognizable in plant
genomes (Guo et al., 2007; Wang et al., 2004), Cyclin ] homologs are
present throughout the metazoan radiation (Fig. 1, data not shown). In
the mammalian lineage, paralogous cyclin ] genes (Cyclin J and Cyclin
J-like) are apparent, as also in case of the better-characterized A-, B-,
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EGFP-Cyclin J

_ J
2 J

Fig. 2. EGFP-Cyclin ] expression during oogenesis. Ovaries from females with gEGFP-CycJ III.16 resulting in expression EGFP-Cyclin ] under control of the CycJ regulatory region were
fixed and labelled with a DNA stain. (A) ovariole with early stages of oogenesis (germarium until stage 10). (B) stage 12. (C-E) germarium. (F-H) stage 4. (I-K) germinal vesicle region
of a stage 12 oocyte. (L-N) region with metaphase I figure of a mature stage 14 oocyte. Bars in A and B correspond to 30 and 100 pm, respectively. All other bars correspond to 10 pm.

D- and E-type cyclins. In contrast, only single orthologs for each of
these cyclin types including Cyclin J are present in the Drosophila
genome. Importantly, a cyclin ] homolog can also be identified in
Monosiga brevicollis, a member of the choanoflagellates which are
considered to be the closest unicellular relatives of metazoans.

The pattern of Cyclin | expression revealed by EGFP fusion transgenes

Cyclin ] has evolved before the specialized syncytial cycles
characteristic of early insect embryogenesis. Consistent with the
known expression pattern (Finley et al., 1996; Kolonin and Finley,
2000), it might therefore have functions already during oogenesis and
not just during the syncytial cycles where it has been characterized
functionally so far. For a more detailed analysis of Cyclin ] expression
during oogenesis, we generated transgenic lines expressing Cyclin ]
fused to EGFP either at the N- or the C-terminus under the control of
the genomic Cyclin ] regulatory sequences. The results obtained with
multiple gEGFP-Cyc] and gCycJ-EGFP lines were essentially identical
(Fig. 2 and data not shown).

EGFP-Cyclin ] signals above background were detected in the
germarium at the distal end of ovarioles. Based on the EGFP pattern in
the germarium, all germline cells appeared to be weakly positive in
contrast to somatic cells (Figs. 2C-E). In the newly formed egg
chambers at stage 1 of oogenesis, the peripheral somatic follicle cells
did definitely not display EGFP fluorescence, while the germ line
derivatives in the interior were positive (Figs. 2C-E). Signals in the
oocyte were stronger than in the nurse cells. All signals were nuclear.
In the oocyte, EGFP-Cyclin ] was observed throughout the germinal
vesicle, whereas the condensed DNA was restricted to the compact
karyosome (Figs. 2I-K). After germinal vesicle break down during
stage 13, we were unable to detect signals that were clearly above the

uniform substantial background fluorescence (Figs. 2L-N). Similarly,
after egg deposition and fertilization, we were unable to detect signals
that were clearly above background (data not shown).

For further clarification whether Cyclin ] is still present in oocytes
after germinal vesicle breakdown, we performed immunoblotting
experiments. Egg chambers were sorted microscopically before
extract preparation. In extracts prepared from stage 12 egg chambers
(i.e. before germinal vesicle breakdown) Cyclin J-EGFP was clearly

stage 12 14

3 10 30 30
anti-GFP: e
Cyclin J-EGFP » e — Lz
* > o ea— * | —— 80
anti-Cdk1: i)

Cdkim - - —

- 20

1 2 3 4

Fig. 3. Cyclin J-EGFP levels during oocyte maturation. Oocytes from gCycJ-EGFP I.6
females at either stage 12 or stage 14 were analyzed by immunoblotting for the
presence of Cyclin J-EGFP using antibodies against GFP (anti-GFP, upper panel). Apart
from Cyclin J-EGFP, this antibody detects a second band (see asterisk) which is also
observed in control ovaries that do not express GFP (data not shown). An anti-PSTAIR
peptide antibody, which reacts predominantly with Cdk1 in Drosophila was used as an
additional loading control (anti-Cdk1). The number of loaded oocytes is indicated on
top of lanes 1-4. The position of molecular weight markers is indicated on the right side.
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detectable by immunoblotting with antibodies against GFP (Fig. 3,
lane 3), as expected from the observed pattern of EGFP fluorescence in
ovaries (Fig. 2). However, in extracts prepared from stage 14 egg
chambers, Cyclin J-EGFP was essentially no longer detectable (Fig. 3,
lane 4). Similar observations (data not shown) were made with
extracts from females expressing EGFP-Cyclin ], although expression
levels on average appeared somewhat lower with gCyc/-EGFP lines in
comparison to gEGFP-Cyc] lines. In extracts prepared from early
embryos collected from females with either a gEGFP-Cyc]J or a gCycJ-
EGFP transgene, we were also unable to detect the EGFP tagged Cyclin ]
variants (data not shown). We conclude therefore that the levels of
Cyclin ] fused to EGFP decrease during the final stages of oogenesis
following germinal vesicle breakdown.

Cyclin J binds to Cdk1

To identify proteins that associate with Cyclin ] we immunopreci-
pitated CycJ-EGFP from extracts prepared from ovaries of gCycJ-EGFP

females. In control experiments, we used the same affinity-purified
antibodies against EGFP for immunoprecipitation of Cal1-EGFP from
extracts prepared from ovaries of gcal1-EGFP females. MS/MS analysis
was used to identify co-immunoprecipitated proteins. Among the
proteins which were specifically co-immunoprecipitated with Cyclin
J-EGFP, we clearly detected Cdkl but not Cdk2 (Supplementary
Table 1). Immunoblot analyses confirmed that Cdk1l but not Cdk2
was co-immunoprecipitated with Cyclin J-EGFP (Fig. 4A). Moreover, in
a similar experiment using EGFP-Mps1 as a control, we also observed
co-immunoprecipitation of Cdk1 but not Cdk2 with N-terminally EGFP
tagged Cyclin ] in immunoblot and MS/MS analyses (data not shown).

Cdk1 and Cdk2 expression levels appear to be comparable (Karsten
Sauer and C.EL., unpublished information) and both have been readily
detected by shot gun proteomics (Brunner et al., 2007). Therefore, the
observation that Cdkl was co-immunoprecipitated by both EGFP-
Cyclin J and Cyclin J-EGFP from ovary extracts strongly suggested that
Cyclin ] prefers Cdk1l over Cdk2 as partner kinase. To confirm this
partner preference and circumvent the limited detection sensitivity

Cdk1-myc: - + + -
A B Cdk2-myc: - - + +
Cyc-EGFP Cal1-EGFP Cdi;“r:"?ﬁ
E IP E P 2l —_—
anti-GFP: i —200 Cdk1—myc' - -
—100 anti-Cdk1:
-85 Cdk1-myc . “ - -50
-70
I -40
-50
| =40
Ook i N S — —
. ¥ : : -30
' !_30
C control EGFP-CycJ CycJ-EGFP
anti-Cdk1: Lam E IP E P E IP
anti-EGFP: -
* - -30 anti-myc: - -
- — -——
3 nti-Cdk1: | : ;
anti-Cdk2: b3 ant-Caiclc g

anti-Cdk2:

—40 Cdk1-myc' derwg

Cdk1 -

-_—
i WD e VD

Fig. 4. Cyclin J is a Cdk1 partner. Panel A: Proteins immunoprecipitated with antibodies against GFP from ovary extracts (E) of either gcal1-EGFP (Cal1-EGFP) and gCycJ-EGFP (CycJ-
EGFP) females were analyzed by immunoblotting with anti-GFP, anti-Cdk1 and anti-Cdk2. Cdk1 but not Cdk2 could be detected in the CycJ-EGFP immunoprecipitates (IP). The long
exposures shown for maximal anti-Cdk2 sensitivity reveal some non-specific reactions in the extracts apart from the reaction with Cdk2 (arrowhead). The absence of Cdk1 in the
control Cal1-EGFP immunoprecipitate (IP) indicates that the interaction of Cdk1 with CycJ-EGFP is specific. The presence of multiple bands after immunoblotting with anti-GFP
presumably reflects proteolytic degradation. The position of molecular weight markers is indicated on the right side. Panel B and C: The binding preference of EGFP-Cyclin ] and Cyclin
J-EGFP for Cdk1-myc or Cdk2-myc was analyzed after coexpression in embryos using the UAS/GAL4 system. Panel B: Extracts of embryos expressing Cdk1-myc and/or Cdk2-myc as
indicated above the lanes were analyzed by immunoblotting with anti-myc and anti-PSTAIR (anti-Cdk1) which in Drosophila detects almost exclusively Cdk1. Probing with anti-myc
demonstrates that Cdk1-myc and Cdk2-myc have a distinct electrophoretic mobility and are expressed at equal levels. Anti-PSTAIR reveals equal loading. Panel C: After coexpression
of EGFP-Cyclin ] or Cyclin J-EGFP with Cdk1-myc and Cdk2-myc, the former but not the latter was co-immunoprecipitated with antibodies against GFP, as revealed by immunoblotting
with anti-myc. Moreover, the endogenous Cdk1 but not the endogenous Cdk2 was co-immunoprecipitated as well, as revealed by immunoblotting with either mouse anti-PSTAIR
(anti-Cdk1) or rabbit anti-Cdk2. These antibodies also detected the myc-tagged versions. However, the corresponding region is not shown in case of the anti-Cdk2 immunoblot
because the reaction with Cdk2-myc was obscured in the immunoprecipitates by a strong signal caused by commigrating heavy chains from rabbit anti-GFP used for

immunoprecipitation.
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resulting from the low expression of transgenes driven by the CycJ cis-
regulatory region we performed experiments after overexpression in
embryos. Overexpression of EGFP-Cyclin ] during the embryonic cell
division cycles was achieved with an appropriate UAS transgene
inherited from the father in combination with maternally expressed
mato4-GAL-VP16. Moreover, in addition to UAS-EGFP-CycJ, we simul-
taneously expressed UAS-Cdk1-myc and UAS-Cdk2-myc. The simulta-
neous overexpression of EGFP-Cyclin J, Cdk1-myc and Cdk2-myc did
not noticeably affect embryonic development (data not shown).

Immunoblotting experiments with embryonic extracts and anti-myc
antibodies clearly demonstrated that Cdk1-myc and Cdk2-myc can be
identified unambiguously even after coexpression because of their
distinct electrophoretic mobility (Fig. 4B). Immunoblotting with anti-
myc also demonstrated that Cdk1-myc and Cdk2-myc were expressed
at comparable levels (Fig. 4B, data not shown). However, after
immunoprecipitation with anti-EGFP, we observed only Cdk1-myc
and not Cdk2-myc in the EGFP-Cyclin ] immunoprecipitates (Fig. 4C).
Moreover, we also detected the endogenous untagged Cdk1 in the

CycJ-EGFP CycA DNA  Tub

CycA*
prd-Gal4

CycA*
prd-Gal4
UAS-CycJ-EGFP

CycA
prd-Gal4

CycA
prd-Gal4
UAS-CycJ-EGFP

Fig. 5. Cyclin J-EGFP is stable during M and G1 and cannot replace Cyclin A. Sibling embryos with (CycA™, A-F) or without (CycA", G-L) zygotic Cyclin A expression which either did
not express Cyclin ]-EGFP (A-C, G-I) or expressed it (D-F, J-L) were collected for 1 h and aged to the stage where the cells in the dorsal epidermis (above the hatched horizontal lines)
are in G1 of cycle 17 and those in the ventral epidermis (below the hatched horizontal line) in G2 or M of cycle 16 during normal development. Progression through mitosis 16 does
not occur in CycA~ embryos and therefore all epidermal cells remain in G2. prd-GAL4 drives expression on the left of the hatched vertical line in the epidermal regions shown after
labelling with antibodies against Cyclin A (CycA), Tubulin (Tub) and a DNA stain (DNA). In contrast to Cyclin A, Cyclin J-EGFP is not degraded during mitosis 16 and G1 of cycle 17.
Moreover, Cyclin J-EGFP cannot prevent the cell cycle arrest in G2 of cycle 16 when expressed in CycA~ embryos. Bar corresponds to 10 um.
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EGFP-Cyclin J immunoprecipitates while Cdk2 was not detectable (Fig.
4C). These results strongly support the notion that Cyclin J associates
specifically with Cdk1.

Cyclin J-EGFP is not degraded during M phase

The known Drosophila Cdk1 partner cyclins, the A- and B-type
cyclins, become rapidly degraded during mitosis (Lehner and
O'Farrell, 1990). In the germarium, therefore, these mitotic cyclins
are absent from cells in late mitosis and early G1 (Hatfield et al., 2005;
Wang and Lin, 2005). Our observation that EGFP-Cyclin ] and Cyclin J-
EGFP was present at comparable levels in all germline cells within the
germarium suggested that Cyclin ] is not degraded during mitosis. To
evaluate the behavior of Cyclin ] during mitosis, we used the UAS/
GAL4 system to drive its expression during embryogenesis. The
developmentally controlled, highly reproducible division programme

of embryogenesis facilitates careful analyses. We used prd-GAL4 to
drive expression of Cyclin J-EGFP (Fig. 5) or EGFP-Cyclin ] (data not
shown) in alternating epidermal stripes. Embryos were fixed at the
stage of mitosis 16. Progression through mitosis 16 occurs earlier in
the dorsal epidermis than in the ventral epidermis. After fixation at
the stage of mitosis 16, cells in the dorsal epidermis in many embryos
are already in G1 of cycle 17 while the cells in the ventral epidermis
are still in G2 before mitosis 16. As each embryonic division partitions
the embryo into progressively smaller cells, the nuclear density
revealed by DNA staining in such embryos is twice as high in the
dorsal epidermis in comparison to the ventral epidermis (Figs. 5C, F).
Moreover, as previously described, the A- and B-type cyclins are
degraded in mitosis 16 and remain unstable during G1 of cycle 17
(Sigrist and Lehner, 1997). Therefore, anti-Cyclin A labeling is absent
from the dorsal epidermal cells and, conversely, present in the
cytoplasm of ventral epidermal cells in such embryos (Figs. 5A, D).

C C 138
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e01160 CycdJ|Pe29702 do735
elF5B armi Cyclin J CG14971
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gCG14971

elF5B »

CG14971 »

Fig. 6. Genetic elimination of Cyclin J. Panel A: The genomic region with CycJ and the neighbouring genes elF5B, armi and CG14971 is illustrated schematically. Start sites and direction
of transcription are indicated by arrows. Exons are represented by boxes with black filling indicating coding regions. Flp-mediated recombination between FRT sites present within
the transposons PBAC{RB}e01160 and P{XP}d0735 (insertion sites indicated by triangles) resulted in the deficiency Df(3L)AJ14. Genes deleted by Df(3L)AJ14 were re-introduced by
transgenes (garmi, gCycJ] and gCG14971) carrying genomic fragments including the genes armi, CycJ or CG14971, respectively, as indicated by the black horizontal lines. Moreover, the
position of additional transposon insertions (P{wHy}CycJ°“?°?°? and PBac{5HPw *}CycJ***®) in Cyc] is indicated by triangles. Panel B: The presence of the expected Flp/FRT-induced
deletion was verified by PCR assays using genomic DNA isolated from flies which were homozygous for Df(3L)AJ14 (Df(3L)AJ14) or carried Df(3L)AJ14 over a balancer chromosome
(Df(3L)AJ14/Bal). Primer pairs amplifying the recombined hybrid RB-XP transposon (RB-XP), or fragments from the genes elF5B (elF5B), armi (armi) or CG14971 (CG14971) were
used in parallel reactions. These primers did not amplify products when used without template DNA (no DNA). Panel C: Genomic DNA was isolated from flies which carried Df(3L)
AJ14, garmi I11.8, gCG14971 11110 either over a balancer chromosome (ACycJ/Bal) or homozygously (ACyc]). A duplex PCR with primer pairs amplifying fragments from the armi and
CycJ genes confirmed the absence of CycJ in the flies homozygous for Df(3L)A/14, garmi IIl.8, gCG14971 II1.10. Panel D: Df(3L)AJ14, garmi IIl.8, gCG14971 111.10 embryos which completely
lack maternal and zygotic Cyc/ function were fixed during the syncytial stages and labelled with a DNA stain. Spacing and appearance of nuclei during interphase (inter) and during
mitotic pro- (pro), meta- (meta), ana- (ana), and telophase (telo) was observed to be indistinguishable from wild type controls (not shown).
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However, Cyclin J-EGFP fluorescence in the expressing epidermal
stripes was not decreased in the dorsal G1 region compared to the
ventral G2 region (Fig. 5D). These observations indicate that Cyclin ] is
an unusual Cdk1 partner. In contrast to the other Cdk1 partners, i.e.
the A- and B-type cyclins, Cyclin | does not appear to become
degraded during mitosis. The absence of D- and KEN boxes from the
predicted Cyclin J amino acid sequence further supports this notion.
These sequence motifs are known to mediate the APC/C-dependent
polyubiquitylation and consequential proteasomal degradation of A-
and B-type cyclins during M and G1 phases (Peters, 2006).

prd-GAL4 driven UAS-CycJ-EGFP expression in CycA mutant
embryos allowed us also to address whether Cyclin | might be able
to replace Cyclin A functionally. We have previously demonstrated
that the failure of epidermal cells to progress beyond G2 of cycle 16
which is caused by a loss of zygotic CycA function is readily prevented
by prd-GAL4 driven UAS-CycA expression (Reber et al., 2006).
However, this premature cell cycle arrest in G2 before mitosis 16 in
CycA mutants (Figs. 5G-I) was not prevented by analogous Cyclin J-
EGFP expression (Figs. 5J-L). In both, CycA mutants and sibling
embryos, we observed the same results after prd-GAL4 driven
expression of either UAS-CycJ-EGFP (Fig. 5) or UAS-EGFP-Cyc/ (data
not shown).

Cyclin | is not required for oogenesis and early embryonic development

To address the function of Cyclin ], we generated lines com-
pletely lacking the Cyc] gene. Transposon insertions carrying FRT
sites allowed a Flp recombinase-mediated isolation of an 11 kb
chromosomal deletion, Df(3L)AJ14, removing Cyc] and the flanking
genes armitage (armi) and CG14971 (Fig. 6A). Characterization of
the Df(3L)AJ14 chromosome by PCR confirmed the presence of the
expected deletion (Fig. 6B). To restore the function of the flanking
genes, we introduced transgenes (garmi and gCG14971) carrying
genomic fragments including armi and CG14971, respectively, by P
element-mediated germline transformation and recombined inser-
tions with Df(3L)AJ14.

Initial analyses revealed that homozygous Df(3L)AJ14 progeny
from heterozygous parents eclosed as adults. The frequency of these
adults in comparison to heterozygous siblings (Table 1) indicated that
the genes CycJ, armi and CG14971 are completely dispensable for
development to the adult stage. We also obtained normal numbers of
adults homozygous for Df(3L)AJ14 which had in addition either one or
the other or both transgene insertions (garmi IIL.8 and gCG14971
II1.10). These transgene insertions therefore do no disrupt gene
functions required for development to the adult stage.

Table 1

Viability and fertility of flies without CycJ, armi or CG14971.

Genotype Viability? Fertility”

Female Male

w! N.d.c 100 100

CyCIDGZ97OZ/CyCJDGZ97OZ Ndd 102 Nd

CycJPS29792 ) Df(3L)A]14 N.d.¢ 113 N.d.

CygP%°792 Df(3L)Exel6095 N.d4 110 N.d.

Df(3L)AJ14/Df(3L)AJ14, garmi I8, gCG14971 .10 122 111 140

gCyq 1141/ +; Df(3L)AJ14/Df(3L)AJ14, 124 115 163
garmi 1I1.8, gCG14971 111.10

Df(3L)AJ14/Df(3L)AJ14, garmi II1.8 114 90 120

Df(3L)AJ14/Df(3L)AJ14 97 0 29

2 Progeny flies with the listed genotypes as well as balanced siblings eclosing from
the same cross were counted (n>300). The fraction of progeny with the listed genotype
was calculated and expressed in percent of the fraction predicted in case of full viability.

b Parallel crosses (3-4 for each genotype) with a fixed number of either test females
or test males were crossed with the same number w! flies. The total number of progeny
was counted and expressed in percent of the number of progeny obtained with the w'
control crosses (n=1324).

¢ N.d., not determined.

4" Although not precisely quantified, the viability appears to be normal.

Subsequent analysis of flies lacking one or several of the genes
CycJ, armi and CG14971 indicated that armi but not the other genes
are required for normal fertility (Table 1). armi encodes a putative
RNA helicase involved in the RNA interference pathway and is known
to be required for normal fertility (Cook et al., 2004). Females without
the armi gene did not produce eggs and males had a reduced fertility
(Table 1). The armi null phenotype therefore might be more severe
than the phenotypes observed previously with partial loss of function
alleles which result in abnormally patterned eggs in reduced numbers
(Cook et al., 2004). CG14971 is an uncharacterized gene which
appears to encode a ubiquitously expressed member of the solute
carrier protein family.

Our conclusion that Cyc/ is not required for viability and fertility
was further supported by our characterization of a recently isolated
transposon insertion P{wHy}CycJP°?°7°2 (Huet et al., 2002). Our
sequence analysis of a PCR fragment confirmed that this insertion
disrupts the Cyc] coding sequence after the second codon. Therefore
the insertion is likely to cause a complete loss of Cyc/] function. Flies
homozygous or hemizygous for this insertion eclosed in normal
numbers and were found to be fully fertile (Table 1). The same
findings (data not shown) were also observed with flies hemizygous
for PBac{5HPw*}Cyc/*’*® a transposon insertion which we also
confirmed to reside in the first intron and therefore might not
necessarily impair CycJ gene function.

To evaluate whether loss of Cyc/ might result in more subtle
defects during the syncytial cycles of early embryogenesis, we
collected eggs from CycJ-deficient females (Fig. 6C) and analyzed
the frequency and appearance of mitotic figures after fixation and DNA
staining. However, apart from rare abnormalities, which were also
observed to the same extent in control collections, defects were not
apparent (Fig. 6D). Similarly, we failed to detect an increased rate of X
chromosome non-disjunction during meiosis in CycJ-deficient females
(see Materials and methods). A double mutant analysis confirmed
that Cyclin ] is unlikely to have substantial functional overlap with
Cyclin E. The reduced fertility of females homozygous for the
hypomorphic mutation CycE®'®”? (Lilly and Spradling, 1996) was
marginally enhanced in double mutants lacking Cyc] function
completely (see Materials and methods). Moreover, additional
attempts to detect potential genetic interactions between Cyc] and
CycA, CycB, CycB3 or CycE equally failed to reveal clear evidence for
functional redundancies (Supplementary Figure 1). CycJ-deficient
females with only one functional gene copy of CycA, CycB, CycB3 or
CycE had a very similar fertility as those with two functional copies.
In addition, progression through the syncytial cycles was not
compromised by reducing the number of functional copies of these
other cyclin genes in Cyc/-deficient mothers.

Discussion

Sequence comparisons demonstrate that Cyclin J is an evolutionary
conserved cyclin family member. Cyclin ] homologs are present
throughout the metazoan radiation, as well as in their unicellular
sister group. While this evolutionary conservation points to an
important role of Cyclin J, its functional characterization has remained
very limited. Moreover, our analyses contradict previous conclusions
and reveal a number of unexpected findings. Using transgenic Dro-
sophila lines expressing Cyclin | versions with N- or C-terminal EGFP
extensions, we demonstrate that it binds to Cdk1 and not to Cdk2.
However, in contrast to the other known Cdk1 partners, the A- and B-
type cyclins, Cyclin | does not appear to become proteolysed during
mitosis. In addition, its expression pattern is far more restricted. While
A- and B-type cyclin expression is observed in all mitotically
proliferating and meiotic cells, Cyclin ] is only expressed in the female
germ line. While initially present at low levels in all nuclei within the
germarium, it gets highly enriched in the germinal vesicle within the
oocyte during egg chamber development until stage 12, and
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disappears again later concomitant with germinal vesicle breakdown
at the start of the first meiotic division. Surprisingly, we find that
Cyclin ] is not required for female fertility. Chromosome segregation
during female meiosis as well as the rapid early embryonic cell cycles
after fertilization occurs normally in the complete absence of Cyclin J.
Only a slight increase in the number of embryos that do not develop
beyond cycle 1 is noticeable when averaging over many collections
from CycJ-deficient females.

Most of our results are at variance with those published earlier
(Finley and Brent, 1994; Kolonin and Finley, 2000). Based on the
described yeast two hybrid and co-immunoprecipitation experiments,
Drosophila Cyclin ] for instance was suggested to prefer Cdk2 over
Cdk1 as a partner kinase. Curiously, in these same yeast two hybrid
experiments, Drosophila Cyclin E was also observed to have the
opposite preference from what we have observed in vivo (Finley and
Brent, 1994; Knoblich et al,, 1994). In case of the published co-
immunoprecipitation experiments (Kolonin and Finley, 2000), a cross
reaction of the affinity-purified rabbit antibodies against Cyclin J with
a protein of similar molecular might have compromised the validity of
these earlier conclusions. Concerning the validity of our present
discordant conclusions, we emphasize that we cannot exclude the
possibility that the EGFP fusions, which we have studied, do not
behave like the untagged endogenous Cyclin J. We consider this
possibility to be unlikely, as we have obtained consistent results with
EGFP fused at either the N- or the C-terminus of Cyclin J. Moreover,
experiments with other cyclins have clearly demonstrated that EGFP
extensions do not affect their function (Buszczak et al., 2007; den
Elzen and Pines, 2001; Hagting et al., 1998; Jackman et al., 2002).
Finally, our finding that progression through the syncytial cycles of
early Drosophila embryogenesis is not noticeably affected by the
complete absence of Cyclin ] is entirely independent of assumptions
concerning the functionality of our Cyclin ] fusions. The severe mitotic
defects reported to occur after injection of antibodies or aptamers
against Cyclin J (Kolonin and Finley, 2000) might reflect cross-
reactions or indicate that the binding of these reagents to Cyclin ] has
other consequences than eliminating Cyclin | altogether.

The absence of obvious phenotypic abnormalities after complete
elimination of Cyc/ function might indicate functional redundancies.
Our preliminary evidence argues against the suggestion that it is the
function of Cyclin A, B, B3 or E which masks a Cyclin J requirement.
Our failure to prevent the characteristic CycA zygotic effect mutant
phenotype by expression of Cyclin ] fusions with EGFP in embryos
argues against major functional overlap between Cyclin A and Cyclin .
In addition, a reduction of the number of functional CycA, CycB, CycB3
or CycE gene copies in CycJ-deficient females using multiple strong or
null alleles did not consistently reduce their fertility or affect
progression through the syncytial cycles in progeny. Moreover, genetic
elimination of Cyc/ in females with reduced CycE function did not
further reduce their compromised fertility. Future unbiased genetic
screens in our CycJ-deficient background might lead to an identifica-
tion of components acting redundantly with Cyclin J.

Redundant functional pathways might also explain that some
metazoans like C. elegans appear to have lost Cyclin J and that the
expression pattern of Cyclin | varies in different metazoan lineages. In
contrast to Drosophila Cyclin ], which appears to be expressed exclusively
in the female germline, the human Cyclin ] paralogs are much more
widely expressed in various somatic tissues according to the tissue
distribution of the expressed sequence tags. The apparent somatic
expression in humans, as well as the presence of a Cyclin ] homolog in
the choanoflagellate Monosiga brevicollis, clearly argues against the
notion that the primordial Cyclin ] function is oogenesis-specific.
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