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Abstract

A nonlinear stationary model describing the behaviour of a Bingham fluid is considered in a thin
layer in R3. The limit problem obtained after transforming the original problem into one posed
over a fixed reference domain and then lettinthe parameter representing the thickness of the
layer) tend to zero is studied. Existence and uniqueness results and a lower-dimensional ‘Bingham-
like’ constitutive law are obtained. An identical study of a two-dimensional problem yields a one-
dimensional model prevalent in engineering literature.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

A Bingham fluid, which is a visco-plastic medium, obeys the general laws of continuum
mechanics and has a special nonlinear constitutive law. It is used to model the behaviour
of a variety of fluids such as paint, lava and fluid mud (a clay—water mixture with a high
concentration of cohesive mineral particles).

It is a non-Newtonian fluid which moves like a rigid body when a certain function of
the stress tensor is below a certain threshold (sometimes called the yield stress). Beyond
this yield stress, it obeys a nonlinear constitutive law.

In this paper, we are interested in the asymptotic behaviour of a Bingham fluid in a thin
layer represented by a ‘thin’ domainIR?. Starting from the three-dimensional variational
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inequality giving the velocity and pressure, as formulated by Duvaut and Lions [2], the
problem is transformed into one over a fixed reference domain, thus explicitly bringing
out the dependence en(the parameter representing the thickness of the domain) in the
variational formulation. The limit problem, agends to zero, is then obtained. An identical
study of a two-dimensional problem yields a one-dimensional constitutive law, prevalent
in engineering literature (cf., for instance, Liu and Mei [6]).

The paper is organized as follows. Sectioneadibes the three-dimensional problem
and transforms it to one over a fixed reference domain by a standard change of variable
and a priori estimates are obtained. Section 3 is devoted to the study of a class of function
spaces of Sobolev type which will be needed in the sequel. Just as the theorem of de
Rham characterizes the annihilators of diverge free vector fields as gradients of scalar
functions, the annihilators of a certain space studied here are characterized as the gradients
of functions in the horizontal variable alone. This helps in the recovery of the pressure later.
In Section 4, the limit problem and its well-posedness are studied. In Section 5, the lower-
dimensional constitutive law and the differential equation satisfied by the limit variables in
the nonrigid zone are obtained. The correspogdesults for the two-dimensional problem
are stated.

2. Problem statement and basic estimates
Letw C R? be a bounded domain with sufficiently smooth boundary/i-et — R be

a sufficiently smooth function such that

O<ho<h(x,y)<hi (2.1)
forall (x, y) € w, wherehg andhj are constants. Laet> 0. Set

.Q:{(x,y,z)ER3|(x,y)ew, O<z<h(x,y)}, 2.2)
2 = {(x1,x2,x3) € R3| (x1,x2) € 0, 0 < x3 < eh(x1, x2)}. '
We will repeatedly use the bijection between the point®¢fand those of2 given by

(x1,x2,%3) €2 < (x,y,2) €8, x=x1, y=Xx2, 7=Xx3/¢. (2.3)
This automatically produces a bijection between functipns2, — R and¢: 2 — R
given by

P(x,y,2) = @(x1, X2, X3). (2.4)

Notation. We will denote vector fields in three dimensions using bold face (é4.,
(f1, f2, f3)) and vector fields in two dimensions using an underscore (©:g.(v1, v2)).
We will denote the Euclidean norm &2 or R? of these vector fields using the modulus
(i.e., |f] or |v|). We will denote integration with respect to the (Lebesgue) measugre in
by dx.

Letf e (L2(£2))2 be given. Lef, € (L2(£2,))® be defined by
fe(x1, x2, x3) = f(x1, x2, x3/¢) (=f(x,y,2)). (2.5)
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Consider an incompressible Bingham fluid occupying the regomvith viscosity and
yield stress given (after nondimensionalizationybyf andge, respectively (wherg > 0
andg > 0 are constants independentdfand acted upon by a body force of density given
by f. defined by (2.5) (cf. Bourgeat and Mikelj1] or Lions and Sanchez-Palencia [5]).
A typical situation would be when the forces depend onlyxpandx..

If u. and p. are the velocity and pressure, respesy, then the stress tensor can be
written aso® = —p, I + o ¢, We set

1/0us; Oug;
DijUe) = E( o o
J L

>7 1<l1_]<37

3
1
Diy(Ue) =5 D Dij(Ue) Dij (Ue),

i,j=1
3
& _} D,e _D.,e
=3 Oij Oij
ij=1

Then the constitutive relation is given by
: (0f)Y2<ge & DU =0,

D,
(@ipY2>ge &  Djj(u) = ﬁ(l— (afiim)aij ‘.

(2.6)

Let
Ve = {v e (HE($2:))® | div(v) = 0}

Then, the velocityu, is the unique solution of the following variational inequality (cf.
Duvaut and Lions [2]).

(P;) Findu, € V, such that

;Lez/Vug.V(v—ug)dX—i—ge/IVVIdX—g8/|Vu€|dX
2 2

§2¢
> /fg.(v— Ug) dXx (2.7)
$2¢
for everyv e V,.

Equivalently (cf. Bourgeat and Mikéli[1]), there existg, € L2(£2,)/R such that the
couple(u,, p.) satisfies the following:

ueZ/Vug.V(v—ug)dx—i—ge/|VV|dX—gs/|Vu5|dx
2,

Qg & QS
2/fg.(v—ug)dx+/pgdiv(v—ug)dx (2.8)
2 $2¢

for everyv e (H}(£2:))3.
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Notation. We will denote the norm ii.2(U) (or (L2(U))N, N = 2, 3) of a domainU by
| - lo,y and the norm i (U) by || - |Is.v-

Let G, € (H}(£2))® and p, € L?(£2) denote the transformed functions defined aer
as per the rule (2.4). We now proceed to obtipriori estimates for these functions.

Lemma 2.1. There exists a constagt > 0, independent of, such that
a0,

x

a0,

a0,
dy

< Ceil,
S 82

0,02

<C, |Uloge <C. (2.9)

0,$2 0,82

Proof. The proof follows by settingy = 2u, andv = 0 successively in (2.7), using the
transformations suggested by (2.3) and (2.4) and by applying the classical Poincaré’s in-
equality which, for the domaire,, reads as

l¢lo,2, < CelVelo,e,
foranyp € H}($2,), whereC > O is independent of. O

Lemma 2.2. There exists a constant > 0, independent of, such that
9 Pe
9z

3 Pe
ay

3 Pe
ax

<C,
-1

< Ce. (2.10)
-1,

|lA78|0.,.Q <C,

-1.0

Proof. Letw e (H}(£2))3. Definingw, (x1, x2, x3) = W(x1, x2, x3/¢) € (H3(52,))3, and
settingv = w, + u, in (2.8), we can deduce the last two estimates in (2.10). Consequently
it follows that (cf. Girault and Raviart [3, Chapter I, Corollary 2.1]) there exists a represen-
tative of p, € L2(£2)/R such that

[Pelo.e < ClIVpell-1,2 < C,

sinces? is a Lipschitz domain. This completes the proofa

3. Somefunction spaces

It follows from Lemma 2.1 that, for a subsequengge— u and thatdu./dz — du/dz
weakly in (L?(£2))3. We lose information on the derivatives in theand y directions.
Hence we are led to consider the spakeof functionsv e L?(£2) such thatdv/dz €
L2(£2).

We now introduce the linear mappiflg: L2(£2) — L%(w) given by

h(x,y)
T()(x,y) = / v(x,y,z)dz.
0

Lemma 3.1. We have
T € L(LA(R), LA(@)) N L(HF(2), H}())
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and, for every € H}(£2),

%(T(v)) =T<§—§>, aa—y(T(v)) =T<§—;>. (3.1)

Lemma 3.2. Letw € L2(£2) such thathw/dz = 0. Then there existé € L2(w) such that
w(x,y,z)=w(x,y),ie., for every e L%(£2),

/wvdx:/zi)(x,y)T(v)(x,y)dxdy. (3.2

2 w

Corollary 3.1. Letw € L2(£2) such that, for alb € H1(£2),

)
/w—” dx=0. (3.3)
0z
2
Thenw = 0.

Proof. By the preceding lemma,iree (3.3) implies thatbw/dz = 0, we have that
wx,y,z) =wx,y). If ¢ € Dw), settingv(x, y,z) = ¢(x, y)z, we deduce from (3.3)
that

/zi)(x, V)e(x, y)h(x,y)dxdy =0.

w

Sincegp was arbitrary, it follows thafvh =0, i.e.,w =0 (cf. (2.1)). O

Let us now set
N={xy.0|@yea}, T={(xyhxy)lxyecao}l

Definition 3.1. We say that: € W vanishes o™ = Iy U I if, for anyw € W, we have
Jw ou
u—dxX=— | —wdx.
0z 0z
2 Q

Let
H(div; 0) = {@ € (L2())* | div(®) € L3(w)}.
If @ € H(div; w), then we can define the tradev on dw, wherev is the unit outer normal
on the boundary ab. If this trace is zero, then, for any € H(w), we have

/wdiv(g)dxdyz—/vw.gdxdy.

w

We denote the space of such vector fields with vanishing tradéolgiv; ).
We now introduce the space

W = {v e (W)?| v vanishes o™ andT (v) € Ho(div; »)}, (3.4)
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whereT (v) = (T (v1), T (v2)) if v = (v1, v2). It is easy to see that this is a Hilbert space
for the inner-product defined by

(E,Q)W:/(y.w—i—g—v E}a—)dxdy—i—/dlv T(v))le(T(w))dxdy (3.5)
Z 0z
2

Proposition 3.1. (H}(52))? is dense iniv..

Proof. By Lemma 3.1, we know thatH,, 1(£2))2 is contained inW. Let v € W such that

(v.¢)w =0forallg € (H(£2))%. Our aim is to establish that= 0, which will complete
the proof. We do this in several steps.

Stepl. If &€ € D(0, hg) such thatf0 £(z)dz =1, and if w € D(w) (respectively,
in H(}(a))), then settingp(x, y, z) = w(x, y)£(z), we havep € D(£2) (respectively, in
H§(£2)) and, furtherT (¢) = w. Similarly, if ¢ € Ho(div; ), we have thaly = ¢& € W
and7 (¢ ) =¢.

Step2. If ¢ € (D(w))? andy = ¢&, we have(v, ¥ )w = 0. Thus

/(Q.Q)S(Z)dx—i-/%.Qé/(z)dx—i-/div(T(y))div(Q)dxdy:O.
2 2 )
Hence,

< Clglo.w-

/diV(T(g)) div(¢)dxdy

It follows that diMT (v)) € Hl(w).
Step3. Letgp € (D(£2))2. Using the result of Step 2, we deduce from the relation
(v,9)w =0, that

d
/_U_(pdx

Sincep was arbitrary, it follows thaii?v /922 € (L%(£2))2.
Step4. If ¥ € (D(£2))? and if we setp = 3y /dz, theng € (D(2))?> andT (¢) =0
Thus, for ally € (D(£2))?, the relation(v, 3y /dz)w = 0 yields

/v(div(T(y))).T(g)dx dy| < Clglo.e-

w

[vlo.2l¢lo.e +

83
w oo
0z 978

(ob)

It then follows from Lemma 3.4 that— 8%v /822 = c(x, y), andc € (L?(w))2.
Steps. Thus, for allp € (D(£2))?, we can rewritg v, ¢ )w = 0 as

/[g— V(div(T(y)))].T(g)(x, y)dxdy =0.

w
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But by Step 1, the map : (D(£2))2 — (D(w))? is surjective and thus it follows that
c(x, y)=V(div(T (v)))(x, y)

as elements iiZ2(0, 1))2.
Step6. Finally, letp € W. Then, by the preceding steps and Green’s formula (cf. the
definition of W),

(v, @)w = /[g— V(div(T(v)))].T(¢)dxdy =0.

Thusv = 0 and the proofis complete.0
We now introduce a subspace &fwhich will be needed in the sequel. Let
Wo={ve W |div(T(v))=0}. (3.6)

This space will play the role similar to that of vector fields with vanishing divergence
in the original problem. Just as the annihilator of such vector fields are gradients of scalar
functions, we have a characterization of the annihilato¥ef

Proposition 3.2. Let F € W/, the dual ofW, such thatF(v) = 0 for all v € Wp. Then,
there existg € L?(w) such that for every € W,

F(v) =/p(x,y)diV(T(y))(x,y)dxdy. (3.7)

w

Proof. Stepl. Let& € D(0, ho) such thatfgog(z) dz=1.1fve W, theny € Wop, where
Xi(x,y,2) =vi(x,y,2) — T(v)(x,y)é(z), i =1,2. Hence,F(x) =0. By the Riesz rep-
resentation theorem, there exigiss W such that, foralb € W, F(v) = (v, w)w. Thus,

F(v)=F(T(2)§) = (w. T(v)§),,

2
=Z/r,-(x,y)T(vi)(x,y)dxdy+/div(T(w))div(T(y))dxdy,
i=1, w

wherer; € L?(w) is given by

h(x,y) h(x.,y)8
w:
ri(x,y)= / w,-(x,y,z>é<z>dz+/ 8Z’(x,y,z)é’(z)dz.
0 0

Step2. On(Hg(w))?, define the linear functional

2
@(g):Z/rigoidxdy+/div(T(w))div(g)dxdy
i=1 ®
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for any ¢ € (Hg())?, p& € (HF(2))2 C W and T (¢€) = ¢. Thus, if die) =0, it
follows from Step 1 tha® (¢ ) = 0 and so, by de Rham’s theorem, there exists L2 (w)
such that

<1>(g)=/p(x,y)diV(g)(x,y)dxdy-
Forv e (H3(£2))?, we have thal'(v) € (H}(w))? andF (v) = & (T (v)). The result now
follows from the density of H}(2))2in W. O

Remark 3.1. Proceeding exactly as in the proof of Poincaré’s inequality (cf., for instance,
Kesavan [4]), we can show that there exists a congfantO such that fow € W,

v
vl < C|—=
0z

0,82

Thus, inWp, since di T (v )) = 0, the functiorv — |dv /3z|o. 2 defines a norm equivalent
to the norm inw.

4. Thelimit problem

From the a priori estimates (2.9), we deduce that, for a subsequeneey, a0, /97 —
du/dz ande (30, /9x) — z1, £(30,:/dy) — zo weakly in (L2(£2))3. But since{d0, /dx} is
bounded in(H ~1(£2))3, it follows thatz; = 0. In the same wayz, = 0.

Similarly, from the estimates (2.10), there exists a subsequence for vghiech p
weakly in L2(£2) and sinced p,/dz — 0 in H~1(£2), it follows thatdp/dz = 0 and, by
Lemma 3.2, thap(x, y, z) = p(x, y).

We will, henceforth, consider a subsequence (indexed yet againfby convenience)
for which all the above convergences are valid.

We first deduce some properties wfcoming out of the incomressibility condition
div(u,) =0.

Lemma 4.1. Let O, — u, 30,/9z — du/dz and e(d0./dx), e(30,/dy) — O weakly in
(L2(£2))3, whereu = (u1, uz, u3). Thenuz = 0anddiv(T («)) = 0, whereu = (u1, u2).

Proof. Since diu,) =0, we have

Ollg 1 Ollgo 10iic3
. ; = S _o. 4.1
ax + ay + e 0z 1)

If v e H1(£2), then, multiplying (4.1) by and integrating by parts, and then passing to
the limit, using the convergences stated in the hypotheses, we deduce that

0
/ug—vdxzo
0z
2

for all v € H(£2) and sausz = 0 by Corollary 3.1.
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Now, lety € D(w). Once again, from (4.1), we deduce that

o 1 [ ou
/ Ms’l(pdx—i- Sz(pdx—l——/ Ms's(de:O.
0x e 0z
2 2 2

But, sinceii, 3 € H(}(.Q) and ¢ is independent ot, the third integral vanishes and so,
thanks to (3.1) and the fact thaf = (i 1, s, 2) € (H($2))?, it follows that diA(7 (& ,))
=0. SinceT is continuous and linear, it is weakly continuous and s@®iw)) =0. O

Henceforth, we will set = (u, 0). Our limit problem will, therefore, be one satisfied
by u.

Proposition 4.1. Let (u,, p,) be solution of(2.8) such thatll, — u = (u, 0) in (L?(£2))3
weakly and letp, — p in L2(£2) weakly, so thate(d0,/dx), e(d0:/dy) — 0 and
90, /9z — du/dz weakly in(L2(£2))3. Then(u, p) € Wo x L?(£2) and satisfies the fol-
lowing variational inequality
dX—g/ ou dx
0z
2

/’8148( ydx + /‘ay
B (v—u oL
il PP 8 1%z

2/i.(y—g)dx—l—/pdiv(T(y—g))dxdy 4.2)
2

w

for everyv € W, wheref = (f1, f2, f3) = (f, f3). Further,p = p(x, y).
Proof. We have already observed that= p(x, y) and that (cf. Lemma 4.1) € Wo.

Letv = (v1, v2, v3) € (Hg(£2)) and sew, (x1, x2, x3) = V(x1, x2, x3/¢) € (Hg(£2:))°.
It then follows from (2.8) that

8145, 81), 8126,- av,- 1 8125,' av,-
£ 4 — — — )dx
H /Z( ox 9x | ay dy T2 9z oz

e f[BA)(3)-3 )]
B3
o f[BAC-()25)]

avl avz 181}3
/Zﬁ(vl Mez)dx+/pe dx
ox s 8z

o =1 Q2
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since di\u,) = 0. We now choose = (v, 0), with v € (H}(£2)). Then, ignoring some
positive terms on the right-hand side and passing to the limit-as0, we get, using the
various convergences announced earlier,

udn oy / 0y
H dz 0z § 0z
Q2 Q2

|2
Z K 37
2

Finally, sincep = p(x, y) and diMT (u)) = 0, we can replace the last integral on the right
by [, pdiv(T (v—u))dxdy. Thus we get (4.2) for all € (H(£2))? and the result follows

from the density of this space ¥ (cf. Proposition 3.1). O
du 0 v
M/a—za—z(y—z)dwrg/‘a—z
2

ou
dx — —
2 2

Thus, we get a variational inequality in the spa¥e The ‘pressurep can be recovered
from (4.3) by proceeding in a manner similar to that outlined by Duvaut and Lions [2],
which we now detail below.

As usual, setting = 2u andv = 0 successively in (4.3), we deduce that it is equivalent
to the system

dx

2
dX—i—g/‘g—l‘dx—i-/f.(y—g)dx—i—/pdiv(y)dx.
; f
2 2 2

If v e Wp, then (4.2) reads as

dX}/i.(g—g)dX. (4.3)
Q2

au |2 3
1 [ B0 ax+ g [o| %] dx — [, fvdx >0,
for everyv € Wy. Changingv to —v, we get that, for alb € Wy,
ou 9 d
M/—Z—ydx—/f.ydx gg/ 92| ax. (4.5)
0z 0z = 0z
2 2 2

Thus, setting

ou o
F(y):y,/a—fa—fdx—/i.ydx,
2 2

(4.5) tells us that is a continuous linear functional on the subspaceldf2))2 which
is the image oWy under the mapping — 7 (v) = dv /dz. Hence, by the Hahn—Banach
theorem, there exisis € (L°°(£2))2, with || [m| |lsc < 1, such that for alb € Wo,

a
F(g):—g/m.—ydx. (4.6)
0z
Q
In particular, it follows from (4.4) that

dx. 4.7
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Rewriting (4.6) as
du v v
wl| ——dx+g | m—dx— [ fwdx=0
0z 9z 0z =
2 2 Q

for everyv € Wo, we deduce, from Proposition 3.2, the existence &f L%(w) such that

9 d 9 .
" —E—ydx+g/m.—£dxdy—/f.ydx:/pdlv(T(y))dxdy (4.8)
0z 9z 0z =
2 2 2

w

forall v e W. Thus, if forv € W, we set

X /aﬂ 9 (w—u)dx+ / 0u| ix / Ou

= ——(v—u —|dx — —

H az dz — § 0z § 0z
2 2 2

- f-(y—z)dx—/pdiV(T(y—z))dxdy,

dx

2 w

it follows, from the preceding considerations, that

v v
2 2

since|| |m| |lco < 1. Thus,(u, p) satisfies (4.2).

Consequently, it is now enough to consider (4.3) over the spaces the limit problem
(for the unknownu).

If u, andu , are two solutions, then using, as a test function in the inequality fag
and vice versa, we get, in addition,

9
—u 8—Z(zl—zz)
2

Sinceu, —u, € Wy, it follows that (cf. Remark 3.2}, — u, = 0. We know that the limit
problem possesses a solution, viz. the limibf (i, 1, i1, 2). We can also prove this inde-
pendently, using the Galerkin method. Thus, the problem (4.3) admits a unique solution
in Wo.

2
dx > 0.

Remark 4.1. In view of the uniqueness of the solution of the limit problem, we deduce
that the entire sequenc@; 1, ii. 2) converges ta.. We have no result on the uniqueness
of p, even up to an additive constant.

5. Discussion

We now examine the implications of the limit problem (4.2) (or, equivalently, (4.3))
obtained in the previous section.
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Letusseb = —Vp + &, where
G ==+ gm,
g=py-tsem
m being as in (4.6). Thus, du /dz = 0, it follows that|G | < g since|| |m| [loo < 1. Now,
rewriting (4.7) as
d
—Z) dx =0,

ou
—|—m
9z — 0z

9w /32| #0

and taking into account the fact that| < 1, we deduce that

u ou
m.—=|—
— 0z 0z
on the set wher@u /9z| # 0. Hence, iflou /07| # 0, we get
ou ou /0z
C=pu—+g— . 5.1
ET M T 8o jaz] &
In this case, clearlyg| > g. We can thus write
du 0, if lo] <g,
mo= =1 = du/oz i~ (5.2)
0z 9~ 8Tou /7]’ if lo| > g,

which is a lower-dimensional ‘Bingham-like’ law.
If we now take into account (4.8), we get

d
/Qa_ﬂdxsz.ydx—/Vp(x,y).ydx
- L
Q 2

2

forall v e W. Thus,

Lol .

———=/f—Vpk,y) InQ

dz =
and on the set whell@u /3z| # 0, we get the system of differential equations (using (5.1))

0 [ ou L du /0z

oz "9z " 8 1ou /o]

We can perform an identical analysis on a two-dimensional model with reference do-

main

2={y0<y<hn},

} =f—Vp(x,y). (5.3)

wherer is a sufficiently smooth function and the thin layer given by
2 ={(x,») 10<y <eh()}.

The limit problem will be one similar to (4.2) or (4.3) involving only derivativesyinin
this case the spacés and Wy will be as follows:
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ad
W= {u e LA(2)] 8—” € L%(2), v=00nT, T(v) € HXO, 1)},
y
Wo={veW|T() =0},
wherel” denotes, as before, the upper and lower boundariesafid T is defined by

h(x)

TW)(x) = / v(x, y)dy.
0

We can again derive, mathematically, the following one-dimensional ‘Bingham-like’ law:
du [0, if lo] <g,
Py 16 —gson(dL), ifi5l>e

This has been used by engineers to model a Bingham fluid in thin layers (cf., for instance,
Liu and Mei [6]). The differential equation satisfied in the nonrigid zone will then turn out

to be
a ou toes ou ¥ ')
—_—— —_— — = —_ X
dy May gS9 dy 1—p )

wherep = p(x) is the pressure in the limit. We can integrate this equation in the nonrigid
zone and obtain the following result, which we state without proof.

Proposition 5.1. Assume thaf; is a function ofx alone and thatu/dy is continuous
in 2.
@ If

ou

Ju
— —(x,1
o (x,0) 3 (x,1) >0,

then(du/dy)(x, y) # 0 for all y € [0, h(x)] and thus the vertical line througtx, 0)
does not traverse the rigid zone.

(i) If
ou du
— —(x,1
ay(x,O)ay(x, ) <0,

then we can find < vo(x) < v1(x) < h(x) such that(du/dy)(x, y) vanishes only in
a subset ofvo(x), v1(x)]. In this case, necessarily,

g <h@)|filx) — p'(x)]

and

0 d
%(x, 0)H£(x, 1)‘ <u ()| ) — p'0)| - g)*.



418 R. Bunoiu, S. Kesavan / J. Math. Anal. Appl. 293 (2004) 405418

Acknowledgments

This work was carried out when the second author was visiting the laboratory LMMAS of the Université de
Metz, France. He thanks the laboratory for its warm hospitality. The authors thank the Referee for constructive
criticism on the first version of this paper (which only presented the two-dimensional case).

References

[1] A. Bourgeat, A. Mikelt, A note on homogenization of Binghano' through a porous medium, J. Math.
Pures Appl. 72 (1993) 405-414.

[2] G. Duvaut, J.-L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, 1972.

[3] V. Girault, P.-A. Raviart, Finite Element Methodsrfblavier—Stokes Equations, Theory and Algorithms, in:
Springer Series in Computational Mathatics, vol. 5, Springer-Verlag, 1986.

[4] S. Kesavan, Topics in Functional Analg and Applications, Wiley Eastern, 1989.

[5] J.-L. Lions, E. Sanchez-Palencia, Ecoulemenndluide viscoplastique de Bingham dans un milieu poreux,
J. Math. Pures Appl. 60 (1981) 341-360.

[6] K.F. Liu, C.C. Mei, Approximate equations for theosl spreading of a thin sheet of Bingham plastic fluid,
Phys. Fluids A 2 (1990) 30-36.



