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Abstract

Let A be a unital separable simple C�-algebra with TRðAÞp1 and a be an automorphism.

We show that if a satisfies the tracially cyclic Rokhlin property then TRðAsaZÞp1: We also

show that whenever A has a unique tracial state and am is uniformly outer for each mða0Þ and
ar is approximately inner for some r40; a satisfies the tracial cyclic Rokhlin property. By

applying the classification theory of nuclear C�-algebras, we use the above result to prove a

conjecture of Kishimoto: if A is a unital simple AT-algebra of real rank zero and aAAutðAÞ
which is approximately inner and if a satisfies some Rokhlin property, then the crossed

product AsaZ is again an AT-algebra of real rank zero. As a by-product, we find that one

can construct a large class of simple C�-algebras with tracial rank one (and zero) from crossed

products.
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1. Introduction

The Rokhlin property in ergodic theory was adopted to the context of von
Neumann algebras by Connes [2]. It was adopted by Herman and Ocneanu [17] for
UHF-algebras. R^rdam [30] and Kishimoto [13] introduced the Rokhlin property to
a much more general context of C�-algebras (see also [9]). Kishimoto had been
studying automorphisms on UHF-algebras and more generally, on simple AT-
algebras that satisfy a Rokhlin property [12,14]. More recently, Phillips studied finite
group actions which satisfy certain type of Rokhlin property on some simple C�-
algebras [26].
A conjecture of Kishimoto can be formulated as follows: Let A be a unital simple

AT-algebra of real rank zero and a be an approximately inner automorphism.
Suppose that a is ‘‘sufficiently outer’’, then the crossed product of the AT-algebra by
a; AsaZ is again a unital simple AT-algebra. In particular, he studied the case that
A has a unique tracial state.
Kishimoto proposed that the appropriate notion of the outerness is the Rokhlin

property [14]. He also introduced the notion of uniformly outer [13]. In [14], he
showed that if A is a unital simple AT-algebra of real rank zero with a unique tracial
state and aAAutðAÞ is approximately inner, then a has the Rokhlin property if and
only if am is uniformly outer for all ma0:He also showed that the Rokhlin property,
in this situation, is equivalent to say that AsaZ has real rank zero, and it is
equivalent to say that AsaZ has a unique tracial state. Kishimoto showed [12] that,
if in addition, A is a UHF-algebra then AsaZ is in fact a unital simple AT-algebra.
He also showed in [15] that the conjecture is true for the case that A is assumed to
have a unique tracial state, both KiðAÞ are finitely generated and K1ðAÞD/ Z; and, in
addition, that aAHinnðAÞ; where HinnðAÞ is the subgroup of automorphisms which
are homotopy to inner automorphisms. Among other things, we prove in this paper
the Kishimoto conjecture for all cases that A has a unique tracial state. If the term of
‘‘sufficiently outer’’ is interpreted as ‘‘tracial Rokhlin’’ property, then Kishimoto’s
conjecture holds: Let A be a unital simple AT-algebra and a be an approximate inner
automorphism. Suppose that a has the tracial Rokhlin property, then AsaT is
again a unital simple AT-algebra.
We take the advantage of the development in Elliott’s program of the classification

of nuclear C�-algebras (see [4,6], for example). In particular, we use the classification
result in [23], where unital separable simple C�-algebras satisfying the Universal
Coefficient Theorem and with tracial topological rank zero are classified by their K-
theory. Adopting a Phillips’s observation, we note that if A is a unital simple C�-
algebra with TRðAÞp1 and aAAutðAÞ satisfies a so-called tracial cyclic Rokhlin
property, then TRðAsaZÞp1 so that the classification result in [23,24] can be
applied. Using Kishimoto’s techniques, we show that if ar is approximately inner (for
some integer r40), the tracial Rokhlin property introduced in [28] implies the tracial
cyclic Rokhlin property. Using a result in [28], we actually show a more general
result (see Theorem 3.5).
The assumption that a is approximately inner is to insure that the crossed products

remain finite (see the introduction of Kishimoto [14]). We relax this restriction
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slightly by only requiring that ar is approximately inner for some integer r40: It turns
out that in a number of cases, while there are automorphisms which are not
approximate inner, all (outer) automorphisms a have this property, i.e., for some
integer r40; ar are approximately inner (see Theorem 4.2). We show that our results
also cover many cases in which A may have arbitrary tracial space (see Corollary 4.4).
It is shown by Gong [8] that a unital simple AH-algebra with very slow dimension

growth has tracial topological rank one or zero. Moreover, Elliott and Gong [7]
show that the class of unital simple AH-algebras with very slow dimension growth
can be classified by their K-theoretical data. An improvement of this classification
has been made so that unital simple nuclear C�-algebras with tracial topological rank
no more than one which satisfy the Universal Coefficient Theorem can also be
classified by their K-theoretical data [24]. However, until now, all interesting
examples of unital simple nuclear C�-algebras that have tracial topological rank one
are those AH-algebras with very slow dimension growth (and those of similar
inductive limit construction). Theorem 2.7 also provides ways to construct unital
simple C�-algebras with tracial topological rank one by crossed products (see
Corollary 4.4 and Example 4.5). It also creates the opportunity to apply the
classification results in [24].

2. The Rokhlin properties

The following conventions will be used in this paper. Let A be a unital C�-algebra.

(i) We denote by AutðAÞ the set of all automorphisms on A and by TðAÞ the tracial
state space of A:

(ii) Two projections p; qAA are said to be equivalent if they are Murray–von
Neumann equivalent. That is, there exists a partial isometry wAA such that
w�w ¼ p and ww� ¼ q: Then we write pBq:

(iii) Let F and S be subsets of A and e40: We write xAeS if there exists yAS such
that jjx� yjjoe; and write FCeS if xAeS for all xAF :

(iv) Let a and b be two positive elements in A: We write ½a
p½b
 if there exists an
element xAA such that a ¼ x�x and xx�AbAb: If ab ¼ ba ¼ 0; then we write
½aþ b
 ¼ ½a
 þ ½b
: Let p be a projection and b non-zero positive element in A:
Note that ½p
p½b
 implies that p is Murray–von Neumann equivalent to a

projection in the hereditary C�-algebra bAb:
(v) We denote by Ið0Þ the class of all finite-dimensional C�-algebras, and by IðkÞ the

class of all C�-algebras with the form pMnðCðXÞÞp; where X is a finite CW
complex with dimension k and pAMnðCðXÞÞ is a projection.

We recall the definition of tracial topological rank of C�-algebras.

Definition 2.1 (Lin [20, Theorem 6.13]). Let A be a unital simple C�-algebra and
kAN: Then A is said to have tracial topological rank no more than k if and only if for
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any finite set FCA; and e40 and any non-zero positive element aAA; there exists a

C�-subalgebra BCA with BAIðkÞ and idB ¼ p such that

(1) jj½x; p
jjoe for all xAF ;
(2) pxpAeB for all xAF ;
(3) ½1� p
p½a
:

We write TRðAÞpk:

Remark 2.2 (Lin [20, Corollary 6.15]). Let A be a simple unital C�-algebra
with stable rank one which satisfies the Fundamental Comparison Property.
Then TRðAÞpk if and only if for any finite set FCA; e40; and any non-zero

positive element aAA; there exists a C�-subalgebra BCA with BAIðkÞ and idB ¼ p

such that

(1) jj½x; p
jjoe for all xAF ;
(2) pxpAeB for all xAF ;
(3) tð1� pÞoe for all tATðAÞ:

Recall that A is said to have the Fundamental Comparison Property if p; qAA are two
projections with tðpÞotðqÞ for all tATðAÞ; then p is equivalent to a subprojection of q:

The following is defined in [28, Definition 2.1].

Definition 2.3. Let A be a simple unital C�-algebra and let aAAutðAÞ: We say a has
the tracial Rokhlin property if for every finite set FCA; every e40; every nAN; and
every non-zero positive element xAA; there are mutually orthogonal projections
e0; e1;y; enAA such that:

(1) jjaðejÞ � ejþ1jjoe for 0pjpn� 1:

(2) jjeja� aejjjoe for 0pjpn and all aAF :

(3) With e ¼
Pn

j¼0 ej; ½1� e
p½x
:

We define a slightly stronger version of the tracial Rokhlin property similar to the
approximately Rokhlin property in [12, Definition 4.2].

Definition 2.4. Let A be a simple unital C�-algebra and let aAAutðAÞ: We say a has
the tracial cyclic Rokhlin property if for every finite set FCA; every e40; every nAN;
and every non-zero positive element xAA; there are mutually orthogonal projections
e0; e1;y; enAA such that

(1) jjaðejÞ � ejþ1jjoe for 0pjpn; where enþ1 ¼ e0:

(2) jjeja� aejjjoe for 0pjpn and all aAF :

(3) With e ¼
Pn

j¼0 ej; ½1� e
p½x
:
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Remark 2.5. (i) The only difference between the tracial Rokhlin property and the
tracial cyclic Rokhlin property is that in condition (1) we require that jjaðenÞ �
e0jjoe:
(ii) If A has real rank zero, stable rank one and has weakly unperforated K0ðAÞ (or

if A has SP-property, stable rank one, and the Fundamental Comparison Property),
then condition (3) in both Rokhlin property can be replaced by the following

condition ð3Þ0 using the standard argument: ð3Þ0 With e ¼
Pn

j¼0 ej; we have tð1�
eÞoe for all tATðAÞ:
(iii) If A is a simple unital C�-algebra with real rank zero, stable rank one, and has

weakly unperforated K0ðAÞ; the Rokhlin property in the sense of Kishimoto [12]
implies the tracial Rokhlin property [28].

Recall that a C�-algebra A is said to have SP-property if any non-zero hereditary
C�-subalgebra of A has a non-zero projection.
Obviously, the tracial cyclic Rokhlin property implies the tracial Rokhlin property.

The converse is also true in many cases. We will discuss it in the next section.
Before stating the characterization of the tracial Rokhlin property we cite the

following notion introduced by Kishimoto [13].

Definition 2.6. Let A be a unital C�-algebra and aAAutðAÞ: We say a is uniformly
outer if for any aAA; any projection pAA; and any e40; there are finite number of
projections p1;y; pn in A such that

P
i pi ¼ p and jjpiaaðpiÞjjoe for i ¼ 1;y; n:

The following result is the tracial Rokhlin version of Kishimoto’s result in the case
of simple unital AT-algebras with a unique trace [12, Theorem 2.1].

Theorem 2.7 (Osaka and Phillips [28]). Let A be a simple unital C�-algebra with

TRðAÞ ¼ 0; and suppose that A has a unique tracial state. Then the following

conditions are equivalent:

(1) a has the tracial Rokhlin property.
(2) am is not weakly inner in the GNS representation pt for any ma0:
(3) AsaZ has real rank zero.
(4) AsaZ has a unique trace.

Note that the uniformly outerness implies that a is not weakly inner in the GNS
representation pt by an a-invariant tracial state t on A by Kishimoto [13, Lemma
4.4].

Remark 2.8. When A is a simple unital C�-algebra with tracial topological rank zero,
if aAAutðAÞ has the tracial Rokhlin property, it is proved in [28] that the crossed
product AsaZ has real rank zero, stable rank one, and the order on projections
over AsaZ is determined by traces. But it is not known that the crossed product
AsaZ has tracial topological rank zero. However, if a has the tracial cyclic Rokhlin
property, then we have the following result based on an observation of Phillips [26].
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Theorem 2.9. Let A be a simple unital C�-algebra with TRðAÞp1: Suppose that

aAAutðAÞ has the tracial cyclic Rokhlin property. Then TRðAsaZÞp1:
In particular, if A has TRðAÞ ¼ 0; then TRðAsaZÞ ¼ 0:

Proof. We first note that, by [11], AsaZ is a simple C�-algebra.
Let e40; nAN; and FCAsaZ be a finite set. To simplify notation, without loss

of generality, we may assume that

F ¼ faigm
i¼1,fug;

where aiAA and jjaijjp1 (i ¼ 1; 2;y;m) and u is a unitary which implements a: Fix
bAðAsaZÞþ\f0g:
Since A has SP-property and a is outer, AsaZ also has SP-property [10,

Theorem 4]. In particular, there is a non-zero projection rAbðAsaZÞb: Let
r0AA be a non-zero projection. Since AsaZ is simple, by 1.8 of [3], it is easy
to find a non-zero projection r0Ar0Ar0 such that r0 is equivalent to a subprojection
of r (see, for example, [10, Theorem 4]). Hence there are projections r1; r2AA

such that r1r2 ¼ 0 and r1 þ r2 is equivalent to a subprojection of r (see, for
example, [22, 3.5.7]).
Since a has the tracial cyclic Rokhlin property, for any d40 with doe

5
there exist

projections e1; e2 such that

(1) jjaðeiÞ � eiþ1jjod for 1pip2 (e3 ¼ e1).
(2) jj½ei; ak
jjod for 1pkpm:
(3) ½1� e1 � e2
p½r1
:

Set p ¼ e1 þ e2: From (1) above, one estimates that

jjup� pujj ¼
X2
i¼1

uei �
X2
i¼1

eiþ1u

�����
�����

�����
�����

¼
X2
i¼1
jjuei � eiþ1ujjo2d:

Hence, together with (2) above, we obtain

(4) jj½p; a
jjo2d for all aAF :

There is a unitary vAAsaZ such that jjv� 1jjod and vu�eiuv� ¼ eiþ1 for 1pip2:
Set w ¼ vu�; and consider the C�-algebra D generated by e1Ae1 and e2we1: Then
D is isomorphic to e1Ae1#M2ðCÞ: Note that pw ¼ e1wþ e2w ¼ we2 þ we1 ¼ wp:
Moreover, pwpAD: Since jjpup� pwpjjod; one has that pupAdD: By (2) again,
we have

jjpajp� ðe1aje1 þ e2aje2Þjjo2d; j ¼ 1; 2;y;m:

It follows that pFpC2dD:

ARTICLE IN PRESS
H. Lin, H. Osaka / Journal of Functional Analysis 218 (2005) 475–494480



Since A is a simple C�-algebra with SP-property, there exists a non-zero projection
r3Ae1Ae1 such that r3 is equivalent to a subprojection of r2: Since TRðe1Ae1Þp1
(TRðe1Ae1Þ ¼ 0 if TRðAÞ ¼ 0), TRðDÞp1 (TRðDÞ ¼ 0 if TRðAÞ ¼ 0) by Lin [20,

Theorem 5.3]. So there exists a C�-subalgebra BAIðkÞ (k ¼ 1 or k ¼ 0) and
projection e ¼ 1B such that

(5) jj½pap; e
jjodoe for all aAF ;
(6) pFpCdB and
(7) ½p� e
p½r3
:

From (3), (4), (5), and (7) above we estimate that

(8) For any fAF

jjef � fejj ¼ jjeðpf � fpÞ þ efp� pfeþ ðpf � fpÞejj

p jjpf � fpjj þ jjepfp� pfpejj þ jjpf � fpjj

o 5doe

and
(9)

½1� e
 ¼ ½1� pþ p� e
;

¼ ½1� p
 þ ½p� e


p ½r1
 þ ½r3
p½r1
 þ ½r2
p½r
p½b
:

From (6) and pFpC2dD; we have
(10) pFpC4dB:

Hence from estimates (8)–(10) we conclude that AsaZ has tracial topological less
than or equal to 1.
In the case of TRðAÞ ¼ 0 B can be chosen to be finite dimensional. Hence, in that

case, TRðAsaZÞ ¼ 0: &

3. Approximately inner automorphisms

Lemma 3.1. Let A be a unital separable C�-algebra and a : A-A be an approximate

inner automorphism. Suppose that fpjg is a central sequence of projections. Then there

exists a central sequence of partial isometries fwjg such that w�j wj ¼ pj and wjw
�
j ¼

aðpjÞ; j ¼ 1; 2;y :
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Proof. Fix a finite subset FCA which is in the unit ball of A: Let e40: Choose a
unitary vAUðAÞ such that

jjaðaÞ � v�avjjoe=8 for all aAF :

Since a is an automorphism, aðpjÞ is also a central sequence of projections. Choose a
sufficiently large j so that

jjpja� apjjjoe=8 for all aAF and jjaðpjÞv� vaðpjÞjjoe=8:

Since a is approximately inner, we obtain another unitary zAUðAÞ such that

jjz�pjz� aðpjÞjjoe=8 and jjz�az� aðaÞjjoe=8 for all aAF :

It follows that

jjðvz�Þpjðzv�Þ � aðpjÞjjpjjvz�pjzv� � vaðpjÞv�jj þ jjvaðpjÞv� � aðpjÞjjoe=4:

Let xj ¼ vz�pj: Then x�j xj ¼ pj and

jjxjx
�
j � aðpjÞjjoe=4:

From the above we also have

jjvz�azv� � ajjoe=4 and jjvz�a� avz�jjoe=4 for all aAF :

On the other hand, for any aAF ;

jjxja� axjjjpjjvz�pja� vz�apjjj þ jjvz�apj � avz�pjjjoe=8þ e=4 ¼ 3e=8:

There is a unitary uAUðAÞ such that jju� 1jjoe=4 such that

uðxjx
�
j Þu� ¼ aðpjÞ:

Define wj ¼ uxj: Then wjw
�
j ¼ pj and wjw

�
j ¼ aðpjÞ: Moreover we have that

jjwja� awjjjoe for all aAF :

Since F is arbitrary, the lemma follows. &

Lemma 3.2. Let A be a unital separable C�-algebra and aAAutðAÞ for which ar is

approximately inner for some integer rX1: Let mAN; m0Xm be the smallest integer

such that m0 ¼ 0 mod r and l ¼ mþ ðr� 1Þðm0 þ 1Þ:
Suppose that feðnÞi g; i ¼ 0; 1;y; l; n ¼ 1; 2;y; are l þ 1 sequences of projections in

A satisfying the following:

jjaðeðnÞi Þ � e
ðnÞ
iþ1jjodn; lim

n-N

dn ¼ 0;
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e
ðnÞ
i e
ðnÞ
j ¼ 0 if iaj; e

ðnÞ
i Be

ðnÞ
j in A

and for each i; feðnÞi g is a central sequence.

Then for each i ¼ 0; 1; 2;y;m; there is a central sequence of partial isometries

fwðnÞi g such that

ðwðnÞi Þ
�
w
ðnÞ
i ¼ p

ðnÞ
i and w

ðnÞ
i ðw

ðnÞ
i Þ
� ¼ p

ðnÞ
iþ1; i ¼ 0; 1;y;m� 1;

where p
ðnÞ
i ¼

Pr�1
j¼0 e

ðnÞ
iþjðm0þ1Þ: Moreover, for each i;

lim
n-N

jjaðpðnÞi Þ � p
ðnÞ
iþ1jj ¼ 0:

Proof. Since ar is approximately inner, by applying Lemma 3.1, for
each i; j ¼ 0; 1;y; l; one obtains central sequences of partial isometries fzði; j; nÞg
such that

zði; j; nÞ�zði; j; nÞ ¼ e
ðnÞ
i and zði; j; nÞzði; j; nÞ� ¼ arjðeðnÞi Þ:

Note that

jjarjðeðnÞi Þ � e
ðnÞ
iþrj jjorjdn:

There is a unitary uði; j; nÞAUðAÞ; for each i and j; such that

jjuði; j; nÞ � 1jjo2ðrlÞdn and uði; j; nÞ�arjðeðnÞi Þuði; j; nÞ ¼ e
ðnÞ
iþrj :

Since limn-N dn ¼ 0; for each i and j; fuði; j; nÞg is central. Therefore, to simplify
notation, we may assume that

zði; j; nÞ�zði; j; nÞ ¼ e
ðnÞ
i and zði; j; nÞzði; j; nÞ� ¼ e

ðnÞ
iþrj :

Define

p
ðnÞ
i ¼

Xr�1
j¼0

e
ðnÞ
iþjðm0þ1Þ:

Then for each i; one checks easily that there are central sequences of partial
isometries fwði; nÞg such that

wði; nÞ�wði; nÞ ¼ p
ðnÞ
i and wði; nÞwði; nÞ� ¼ p

ðnÞ
iþ1; i ¼ 0; 1;y;m� 1:
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For example, (with m0 ¼ kr), one defines

wð0; nÞ ¼ zð1; k; nÞ� þ zð1þ ðm0 þ 1Þ; k; nÞ� þ?þ zð1þ ðr� 2Þðm0 þ 1Þ; k; nÞ�

þ zð0; ðr� 1Þk þ 1; nÞ:

Then (with m0 ¼ kr)

wð0; nÞwð0; nÞ�

¼ zð1; k; nÞ�zð1; k; nÞ þ zð1þ ðm0 þ 1Þ; k; nÞ�zð1þ ðm0 þ 1Þ; k; nÞ þ?

þ zð1þ ðr� 2Þðm0 þ 1Þ; k; nÞ�zð1þ ðr� 2Þðm0 þ 1Þ; k; nÞ

þ zð0; ðr� 1Þk þ 1; nÞzð0; ðr� 1Þk þ 1; nÞ�

¼ e
ðnÞ
1 þ e

ðnÞ
1þðm0þ1Þ þ?þ e

ðnÞ
1þðr�2Þðm0þ1Þ þ e

ðnÞ
1þðr�1Þðm0þ1Þ

¼ p
ðnÞ
1

(note that e
ðnÞ
ððr�1Þkþ1Þr ¼ e

ðnÞ
ðr�1Þkrþr

¼ e
ðnÞ
ðr�1Þm0þr

¼ e
ðnÞ
1þðr�1Þðm0þ1Þ) and

wð0; nÞ�wð0; nÞ

¼ zð1; k; nÞzð1; k; nÞ� þ zð1þ ðm0 þ 1Þ; k; nÞzð1þ ðm0 þ 1Þ; k; nÞ� þ?

þ zð1þ ðr� 2Þðm0 þ 1Þ; k; nÞzð1þ ðr� 2Þðm0 þ 1Þ; k; nÞ�

þ zð0; ðr� 1Þk þ 1; nÞ�zð0; ðr� 1Þk þ 1; nÞ

¼ e
ðnÞ
1þkr þ e

ðnÞ
1þðm0þ1Þþkr

þ?þ e
ðnÞ
1þðr�2Þðm0þ1Þþkr

þ e
ðnÞ
0

¼ e
ðnÞ
m0þ1 þ e

ðnÞ
2ðm0þ1Þ þ?þ e

ðnÞ
ðr�1Þðm0þ1Þ þ e

ðnÞ
0

¼ p
ðnÞ
0 :

Since, for each i and j; fzði; j; nÞg is central, so is fwði; nÞg:
From the construction we know that for each i

jjaðpðnÞi Þ � p
ðnÞ
iþ1jjp

Xr�1
j¼0
jjaðeðnÞ

iþjðm0þ1ÞÞ � e
ðnÞ
iþ1þjðm0þ1Þjj

p rdn-0 ðn-NÞ: &
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Let fEi;jg be a system of matrix units and K be the compact operators on c2ðZÞ
where we identify Ei;i with the one-dimensional projection onto the functions

supported by figCZ: Let S be the canonical shift operator on c2ðZÞ: Define an
automorphism s of K by sðxÞ ¼ SxS� for all xAK: Then sðEi;jÞ ¼ Eiþ1;jþ1: For any

NAN let PN ¼
PN�1

i¼0 Ei;i:

Lemma 3.3 (Kishimoto [12, 2.1]). For any Z40 and nAN there exist NAN and

projections e0; e1;y; en�1 in K such that

Xn�1
i¼0

eipPN ;

jjsðeiÞ � eiþ1jjoZ; i ¼ 0;y; n� 1; en ¼ e0;

n dim e0

N
41� Z:

Theorem 3.4. Let A be a unital separable simple C�-algebra with TRðAÞp1 and

arAAutðAÞ be an approximately inner automorphism for some integer rX1: Suppose

that a has the tracial Rokhlin property then a has the tracial cyclic Rokhlin property.

Proof. Let e40: Let e=24Z40 and mAN be given. Choose N which satisfies the
conclusion of Lemma 3.3 (with this Z and n ¼ m). Identify PNKPN with MN : Let
G ¼ fEiþ1;i : i ¼ 0; 1;y;N � 1g be a set of generators of MN : Let e0; e1;y; em�1 be
as in the conclusion of Lemma 3.3.
For any e40; there is d40 depends only on N such that, if

jjag� gajjod

for gAG; then

jjaei � eiajjoe=2; i ¼ 0; 1;y; n:

We assume that doZ: Fix a finite subset F 0CA:
Choose m0AN such that m0Xm is the smallest integer with m0 ¼ 0 mod r: Let

L ¼ N þ ðr� 1Þðm0 þ 1Þ:
Since a has the tracial Rokhlin property, there exists a sequence of projections

feðkÞi : i ¼ 0; 1;y;Lg satisfying the following:

jaðeðkÞi Þ � e
ðkÞ
iþ1jjod=4rN; 0pipL� 1; e

ðkÞ
i e

ðkÞ
j ¼ 0; if iaj;

lim
k-N

jjeðkÞi a� ae
ðkÞ
i jj ¼ 0 for all aAA; i ¼ 0; 1;y;L

ARTICLE IN PRESS
H. Lin, H. Osaka / Journal of Functional Analysis 218 (2005) 475–494 485



and

t 1�
XL�1
i¼0

e
ðkÞ
i

 !
oZ for all tATðAÞ; k ¼ 1; 2;y :

By applying Lemma 3.2, we obtain a central sequence fwðkÞi g in A such that

ðwðkÞi Þ
�
w
ðkÞ
i ¼ P

ðkÞ
0

and

w
ðkÞ
i ðw

ðkÞ
i Þ
� ¼ P

ðkÞ
i ; k ¼ 0; 1;y; i ¼ 0; 1;y;N;

P
ðkÞ
i P

ðkÞ
j ¼ 0; iaj;

jjaðPðkÞi Þ � P
ðkÞ
iþ1jjo

d
4L

; k ¼ 0; 1;y; i ¼ 0; 1;y;N � 1;

t 1�
XN�1
i¼0

P
ðkÞ
i

 !
oZ for all tATðAÞ

where P
ðkÞ
i ¼

Pr�1
j¼0 e

ðkÞ
iþðm0þ1Þj for i ¼ 0; 1;y;N:

It follows that for each i; falðwðkÞi Þg; l ¼ 0; 1;y;N are all central sequences. As the

same argument in Lemma 3.2 there is a unitary ukAUðAÞ with jjuk � 1jjod=2N such

that ad uk3aðPðkÞi Þ ¼ P
ðkÞ
iþ1; i ¼ 0; 1;y;N � 1: Put bk ¼ ad uk3a; and wðkÞ ¼ w

ðkÞ
0 :

Choose a large k; such that

jjbl
kðwðkÞÞa� abl

kðwðkÞÞjjod for all aAF 0;

l ¼ 0; 1;y;N:

Now let C1 and C2 be the C�-algebras generated by wðkÞ; b1kðwðkÞÞ;y; bN�1
k ðwðkÞÞ

and by wðkÞ; b1kðwðkÞÞ;y; bN
k ðwðkÞÞ; respectively. Note that C1DMN ; C2DMNþ1:

Define a homomorphism F : C1-K by

Fðbi
kðwðkÞÞÞ ¼ Eiþ1;i; i ¼ 0; 1;y;N � 1

(see Lemma 3.3). Then one has s3FjC1
¼ F3bkjC1

and FðC1Þ ¼ PNKPN : Now we

apply Lemma 3.3 to obtain mutually orthogonal projections e0; e1;y; em�1 in MN

such that

jjsðeiÞ � eiþ1jjoZ; 0pipm� 1; em ¼ e0;
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Let pi ¼ F�1ðeiÞ; i ¼ 0; 1;y;m� 1: One estimates that

t
XN�1
i¼0

P
ðkÞ
i �

Xm�1
i¼0

pi

 !
o1�

Xm�1
i¼0

dimðe0Þ
N

¼ 1� m dimðe0Þ
N

oZo
e
2

for all tATðAÞ: So one has mutually orthogonal projections p0; p1; p2;y; pm�1 such
that

jjbkðpiÞ � piþ1jjo
e
2
; i ¼ 0; 1; 2;y;m� 1; pm ¼ p0:

By the choice of d; one also has

jjapi � piajjoe; i ¼ 0; 1;y;m� 1 for all aAF 0

and

t 1�
Xm�1
i¼0

pi

 !
ot 1�

XN�1
i¼0

P
ðkÞ
i

 !
þ e
2
oZþ e

2
oe

for all tATðAÞ: Since

jjbk � ajjod=2oe=2

one finally has

jjaðpiÞ � piþ1jjoe; i ¼ 0; 1;y;m� 1; pm ¼ p0:

In other words, a has the tracial cyclic Rokhlin property. &

Theorem 3.5. Let A be a unital separable simple C�-algebra with TRðAÞ ¼ 0 which

has a unique tracial state and satisfies the Universal Coefficient Theorem. Suppose that

arAAutðAÞ is approximately inner for some integer rX1 and that am is uniformly outer

for any integer ma0: Then AsaZ is a simple AH-algebras with no dimension growth

with real rank zero.

Proof. Note that since a is outer, AsaZ is simple by Kishimoto [11]. From
Theorem 2.7 a has the tracial Rokhlin property. Since arAAutðAÞ is approximately
inner for some integer rX1; this implies that a has the tracial cyclic Rokhlin property
by Theorem 3.4. So from Theorem 2.9 TRðAsaZÞ ¼ 0: Using the classification
theorem of Lin [23] we conclude that AsaZ is a simple AH-algebra with no
dimension growth with real rank zero. &

The following shows that the Kishimoto’s conjecture that we mentioned in the
introduction is true at least for the case that the simple AT-algebra has a unique
tracial state. In Corollary 3.7, we show that if one agrees that the ‘‘sufficiently outer’’

ARTICLE IN PRESS
H. Lin, H. Osaka / Journal of Functional Analysis 218 (2005) 475–494 487



means the automorphism has the tracially Rokhlin property then we do not need to
assume that A has a unique tracial state.

Corollary 3.6. Let A be a unital simple AT-algebra with a unique trace and real rank

zero, and let aAAutðAÞ such that a is approximately inner. If am is uniformly outer for

any integer ma0; or a has the tracial Rokhlin property, then AsaZ is a unital simple

AT-algebra of real rank zero.

Proof. From the following Pimsner–Voiculescu exact sequence [27],

K0ðAÞ ���!id�a�1�
K0ðAÞ ���!i� K0ðAsaZÞ

m k

K1ðAsaZÞ  ���
i�

K1ðAÞ  ���
id�a�1�

K1ðAÞ:

We see that K0ðAsaZÞ and K1ðA�a ZÞ are torsion free. From Theorems 2.7, 3.4,
and 2.9 we know that TRðAsaZÞ ¼ 0 and AsaZ satisfies the UCT. There-
fore K0ðAsaZÞ is a weakly unperforated Riesz group. It follows from [5] that
there is a unital simple AT-algebra B with real rank zero which has the same
ordered scaled K-theory of AsaZ: It follows from Theorem 5.1 of Lin [23]
that ADB: &

Corollary 3.7. Let A be a unital simple AT-algebra (with real rank zero) and

aAAutðAÞ: Suppose that a is approximately inner and a has the tracial Rokhlin

property. Then AsaZ is a unital simple AT-algebra (with real rank zero.)

Proof. It follows from Theorem 3.4 that a actually has the tracial cyclic Rokhlin
property. Then, by Theorem 2.9, TRðAsaZÞp1: As in the proof of Corollary 3.6,
AsaZ has torsion free K-theory. We then apply the classification theorem in [23]
(for real rank zero case) or apply [24] (for real rank one case) to conclude that
AsaZ is a unital simple AT-algebra (and with real rank zero). &

Remark 3.8. Kishimoto in [12,14,15] proved that if A is a simple unital AT-algebra
of real rank zero with a unique trace, and aAAutðAÞ is an approximately inner with
the Rokhlin property, then AsaZ is also a simple unital AT-algebra under the
assumption that both K0ðAÞ and K1ðAÞ are finitely generated with K1ðAÞaZ and
aAHInnðAÞ: Corollary 3.6 shows that the extra conditions of K�ðAÞ and aAHInnðAÞ
are not necessary. Corollary 3.7 shows that Kishimoto’s conjecture holds in general
(without assuming that A has the unique tracial state) if the ‘‘sufficiently outer’’ is
replaced by the tracial Rokhlin property. One should note that the tracial Rokhlin
property is weaker than the Rokhlin property used in Kishimoto’s work. (See
Remark 2.5(iii).) Moreover, tracially cyclic Rokhlin property is related to
‘‘approximate Rokhlin’’ property in 4.2 of Kishimoto [12] which is also weaker
than the Rokhlin property used in Kishimoto’s work. If one allows the ‘‘sufficiently
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outer’’ replaced by tracially cyclic Rokhlin property, then AsaZ is always a unital
simple AT-algebra without even assuming that ar is approximately inner but
assuming AsaZ has torsion free K-theory.

Theorem 3.9. Let A be a unital separable simple C�-algebra with TRðAÞ ¼ 0 or

TRðAÞ ¼ 1 and aAAutðAÞ such that ar is approximately inner for some integer r40:
Suppose that a has tracial Rokhlin property. Then TRðAsaZÞ ¼ 0; or TRðAsaZÞ ¼
1: Furthermore, if, in addition, A satisfies the Universal Coefficient Theorem, then

AsaZ is a simple AH-algebra with no dimension growth.

Proof. The first part follows from Theorem 3.4 and Theorem 2.9. For the last part,
by Lin [24], A is a simple AH-algebra with no dimension growth. By the first part,
TRðAsaZÞp1; it follows from [24] again that AsaZ is also a simple AH-algebra
with no dimension growth. &

Remark 3.10. In Theorem 3.4, we assume that TRðAÞp1: In fact, we only need to
assume that A has the property (SP) and has the Fundamental Comparison
Property. Suppose that A is a unital separable simple C�-algebra with TRðAÞ ¼ 0
and with a unique tracial state. Suppose also that AsaZ has a unique tracial state
(unique ergodic). Then by applying Theorems 3.4, 2.9 and 2.7, TRðAsaZÞ ¼ 0: On
the other hand, in Corollaries 3.6 and 3.7, if we assume only that ar is approximate
inner (for r41) and a has the tracial Rokhlin property, then AsaZ may not be an
AT-algebra. This is because AsaZ may have torsion. However, it is a unital AH-
algebra with no dimension growth by Theorem 3.5. But, in Corollaries 3.6 and 3.7, if
we assume that ar is approximate inner for some integer r and AsaZ has torsion
free K-theory, then conclusion of both Corollaries 3.6 and 3.7 hold. To allow
torsion, related to the Kishimoto’s conjecture, we proved (in Theorem 3.9) the
following: If A is a unital simple AH-algebra with no dimension growth (with real
rank zero) and aAAutðAÞ has the tracial Rokhlin property and ar is approximate
inner for some integer r40; then AsaZ is again a unital simple AH-algebra with no
dimension growth (and with real rank zero).

4. Examples

Let G and F be abelian groups. Recall that P extðG;FÞ is the subgroup of those
extensions

0-F-E-G-0

so that each finitely generated subgroup of G lifts. If A is a separable C�-algebra
which satisfies the Universal Coefficient Theorem, then, for any s-unital C�-algebra
B; KLðA;BÞ ¼ KKðA;BÞ=P extðK�ðAÞ;K��1ðBÞÞ:

Lemma 4.1. Let A be a separable amenable C�-algebra satisfying the UCT. Suppose

that aAAutðAÞ such that ðaÞ�i ¼ idKiðAÞ; i ¼ 0; 1: Suppose that extZðKi�1ðAÞ;KiðAÞÞ=
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P extðKi�1ðAÞ;KiðAÞÞ is finite. Then there are integers r40 and k40 such that

½arþk
 ¼ ½ak
 in KLðA;AÞ:

Proof. Consider ½am
 � ½a
; for m ¼ 1; 2;y : Since ðaÞ�i ¼ idKiðAÞ; i ¼ 0; 1; by the

Universal Coefficient Theorem [31], one computes that

½am
 � ½a
AextZðK�þ1ðAÞ;K�ðAÞÞ:

Since extZðKi�1ðAÞ;KiðAÞÞ=P extðKi�1ðAÞ;KiðAÞÞ is finite, there are positive integers
r and k such that

ð½arþk
 � ½a
Þ ¼ ð½ak
 � ½a
Þ in KLðA;AÞ:

It follows that

½arþk
 ¼ ½ak
 in KLðA;AÞ: &

Theorem 4.2. Let A be a unital separable simple C�-algebra with TRðAÞ ¼ 0 satisfying

the UCT. Suppose that aAAutðAÞ: In any of the following cases, ar is approximately

inner for some integer r40: Consequently, if am is uniformly outer for all mAZ\f0g (or

a has tracial Rokhlin property), a has tracial cyclic Rokhlin property and

TRðAsaZÞ ¼ 0: In particular, AsaZ is a simple AH-algebra with no dimension

growth and real rank zero.

(1) K0ðAÞ ¼ D; where D is a countable dense subgroup of R and K1ðAÞ ¼ Z; or

K1ðAÞ ¼ f0g;
(2) K0ðAÞ ¼ D; where D is a finitely generated countable dense subgroup of R and

K1ðAÞ ¼ Z or K1ðAÞ is finite;
(3) K0ðAÞ ¼ D"G; with

K0ðAÞþ ¼ fðr; xÞ j rAD; r40; xAGg,fð0; 0Þg

and D is a dense subgroup of R such that for any non-zero element dAD and any

integer nX1; there is eAD such that me ¼ d for some mXn; where G ¼ Z or G is

finite and K1ðAÞ ¼ Z; or K1ðAÞ ¼ f0g;
(4) K0ðAÞ ¼ Q"G; where G ¼ Z or G is finite and K1ðAÞ ¼ Z; or K1ðAÞ is a finite

group.

Proof. In all cases, it suffices to show that ar is approximately inner for some integer
rX1:
For (1), it is clear that a�0 ¼ idK0ðAÞ: If K1ðAÞ ¼ Z; since a�1 is an isomorphism,

a�1ð1Þ ¼71: Therefore a2�i ¼ idKiðAÞ: Since KiðAÞ are torsion free, ½a2
 ¼ ½idA
 in
KLðA;AÞ: It follows from Theorem 2.4 of Lin [21] that a2 is approximately inner.

ARTICLE IN PRESS
H. Lin, H. Osaka / Journal of Functional Analysis 218 (2005) 475–494490



For (2), as in (1), a�0 ¼ idK0ðAÞ: Also if K1ðAÞ ¼ Z; then a2�1 ¼ idK1ðAÞ: If K1ðAÞ is
finite, since a�1 is an isomorphism, there exists r1X1 such that ar1

�1 ¼ idK1ðAÞ: Let

b ¼ a2r1 : Then b�i ¼ idKiðAÞ; i ¼ 0; 1: However, in this case,

extZðD;K1ðAÞÞ ¼ f0g and extZðK1ðAÞ;K0ðAÞÞ is finite:

It follows from Lemma 4.1 that ½bmþk
 ¼ ½bk
 in KLðA;AÞ for some integer m; kX1:
By Theorem 2.3 of Lin [21], there exists a sequence of unitaries such that

lim
n-N

ad un3b
kðaÞ ¼ bmþkðaÞ for all aAA:

Since bk is an automorphism, it follows that bm is approximately inner, or amð2r1Þ is
approximately inner.

For (3), as above, one has that a2�1 ¼ idK1ðAÞ: The assumption on D implies that

there is no non-zero homomorphism from D to Z or a finite group. One then checks

that there is an integer r1X1 such that ar1
�0 ¼ idK0ðAÞ: Put b ¼ a2r1 : Then b�i ¼ idKiðAÞ;

i ¼ 0; 1: To see that bm is approximately inner, we note that extZðD;K1ðAÞÞ ¼
P extðD;K1ðAÞÞ since D is torsion free. One then computes that

extZðK0ðAÞ;K1ðAÞÞ=P extðK0ðAÞ;K1ðAÞÞ ¼ extZðG;K1ðAÞÞ=P extðK0ðAÞ;K1ðAÞÞ

which is finite, and extZðK1ðAÞ;K0ðAÞÞ ¼ f0g: Thus one can apply the same
argument as in case (2) by applying Lemma 4.1.

For (4), as in cases (2) and (3), there is r1X1 such that ar1
�i ¼ idKiðAÞ; i ¼ 0; 1:

Moreover, since Q is divisible,

extZðK1ðAÞ;QÞ ¼ f0g:

Because K1ðAÞ ¼ Z; or K1ðAÞ is finite,

extZðK1ðAÞ;K0ðAÞÞ ¼ extZðK1ðAÞ;GÞ is also finite:

Since Q is torsion free, extZðQ;K1ðAÞÞ ¼ P extðQ;K1ðAÞÞ: One then computes that

extZðK0ðAÞ;K1ðAÞÞ=P extðK0ðAÞ;K1ðAÞÞ ¼ extZðG;K1ðAÞÞ=P extðK0ðAÞ;K1ðAÞÞ

which is finite. Thus the argument in case (3) applies. &

Proposition 4.3. Let A be a simple unital C�-algebra with TRðAÞ ¼ 0; and B be a

simple unital C�-algebra with TRðBÞp1: Suppose that aAAutðAÞ has the tracial cyclic

Rokhlin property. Then for any bAAutðBÞ a#bAAutðA#minBÞ has the tracial cyclic

Rokhlin property.

Proof. It follows from [18] TRðA#minBÞp1: Hence A#minB has SP-property,
stable rank one and the Fundamental Comparison Property [20, Proposition 6.2,
Theorems 6.9, 6.11].
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Let FCA#minB be a finite set, nAN; and e40:Without loss of generality, we may
assume that there exist a finite set FACA and FBCB such that F ¼ FA#FB:
Since a has the tracial cyclic Rokhlin property, there exist mutually orthogonal

projections e0; e1;y; enAA such that

(1) jjaðejÞ � ejþ1jjoe for 0pjpn; where enþ1 ¼ e0:

(2) jjeja� aejjjoe for 0pjpn� 1 and all aAFA:

(3) t 1�
Pn

j¼0 ej

� �
oe for all tracial states t on A:

(See Remark 2.5(ii).)
Set fi ¼ ei#1B for 0pipn: Then fi are mutually orthogonal projections in

A#minB such that

(1) jjða#bÞðfjÞ � fjþ1jjoe for 0pjpn; where fnþ1 ¼ f0:

(2) jjfja� afjjjoe for 0pjpn� 1 and all aAF :

(3) t 1�
Pn

j¼0 fj

� �
oe for all tracial states t on A#minB:

This means that a#b has the tracial cyclic Rokhlin property by Remark
2.5(ii). &

Corollary 4.4. Let A be a separable simple amenable unital C�-algebra with TRðAÞ ¼
0 which satisfies the UCT, and B be a simple amenable unital C�-algebra with

TRðBÞp1: Suppose also that A has a unique tracial state and aAAutðAÞ such that am

is uniformly outer for all ma0 and ar is approximately inner for some integer rX1:
Then for any bAAutðBÞ; a#b has the tracial cyclic Rokhlin property and TRðDÞp1;
where D ¼ ðA#BÞsa#bZ:

An unexpected consequence of the above corollary is that it provides a new way to
construct unital simple C�-algebras with tracial topological rank one. All previous
examples are inductive limit construction (see [8]). Since there is basically no
restriction on B and b; a great number of those simple C�-algebras D with TRðDÞ ¼
1 can be obtained from Corollary 4.4. Since TRðBÞ ¼ 1; one certainly expects that
most such D has TRðDÞ ¼ 1 but not TRðDÞ ¼ 0: To convince the reader that it is
likely the case, we compute the tracial rank in a very special case below. From its
construction, it should be clear how other example can be constructed.
Denote AffðAÞ the space of all affine continuous functions on TðAÞ: Given a

projection pAMnðAÞ for some integer nX1 we define rAðpÞðtÞ ¼ ðt#TrÞðpÞ for all
tATðAÞ; where Tr is the standard trace on MnðCÞ: Then rAðpÞAAffðTðAÞÞ:

Example 4.5. Let A be a unital UHF-algebra with K0ðAÞ ¼ Q and a be in AutðAÞ so
that am is uniformly outer for all ma0 (or a is uniquely ergodic). Then a has the
tracial cyclic Rokhlin property by Kishimoto [12, Lemma 4.3] and Theorem 3.5. Let
B be a unital simple AT-algebra for which K0ðBÞ ¼ Q and K1ðBÞ ¼ Z"Z

and AffðTðBÞÞ ¼ CRð½0; 1
Þ: Existence of such simple AT-algebra was given by
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Thomsen [32]. It follows from Section 9 of Thomsen [32] that there is bAAutðBÞ such
that b�1ðx; yÞ ¼ ð�x; yÞ for ðx; yÞAZ"Z; b�0 ¼ idK0ðBÞ and t3bðbÞ ¼ tðbÞ for all bAB

and tATðBÞ: It should be noted that t3aðaÞ ¼ tðaÞ for all aAA and tATðAÞ: Put
g ¼ a#b and C ¼ A#B and D ¼ CsgZ:

By the Kunneth formula one computes that C is a unital simple (AT-algebra) with
K0ðCÞ ¼ Q and K1ðCÞ ¼ Q"Q: One computes that g�0 ¼ idK0ðCÞ and g�1ððx; yÞÞ ¼
ð�x; yÞ for ðx; yÞAQ"Q:
It follows from Proposition 4.3 that g has the tracial cyclic Rokhlin property.

Moreover TRðDÞp1: To check that TRðDÞ ¼ 1; we first compute that, by Pimsner–
Voiculescu’s exact sequence and by the divisibility of Q; we have K0ðDÞ ¼ Q"Q

and K1ðDÞ ¼ Q"Q: Consider tracial states with the form t#t; where tATðAÞ and
tATðBÞ: Note all these tracial states are g invariant. Thus they give tracial states on
D: Note that TðAÞ is a single point. Thus we may identify TðBÞ with TðAÞ#TðBÞ:
Hence AffðTðAÞ#TðBÞÞ ¼ CRð½0; 1
Þ: Let e1 ¼ rDðð1; 0ÞÞ and e2 ¼ rDðð0; 1ÞÞ: Then

rDðK0ðDÞÞ ¼ fxe1 þ ye2 : ; x; yAQg:

We view TðBÞCTðDÞ: Thus one has a surjective affine homomorphism
L : AffðTðDÞÞ-AffðTðBÞÞ: It is easy to see that L3rDðK0ðDÞÞ being rank two
cannot be dense in CRð½0; 1
Þ: It follows from [1, Theorem 6.9] that D has real rank
other than zero (actually one). It follows from Theorem 7.1(c) of Lin [20] that
TRðDÞ ¼ 1:
If one insists to get non-zero torsion in K-theory, one may start, for example, with

K0ðAÞ ¼ Q and K1ðAÞ ¼ Z=pZ:

Acknowledgments

Most of this work was done when the first author was visiting Ritsmeikan
University. He acknowledges the support of JSPS Grant for Scientific Research of
Japan. During the work he was also supported by National Science Foundation of
USA. The second author also acknowledges the support of JSPS Grant for Scientific
Research of Japan. Both authors would like to thank Masaru Nagisa for a fruitful
discussion.

References

[1] B. Blackadar, K-theory for operator algebras, Mathematical Sciences Research Institute Publications,

Vol. 5, Springer, New York, 1986.

[2] A. Connes, Outer conjugacy class of automorphisms of factors, Ann. Sci. Ecole Norm. Sup. 8 (1975)

383–420.

[3] J. Cuntz, The structure of multiplication and addition in simple C�-algebras, Math. Scand. 40 (1977)

215–233.

[4] G.A. Elliott, On the classification of C�-algebras of real rank zero, J. Reine Angew. Math. 443 (1993)

179–219.

[5] G.A. Elliott, Dimension groups with torsion, Internat. J. Math. 1 (1990) 361–380.

ARTICLE IN PRESS
H. Lin, H. Osaka / Journal of Functional Analysis 218 (2005) 475–494 493



[6] G.A. Elliott, G. Gong, On the classification of C�-algebras of real rank zero, II, Ann. of Math. 144

(1996) 497–610.

[7] G.A. Elliott, G. Gong, L. Li, On the classification of simple inductive limit C�-algebras, II: The
isomorphism theorem, preprint.

[8] G. Gong, On the classification of simple inductive limit C�-algebras, I: The reduction theorem,

preprint.

[9] M. Izumi, The Rokhlin property for automorphisms of C�-algebras, Mathematical Physics in

Mathematics and Physics (Siena, 2000), Fields Inst. Commun., Vol. 30, American Mathematical

Society, Providence, RI, 2001, pp. 191–206.

[10] J.A. Jeong, H. Osaka, Extremal rich C�-crossed products and the cancellation property, J. Austral.

Math. Soc. (Series A) 64 (1998) 285–301.

[11] A. Kishimoto, Outer automorphisms and reduced crossed products of simple C�-algebra, Comm.
Math. Phys. 81 (1981) 429–435.

[12] A. Kishimoto, The Rokhlin property for automorphisms of UHF algebras, J. Reine Angew.

Math. 465 (1995) 183–196.

[13] A. Kishimoto, The Rokhlin property for shifts on UHF algebras and automorphisms of Cuntz

algebras, J. Funct. Anal. 140 (1996) 100–123.

[14] A. Kishimoto, Automorphisms of AT algebras with the Rokhlin property, J. Operator Theory 40

(1998) 277–294.

[15] A. Kishimoto, Unbounded derivation in AT-algebras, J. Funct. Anal. 160 (1998) 270–311.

[17] R. Herman, A. Ocneanu, Stability for integer actions on UHF C�-algebras, J. Funct. Anal. 59 (1984)
132–144.

[18] S. Hu, H. Lin, Y. Xu, The tracial topological rank of C�-algebras (II), Indiana Univ. Math. J.,

to appear.

[20] H. Lin, Tracial topological ranks of C�-algebras, Proc. London Math. Soc. 83 (2001) 199–234.

[21] H. Lin, Classification of simple TAF C�-algebras, Canad. J. Math. 53 (2001) 161–194.

[22] H. Lin, An Introduction to the Classification of Amenable C�-algebras, World Scientific, New Jersey,

London, Singapore, Hong Kong, Bangalore, 2001.

[23] H. Lin, Classification of simple C�-algebras with tracial topological rank zero, Duke Math. J., to

appear.

[24] H. Lin, Simple C�-algebras with tracial topological rank one, arXiv.org math.OA/0401240.

[26] N.C. Phillips, Crossed products by finite cyclic group actions with the tracial Rokhlin property,

arXiv.org math.OA/0306410.

[27] M. Pimsner, D. Voiculescu, Exact sequences for K-groups and Ext-groups of certain cross-product

C�-algebras, J. Operator Theory 4 (1) (1980) 93–118.

[28] H. Osaka, N.C. Phillips, Furstenberg transformations on irrational rotation algebras, in preprint.

[30] M. R^rdam, Classification of certain infinite simple C�-algebras, J. Funct. Anal. 131 (1995) 415–458.
[31] J. Rosenberg, C. Schochet, The Ku’’nneth theorem and the universal coefficient theorem for

Kasparov’s generalized K-functor, Duke Math. J. 55 (1987) 431–474.

[32] K. Thomsen, Limits of certain subhomogeneous C�-algebras, Me’m. Soc. Math. Fr. (N.S.) 71 (1997)

(1998)

Further reading

A. Kishimoto, Non-commutative shifts and crossed products, J. Funct. Anal. 200 (2003) 281–300.

H. Lin, Tracially AF C�-algebras, Trans. Amer. Math. Soc. 353 (2001) 693–722.

Q. Lin, N.C. Phillips, C�-algebras of minimal diffeomorphisms, preprint 2000.

ARTICLE IN PRESS
H. Lin, H. Osaka / Journal of Functional Analysis 218 (2005) 475–494494


	The Rokhlin property and the tracial topological rank
	Introduction
	The Rokhlin properties
	Approximately inner automorphisms
	Examples
	Acknowledgements
	References


