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For a second-order elliptic equation in divergence form we inves-
tigate conditions on the coefficients which imply that all solutions
are Lipschitz continuous or differentiable at a given point. We as-
sume the coefficients have modulus of continuity satisfying the
square-Dini condition, and obtain additional conditions that exam-
ples show are sharp. Our results extend those of previous authors
who assume the modulus of continuity satisfies the Dini condition.
Our method involves the study of asymptotic properties of solu-
tions to a dynamical system that is derived from the coefficients of
the elliptic equation.
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0. Introduction

We consider the regularity of weak solutions of a linear uniformly elliptic equation in divergence
form in an open set U of Rn for n � 2:

Lu := ∂i
(
aij(x)∂ ju

) = 0 in U , (1)
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where we have used the summation convention, the aij = a ji are bounded, measurable, real-valued

functions, and by a weak solution of (1) we mean that u ∈ H1,2
�oc(U ), i.e. ∇u is locally square-integrable,

and satisfies ∫
U

aij(x)∂ ju∂iηdx = 0 for all η ∈ C∞
0 (U ). (2)

The classical results of De Giorgi [4] and Nash [19] show that u is locally Hölder continuous in U .
When the coefficients are continuous in U , then it is well known (cf. [1]) that ∇u ∈ L p

�oc(U ) for
1 < p < ∞; in fact, this is even true when the coefficients are in VMO (cf. [5]). If the coefficients are
Dini-continuous in U , then u is known to be continuously differentiable (cf. [12,22]). In the present
paper, we find conditions on the coefficients aij , milder than Dini-continuity, under which u must be
Lipschitz continuous, or even differentiable, at a given point.

Let us fix an interior point of U , which for convenience we shall assume is the origin, x = 0. Using
a change of independent variables, we may assume that aij(0) = δi j . Suppose that

sup
|x|=r

∣∣aij(x) − δi j
∣∣ � ω(r) as r → 0, (3)

where ω(r) is a continuous, nondecreasing function for 0 � r < 1 satisfying ω(0) = 0. We shall not
require the Dini condition on ω, i.e. r−1ω(r) ∈ L1(0,1); instead we assume that ω satisfies the square-
Dini condition:

1∫
0

ω2(r)
dr

r
< ∞. (4)

However, examples show that additional conditions are required to ensure that a solution is even
Lipschitz continuous.

Our additional conditions for regularity are derived from a dynamical system that we shall now
describe. Let

R(r) := �

∫
Sn−1

(
A(rθ) − nA(rθ)θ ⊗ θ

)
dsθ , (5)

where the slashed integral denotes mean value, A = (aij), r = |x|, θ = x/|x| ∈ Sn−1, Aθ ⊗ θ is the
outer product of the vectors Aθ and θ , and ds denotes standard surface measure on Sn−1. Note that
|R(r)| � cω(r), where we use | · | to denote the matrix norm. Also note that R need not be symmetric.
Let us consider the dynamical system

dφ

dt
+ R

(
e−t)φ = 0 for T < t < ∞, (6)

where t = − log r and T is sufficiently large. We shall find that the regularity of weak solutions of (1)
is determined by the asymptotic behavior as t → ∞ of solutions of (6). We say that (6) is uniformly
stable as t → ∞ if for every ε > 0 there exists a δ = δ(ε) > 0 such that any solution φ of (6) satisfying
|φ(t1)| < δ for some t1 > 0 satisfies |φ(t)| < ε for all t � t1 (cf. [3]). In addition, we are interested in
the condition that every solution of (6) is asymptotically constant, i.e. φ(t) → φ∞ as t → ∞. These two
stability conditions are independent of each other (cf. Section 5). On the other hand, it is easy to
see that r−1 R(r) ∈ L1(0, ε) implies that (6) is uniformly stable and every solution is asymptotically
constant as t → ∞; in particular, if ω satisfies the Dini condition, then these conditions are met.
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We are now in a position to state the main result of this paper; since we are only concerned with
regularity at x = 0, the coefficients are not required to be continuous elsewhere.

Theorem 1. Suppose that aij satisfy (3) where ω satisfies (4) and that (6) is uniformly stable. Then every weak

solution u ∈ H1,2
�oc(U ) of (1) is Lipschitz continuous at x = 0 and satisfies

∣∣u(x) − u(0)
∣∣ � c|x|

r

(
�

∫
|y|<r

∣∣u(y)
∣∣2

dy

)1/2

for |x| < r/2, (7)

where r is sufficiently small. In addition, if every solution of (6) is asymptotically constant, then u is differen-
tiable at x = 0 and we have

∂ ju(0) = lim
r→0

n

r
�

∫
Sn−1

u(rθ)θ j dsθ . (8)

In this theorem and throughout this paper, c denotes a constant whose value may change with the
instance but does not depend upon the solution u or the parameter r.

Remark 1. If the aij are radial functions, then R(r) ≡ 0 and we only require (3) and (4) to conclude
that weak solutions are differentiable at x = 0. Moreover, if aij(x) = a0

i j(|x|) + a1
i j(x), then the R in (6)

is completely determined by a1
i j ; for example, if the a1

i j are Dini-continuous then weak solutions are
differentiable even though aij need only be square-Dini continuous.

We also investigate specific analytic conditions on the coefficients aij that imply the desired
asymptotic properties of (6). Let us introduce the symmetric matrix S = − 1

2 (R + Rt), i.e.

S(r) := �

∫
Sn−1

(
n

2

[
A(rθ)θ ⊗ θ + θ ⊗ A(rθ)θ

] − A(rθ)

)
dsθ , (9)

and

μ(S) = largest eigenvalue of S. (10)

In Section 4 we use the theory of dynamical systems to show that if there exist positive constants ε
and K so that

r2∫
r1

μ
(

S(ρ)
)dρ

ρ
< K for all ε > r2 > r1 > 0, (11)

then (6) is uniformly stable. As a consequence, Theorem 1 implies the following:

Corollary 1. Suppose that (3), (4), and (11) are satisfied. Then every weak solution u of (1) is Lipschitz contin-
uous at x = 0.

What about conditions for differentiability at x = 0? As already observed, r−1 R(r) ∈ L1(0, ε) is
sufficient, but is there a weaker condition? Let us suppose that for r ∈ (0, ε) the improper integral
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r∫
0

R(ρ)
dρ

ρ
converges (perhaps not absolutely). (12a)

Examples show (see Section 5) that this condition is not sufficient to ensure that (6) is uniformly
stable; we shall require an additional condition such as

R(r)

r

r∫
0

R(ρ)
dρ

ρ
∈ L1(0, ε), (12b)

which is also weaker than assuming R(r)r−1 ∈ L1(0, ε). In Section 4 we show that (12a) and (12b)
together imply not only that (6) is uniformly stable but asymptotically constant. Consequently, Theo-
rem 1 yields the following:

Corollary 2. Suppose that (3) and (4) are satisfied, as well as both (12a) and (12b). Then every weak solution u
of (1) is differentiable at x = 0.

Remark 2. Just as (12a) and (12b) have replaced the more restrictive R(r)r−1 ∈ L1(0, ε), the assump-
tion (12b) may be replaced by

r∫
0

R(ρ)

( ρ∫
0

R(σ )
dσ

σ

)
dρ

ρ
converges (perhaps not absolutely), (13a)

and

R(r)

r

r∫
0

R(ρ)

( ρ∫
0

R(σ )
dσ

σ

)
dρ

ρ
∈ L1(0, ε). (13b)

This process may be iterated to obtain further refinements.

Remark 3. The condition (12a) can be expressed as a volume integral (computed in the sense of
Cauchy principal value):

∫
|x|<r

(
A(x) − n

A(x)x

|x| ⊗ x

|x|
)

dx

|x|n converges for r ∈ (0, ε). (14)

This form of the condition is better suited for changes of coordinates, so can be expressed without the
simplifying assumption aij(0) = δi j ; however, (12b) is not so easily handled in this way. In a similar
spirit, the following condition ∫

|x|<ε

∣
∣A(x) − I

∣
∣

dx

|x|n < ∞ (15)

is sufficient for Corollary 2 and easily generalizes to the case aij(0) 	= δi j ; however, it implies r−1 R(r) ∈
L1(0, ε), so is less general than assuming (12a) and (12b).
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Let us consider one more consequence of Theorem 1. In Section 4 we show that

ε∫
r

μ
(

S(ρ)
)dρ

ρ
→ −∞ as r → 0 (16)

implies that the null solution of (6) is asymptotically stable. Thus Theorem 1 yields the following:

Corollary 3. Suppose that (3), (4), and (11) are satisfied. Moreover, assume (16). Then every weak solution u
of (1) is differentiable at x = 0 and all derivatives are zero: ∂ ju(0) = 0 for j = 1, . . . ,n.

In Section 5 we discuss an example which illustrates the sharpness of the conditions in Theorem 1
and its corollaries.

Now we describe the main ideas of the proof of Theorem 1, which is given in Section 3. We write u
in the form

u(x) = u0
(|x|) + 
v(|x|) · 
x + w(x), (17)

where

u0(r) := �

∫
Sn−1

u(rθ)dsθ , vk(r) := n

r
�

∫
Sn−1

u(rθ)θk dsθ , (18)

and w has zero spherical mean and first spherical moments:

�

∫
Sn−1

w(rθ)dsθ = 0 = �

∫
Sn−1

w(rθ)θi dsθ for i = 1, . . . ,n. (19)

We shall find that 
v satisfies a second-order differential system depending upon u0 and w , but it is
equivalent to a first-order system that only depends on w . Moreover, in this first-order system, the
behavior of both 
v(r) and r
v ′(r) is controlled by the asymptotic properties of the solutions to (6). To
be more specific, we need to assume that ω(r) does not vanish faster than r as r → 0:

ω(r)r−1+κ is nonincreasing for r near 0 and some κ > 0. (20)

Then the assumption that (6) is uniformly stable ensures not only that 
v(r) and r
v ′(r) are bounded
as r → 0, but that |u0(r) − u0(0)| and |w(x)| are both bounded by cω(r)r, so we obtain

u(x) = u(0) + 
v(|x|) · 
x + O
(
ω(r)r

)
as r = |x| → 0, (21)

which confirms that u is Lipschitz at x = 0. If we also know that all solutions of (6) are asymptotically
constant, then 
v(r) = 
v(0) + o(1) as r → 0, which shows that u is differentiable at x = 0.

We observe that the square-Dini condition has been encountered by several other authors in
a variety of contexts. It was used by Stein and Zygmund [21] in their investigation of the differ-
entiability of functions, by Fabes, Sroka, and Widman [8] in their study of Littlewood–Paley estimates
for parabolic equations, and more recently by several authors (cf. [7,2,9,13]) investigating the absolute
continuity of elliptic measure and L2 boundary conditions for the Dirichlet problem. We also used
the square-Dini condition in [15] and [16] to study equations in nondivergence and double diver-
gence form. In addition, we should note that the techniques used in this paper are related to, but
independent of, the asymptotic theory developed in [14].
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Finally, we mention that the techniques and results of this paper apply to weak solutions of more
general linear equations than (1): lower-order terms in u (even with mild singularities in the coef-
ficients) as well as a nonhomogeneous right-hand side (with certain integrability conditions) can be
treated. However, sharp conditions on singular coefficients in lower-order terms requires additional
analysis beyond the results of this paper.

1. Potential theory estimates in RRRn

We will encounter an equation in the following form

−w = g in Rn\{0}, (22)

where g is a distribution and we consider the derivatives in (22) in the distributional sense. We will
encounter certain orthogonality conditions with respect to the spherical mean, so let us summarize
these in the following:

Lemma 1.

(a) Suppose that f ∈ L1
�oc(R

n\{0}) and g is bounded with compact support. Then

∫
Rn

f
(|x|)g(x)dx =

∫
Rn

f (x)g
(|x|)dx. (23a)

(b) Suppose that ∇ f ∈ L1
�oc(R

n\{0}). For all r > 0

f (r) = �

∫
Sn−1

f (rθ)dsθ = 0 ⇒ �

∫
Sn−1

θi∂i f (rθ)dsθ = 0. (23b)

(c) Suppose that ∇ f ∈ L1
�oc(R

n\{0}). For all r > 0 and any i = 1, . . . ,n

�

∫
Sn−1

θi f (rθ)dsθ = 0 ⇒ �

∫
Sn−1

∂i f (rθ)dsθ = 0 = �

∫
Sn−1

θiθ j∂ j f (rθ)dsθ . (23c)

Proof. The proof of (a) is trivial. To prove (b), we consider φ ∈ C∞
0 (0,∞) and compute

〈
�

∫
θi∂i f dsθ , φ

〉
=

∞∫
0

�

∫
θi∂i f (rθ)dsθ φ(r)dr = 1

|Sn−1|
∫
Rn

xi∂i f (x)φ
(|x|)|x|−n dx

= − 1

|Sn−1|
∫
Rn

nf (x)φ
(|x|)|x|−n dx − 1

|Sn−1|
∫
Rn

xi f (x)
[
φ(r)r−n]′∣∣

r=|x|θi dx

= −
∞∫

0

(
�

∫
Sn−1

f (rθ)dsθ

)
φ′(r)dr = 0

where ′ denoted d/dr. To prove (c), we again consider φ ∈ C∞
0 (0,∞) and compute
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〈
�

∫
∂i f ds, φ

〉
=

∞∫
0

�

∫
Sn−1

∂i f (rθ)ds φ(r)dr = 1

|Sn−1|
∫
Rn

∂i f (x)|x|1−nφ
(|x|)dx

= − 1

|Sn−1|
∫
Rn

f (x)
[
r1−nφ(r)

]′∣∣
r=|x|θi dx

= −
∞∫

0

∫
Sn−1

f (rθ)θi ds
[
r1−nφ(r)

]′
rn−1 dr = 0.

The proof of the remaining identity in (23b) is similar. �
Note that (23a) enables us to define the spherical mean of a distribution. In fact, for f ∈

L1
�oc(R

n\{0}), let us define

f (rθ)⊥ = f (rθ) − P f (rθ), (24)

where P f is defined by

P f (rθ) = �

∫
Sn−1

f (rφ)dsφ + nθk �

∫
Sn−1

φk f (rφ)dsφ.

Using

�

∫
Sn−1

θkθ� dsθ = 1

n
δk� for k, � = 1, . . . ,n,

it is clear that (for each r > 0) P is the projection of f onto the functions on Sn−1 spanned by
1, θ1, . . . , θn . For the same reason as (23a), we have∫

Rn

P ( f )g dx =
∫
Rn

f P (g)dx (25)

for g bounded with compact support. This also allows us to define P on distributions. In fact, one
particular instance of (22) that we are interested in is

−w = [∂i f i]⊥ in Rn\{0}, (26)

where f i ∈ L1
�oc(R

n\{0}). We will solve (26) by convolution with Γ (|x|), the fundamental solution
for −, but we are interested in controlling the growth of the solution near x = 0 using mean values
over annuli. We consider L p-means for any p ∈ (1,∞):

Mp(w, r) =
(

�

∫
Ar

∣∣w(x)
∣∣p

dx

)1/p

, (27)

where Ar = {x: r < |x| < 2r} and w may be scalar or vector-valued. To control the growth of the first
derivatives of functions we introduce

M1,p(w, r) = rMp(∇w, r) + Mp(w, r).
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Proposition 1. Suppose n � 2, p ∈ (1,∞), and f = ( f i) with fi ∈ L p
�oc(R

n\{0}) satisfies∫
|x|<1

|x|∣∣ f (x)
∣∣dx < ∞, and

∫
|x|>1

∣∣ f (x)
∣∣|x|−n−1 dx < ∞.

Then convolution by Γ defines a solution w ∈ H1,p
�oc (R

n\{0}) of (26) that satisfies P w = 0 and

M1,p(w, r) � c

(
r−n

r∫
0

Mp( f ,ρ)ρn dρ + r2

∞∫
r

Mp( f ,ρ)ρ−2 dρ

)
. (28)

In (28) and throughout this paper, c denotes a constant; in other instances, the value of c may
change line by line without change in notation.

Proof of Proposition 1. We may assume that f i ∈ C1
0(Rn\{0}) since the general case may be handled

by an approximation argument. Using (25), let us write the solution of (26) as

w(x) =
∫
Rn

Γ
(|x − y|)(∂i f i(y) − P (∂i f i)(y)

)
dy

=
∫
Rn

[
Γ

(|x − y|) − P (Γx)
(|y|, ŷ

)]
∂i f i(y)dy, ŷ = y/|y|,

where Γx(y) = Γ (|x − y|); clearly P w = 0. To calculate P (Γx), we use an expansion of Γ in spherical
harmonics. Let Hk denote the spherical harmonics of degree k and let N(k) = dim Hk . For each k,
choose an orthonormal basis {φk,m: m = 1, . . . , N(k)} for Hk; for k = 1, note that φ1,m(θ) = √

nθm . For
notational convenience, let us assume n � 3; the case n = 2 is analogous. For |x| < |y| we can write
Γ (|x − y|) as a convergent series

Γ
(|x − y|) =

∞∑
k=0

|x|k
|y|n−2+k

N(k)∑
m=1

φk,m(x̂)φk,m( ŷ). (29)

Since
∫

φk,m(θ)dsθ = 0 for k > 0, the spherical mean of Γ is given by

�

∫
Sn−1

Γ
(|x − y|)dsŷ = cn|y|2−n = Γ

(|y|).
We can also use (29) and the orthogonality of the φk,� to compute

�

∫
Sn−1

θ�Γx
(|y|θ)

dsθ = |x|
|y|Γ

(|y|)x̂�.

Consequently,

P (Γx)
(|y|, ŷ

) =
(

1 + n
|x|
|y| x̂ · ŷ

)
Γ

(|y|).
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By symmetry, it is clear how to modify these projections for |x| > |y|, so we obtain the following:

w(x) =
∫

|y|>|x|

[
Γ

(|x − y|) − Γ
(|y|) − n

|x|
|y|Γ

(|y|)x̂ · ŷ

]
∂i f i(y)dy

+
∫

|y|<|x|

[
Γ

(|x − y|) − Γ
(|x|) − n

|y|
|x| Γ

(|x|)x̂ · ŷ

]
∂i f i(y)dy

= −
∫

|y|>|x|

∂

∂ yi

[
Γ

(|x − y|) − Γ
(|y|) − n

|x|
|y|Γ

(|y|)x̂ · ŷ

]
f i(y)dy

−
∫

|y|<|x|

∂

∂ yi

[
Γ

(|x − y|) − Γ
(|x|) − n

|y|
|x| Γ

(|x|)x̂ · ŷ

]
f i(y)dy,

where we have used the divergence theorem (and the fact that f i is supported in Rn\{0}).
If we assume r < |x| < 2r and introduce the annulus Ãr = {x: r/2 < |x| < 4r}, then we can split up

the integrals as follows:

w(x) = −
∫
Ãr

∂

∂xi
Γ

(|x − y|) f i(y)dy +
∫

r/2<|y|<|x|

∂

∂ yi

(
Γ

(|x|) + n
|y|
|x| Γ

(|x|)x̂ · ŷ

)
f i(y)dy

+
∫

|x|<|y|<4r

∂

∂ yi

(
Γ

(|y|) + n
|x|
|y|Γ

(|y|)x̂ · ŷ

)
f i(y)dy

−
∫

|y|<r/2

∂

∂ yi

[
Γ

(|x − y|) − Γ
(|x|) − n

|y|
|x| Γ

(|x|)x̂ · ŷ

]
f i(y)dy

−
∫

|y|>4r

∂

∂ yi

[
Γ

(|x − y|) − Γ
(|y|) − n

|x|
|y|Γ

(|y|)x̂ · ŷ

]
f i(y)dy.

Using (29) we can estimate the last two integrals:∣∣∣∣ ∫
|y|<r/2

∂

∂ yi

[
Γ

(|x − y|) − Γ
(|x|) − n

|y|
|x| Γ

(|x|)x̂ · ŷ

]
f i(y)dy

∣∣∣∣ � c

∫
|y|<r/2

|x|−n
∣∣yf (y)

∣∣dy

� cr−n
∫

|y|<|x|
|y|∣∣ f (y)

∣∣dy,

∣∣∣∣ ∫
|y|>4r

∂

∂ yi

[
Γ

(|x − y|) − Γ
(|y|) − n

|x|
|y|Γ

(|y|)x̂ · ŷ

]
f i(y)dy

∣∣∣∣ � c

∫
|y|>4r

|x|2|y|−n−1
∣∣ f (y)

∣∣dy

� cr2
∫

|y|>|x|
|y|−n−1

∣∣ f (y)
∣∣dy.

We can also easily estimate
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∣∣∣∣ ∫
r/2<|y|<|x|

∂

∂ yi

(
Γ

(|x|) + n
|y|
|x| Γ

(|x|)x̂ · ŷ

)
f i(y)dy

∣∣∣∣ � c

∫
r/2<|y|<|x|

|x|1−n
∣∣ f (y)

∣∣dy

� cr−n
∫

r/2<|y|<|x|
|y|∣∣ f (y)

∣∣dy

� cr−n
∫

|y|<|x|
|y|∣∣ f (y)

∣∣dy

and ∣∣∣∣ ∫
|x|<|y|<4r

∂

∂ yi

(
Γ

(|y|) + n
|x|
|y|Γ

(|y|)x̂ · ŷ

)
f i(y)dy

∣∣∣∣ � cr2
∫

|x|<|y|<4r

|y|−n−1
∣∣ f (y)

∣∣dy

� cr2
∫

|x|<|y|
|y|−n−1

∣∣ f (y)
∣∣dy.

We conclude that∣∣∣∣w(x) −
∫
Ãr

∂

∂xi
Γ

(|x − y|) f i(y)dy

∣∣∣∣ � c

(
r−n

∫
|y|<|x|

|y|∣∣ f (y)
∣∣dy + r2

∫
|y|>|x|

|y|−n−1
∣∣ f (y)

∣∣dy

)
.

Similarly, we can show that

∣∣∣∣∂ w

∂x j
(x) −

∫
Ãr

∂2

∂x j∂xi
Γ

(|x − y|) f i(y)dy

∣∣∣∣
is bounded by

c

(
r−n−1

∫
|y|<|x|

|y|∣∣ f (y)
∣∣dy + r

∫
|y|>|x|

|y|−n−1
∣∣ f (y)

∣∣dy

)
.

Now we use Stein’s inequality [20] to conclude∥∥∥∥∫
Ãr

∂

∂xi
Γ

(|x − y|) f i(y)dy

∥∥∥∥
L p(Ar)

� cr‖ f ‖L p( Ãr)

and the L p-boundedness of singular integral operators to conclude

∥∥∥∥∫
Ãr

∂2

∂x j∂xi
Γ

(|x − y|) f i(y)dy

∥∥∥∥
L p(Ar)

� c‖ f ‖L p( Ãr)
.

Putting this all together, we obtain
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M1,p(w, r) � c

(
rM̃p( f , r) + r−n

∫
|y|<r

|y|∣∣ f (y)
∣∣dy + r2

∫
|y|>r

∣∣ f (y)
∣∣|y|−n−1 dy

)
(30)

where M̃ p denotes the mean value over Ãr instead of Ar .
The integrals in (30) can be estimated in terms of M p and combined with the M̃ p term. In fact it

is elementary (cf. [15]) to establish

∫
|y|<r

|y|∣∣ f (y)
∣∣dy � c

r∫
0

Mp( f ,ρ)ρn dρ,

∫
|y|>r

∣∣ f (y)
∣∣|y|−n−1 dy � c

∞∫
r

Mp( f ,ρ)ρ−2 dρ.

In addition, it is easy to see that

M̃p( f , r) � c

4r∫
r/4

Mp( f ,ρ)ρ−1 dρ � c

[
r−n−1

r∫
r/4

Mp( f ,ρ)ρn dρ + r

4r∫
r

Mp( f ,ρ)ρ−2 dρ

]
.

Using these inequalities, it is clear that (30) implies (28). �
Another instance of (22) that we are interested in is

−w = [ f ]⊥ in Rn\{0}, (31)

where f ∈ L1
�oc(R

n\{0}). To control the growth of the second derivatives of functions we use

M2,p(w, r) = r2Mp
(

D2 w, r
) + M1,p(w, r),

where D2 w denotes the Hessian matrix of all second-order derivatives of w . The proof of the follow-
ing is analogous to that of Proposition 1.

Proposition 2. Suppose n � 2, p ∈ (1,∞), and f ∈ L p
�oc(R

n\{0}) satisfies

∫
|x|<1

|x|2∣∣ f (x)
∣∣dx < ∞, and

∫
|x|>1

∣∣ f (x)
∣∣|x|−n dx < ∞.

Then convolution by Γ defines a solution w ∈ H2,p
�oc (R

n\{0}) of (31) that satisfies

M2,p(w, r) � c

(
r−n

r∫
0

Mp( f ,ρ)ρn+1 dρ + r2

∞∫
r

Mp( f ,ρ)ρ−1 dρ

)
. (32)
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2. Stability properties of dynamical systems

Let us now consider the result that we require from perturbation theory for systems of ODEs on
T < t < ∞. Without loss of generality, we assume T = 0. First, let us introduce a positive, nonincreas-
ing continuous function ε(t) satisfying

∞∫
0

ε2(t)dt < ∞. (33)

Now consider the 2n × 2n system on (0,∞)

d

dt

(
φ

ψ

)
+

(
0 0
0 −nI

)(
φ

ψ

)
+ R(t)

(
φ

ψ

)
= g(t), (34a)

where i) R is a 2n × 2n matrix of the form

R(t) =
(

R1(t) R2(t)
R3(t) R4(t)

)
with

∣
∣R j(t)

∣
∣ � ε(t) on 0 < t < ∞, (34b)

and ii) g = (g1, g2) with g1 ∈ L1(0,∞) and there exists δ > 0 so that for any choice of α ∈ [n − δ,n)

there is a constant cα so that

eαt

∞∫
t

∣∣g2(s)
∣∣e−αs ds � cαε(t) for 0 < t < ∞. (34c)

(With regard to convergence at infinity, (34c) is weaker than assuming g2 ∈ L1(0,∞).) In addition, we
assume asymptotic conditions on the solutions of

dφ

dt
+ R1φ = 0 for t > 0, (35)

and that ψ satisfies the “finite-energy condition”

∞∫
0

(|ψ |2 + |ψt |2
)
e−nt dt < ∞. (36)

Proposition 3. Suppose that (35) is uniformly stable. Then all solutions (φ,ψ) of (34) that satisfy (36) remain
bounded as t → ∞, and ψ(t) → 0. In fact, for α = n − δ with δ > 0 sufficiently small, we have the estimates

sup
0<t<∞

∣∣φ(t)
∣∣ � c

(
cα + ∣∣φ(0)

∣∣ + ‖g1‖1
)
, (37a)

and

∣∣ψ(t)
∣∣ � cε(t)

(
cα + sup

∣∣φ(τ )
∣∣). (37b)
t<τ<∞
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In addition, if all solutions of (35) are asymptotically constant as t → ∞, then the solution (φ,ψ) of (34) also
has a limit:

(
φ(t),ψ(t)

) → (φ∞,0) as t → ∞. (38)

Proof. Let us simplify notation by denoting d/dt by dot: dφ/dt = φ̇. Therefore, we want to study
solutions of

φ̇ + R1φ + R2ψ = g,

ψ̇ − nψ + R3φ + R4ψ = h, (39)

when g ∈ L1(0,∞) and h satisfies the condition on g2 in (34c) for a certain value of α that will be
specified below. Let Φ denote the fundamental matrix for φ̇ + R1φ = 0 on t > 0, i.e.

Φ̇ + R1Φ = 0, Φ(0) = I.

The assumption that (35) is uniformly stable is equivalent (cf. [3]) to

∣
∣Φ(t)Φ−1(s)

∣
∣ � K for t > s > 0, (40)

where K is a constant. Next let Ψ denote the fundamental matrix for ψ̇ + R4ψ = 0 on t > 0, i.e.

Ψ̇ + R4Ψ = 0, Ψ (0) = I.

Since ε(t) → 0 as t → ∞, for fixed 0 < δ < 1 we can find t1 so that

ε(t) < δ for t � t1, and

∞∫
t1

ε2(t)dt < δ. (41)

Without loss of generality, we can assume t1 = 0. Using Gronwall’s inequality, we can show

∣
∣Ψ (t)Ψ −1(s)

∣
∣ � eδ|t−s| for t, s > 0. (42)

However, we also need a lower bound on Ψ (t). To derive this, let ψ(t) = Ψ (t)ψ0 and p(t) = |ψ(t)|2.
Then

ṗ = 2ψ1ψ̇1 + · · · + 2ψnψ̇n

= −2r11ψ
2
1 − 2r12ψ1ψ2 − · · · − 2r1nψ1ψn

− 2r21ψ2ψ1 − 2r22ψ
2
2 − · · · − 2r2nψ2ψn

...

− 2rn1ψnψ1 − · · · − 2rnnψ
2
n

� −2nδ|ψ |2 = −2nδp.
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Integration yields p(t) � p0e−2nδt ; in other words

∣
∣Ψ (t)

∣
∣ � e−nδt . (43)

Now we can use the “variation of parameters” formula to conclude from the first equation in (39)
that

φ(t) = Φ(t)

[
φ(0) +

t∫
0

Φ−1(τ )
[

g(τ ) − R2(τ )ψ(τ )
]

dτ

]
, (44)

and from the second equation in (39) that

ψ(t) = entΨ (t)

[
ψ(0) +

t∫
0

Ψ −1(τ )
[
h(τ ) − R3(τ )φ(τ )

]
e−nτ dτ

]
. (45)

In order to have (36), we see from (43) that we must have

ψ(0) = −
∞∫

0

Ψ −1(τ )
[
h(τ ) − R3(τ )φ(τ )

]
e−nτ dτ ,

and consequently (45) can be rewritten as

ψ(t) = entΨ (t)

∞∫
t

Ψ −1(τ )
[

R3(τ )φ(τ ) − h(τ )
]
e−nτ dτ . (46)

If we plug (46) into (44), we obtain

φ(t) + Sφ(t) = ξ(t) = ξ0(t) + ξ1(t) + ξ2(t), (47a)

where

Sφ(t) = −Φ(t)

t∫
0

Φ−1(τ )R2(τ )enτ Ψ (τ )

∞∫
τ

Ψ −1(σ )R3(σ )φ(σ )e−nσ dσ dτ ,

ξ0(t) = Φ(t)φ(0), ξ1(t) = Φ(t)

t∫
0

Φ−1(τ )g(τ )dτ , (47b)

ξ2(t) = Φ(t)

t∫
0

Φ−1(τ )R2(τ )enτ Ψ (τ )

∞∫
τ

Ψ −1(σ )h(σ )e−nσ dσ dτ .

We want to use (47) to conclude that φ is bounded.
Let X = C[0,∞) with ‖φ‖X := sup0<t<∞ |φ(t)| < ∞. Notice that (40) and g ∈ L1(0,∞) imply that

ξ0, ξ1 ∈ X . To show ξ2 ∈ X , let us use (40), (42), and (34c):
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∣∣ξ2(t)
∣∣ � K

t∫
0

ε(τ )e(n−δ)τ

∞∫
τ

∣∣h(σ )
∣∣e(δ−n)σ dσ dτ

� K

t∫
0

ε(τ )

∞∫
τ

∣∣h(σ )
∣∣dσ dτ � K cα

t∫
0

ε2(τ )dτ � K cαδ,

although we do not care if this is small. Now let us show that S : X → X with ‖S‖ < 1 if δ is small.
In fact, assume ‖φ‖X � 1. Then

∣∣Sφ(t)
∣∣ � K

t∫
0

ε(τ )e(n−δ)τ

∞∫
τ

e(δ−n)σ ε(σ )
∣∣φ(σ )

∣∣dσ dτ

� K

t∫
0

ε(τ )e(n−δ)τ

∞∫
τ

e(δ−n)σ ε(σ )dσ dτ � K

n − δ

∞∫
0

ε2(τ )dτ <
Kδ

n − δ
,

so ‖S‖ < 1 if δ is sufficiently small. We conclude that φ = (1 + S)−1ξ ∈ X , i.e. φ is bounded.
Now if we apply (42) to (46), we find that

∣∣ψ(t)
∣∣ � ce(n−δ)t

∞∫
t

e(δ−n)τ ε(τ )
∣∣φ(τ )

∣∣dτ + e(n−δ)t

∞∫
t

∣∣h(τ )
∣∣e(δ−n)τ dτ

� cε(t)
(

cα + sup
t<τ<∞

∣∣φ(τ )
∣∣),

which is (37b). We can then combine this with (44) and (41) to conclude

∣∣φ(t)
∣∣ � c

(∣∣φ(0)
∣∣ + ‖g‖1

) + cδ
(
cα + ‖φ‖X

)
.

Taking δ sufficiently small, we can conclude (37a).
If all solutions of (35) are asymptotically constant as t → ∞, then Φ(∞) = limt→∞ Φ(t) exists and

from (44) we find

φ∞ = Φ(∞)

(
φ(0) +

∞∫
0

Φ−1(τ )
[

g(τ ) − R2(τ )ψ(τ )
]

dτ

)
.

To show φ(t) → φ∞ we estimate three terms: |(Φ(t) − Φ(∞))φ(0)| � |Φ(t) − Φ(∞)||φ(0)|,

∣∣∣∣∣Φ(t)

t∫
0

Φ−1(τ )g(τ )dτ − Φ(∞)

∞∫
0

Φ−1(τ )g(τ )dτ

∣∣∣∣∣ � c

(
∣
∣Φ(t) − Φ(∞)

∣
∣‖g‖1 +

∞∫
t

∣∣g(τ )
∣∣dτ

)
,
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∣∣∣∣∣Φ(t)

t∫
0

Φ−1(τ )R2(τ )ψ(τ )dτ − Φ(∞)

∞∫
0

Φ−1(τ )R2(τ )ψ(τ )dτ

∣∣∣∣∣
� c

(
1 + ‖φ‖X

)[∣
∣Φ(t) − Φ(∞)

∣
∣ +

∞∫
t

ε2(τ )dτ

]
.

This confirms (38). �
It will also be useful to know that the uniform stability is not affected by perturbation with terms

bounded by ε2(t).

Proposition 4. If R̃(t) − R(t) ∈ L1(0,∞), then (6) is uniformly stable if and only if the same is true of

dφ

dt
+ R̃φ = 0.

The same equivalency applies if the property that all solutions are asymptotically constant is added to uniform
stability.

Proof. Let S = R̃ − R , Φ(t) denote the fundamental solution for dφ
dt + Rφ = 0 on t > 0, and Φ̃ denote

the same for dφ
dt + R̃φ = 0. According to [3], we know that (40) holds and we want to prove that a

similar bound holds for Φ̃ . But we can solve

dφ

dt
+ Rφ = −Sφ, φ(s) = ξ

by variation of parameters to obtain

φ(t) = Φ(t)Φ−1(s)ξ − Φ(t)

t∫
s

Φ−1(σ )S(σ )φ(σ )dσ .

Applying Gronwall’s lemma and (40), we obtain

∣∣φ(t)
∣∣ � K exp

(
k

t∫
s

∣
∣S(σ )

∣
∣dσ

)
|ξ | � K exp

(
k

∞∫
0

∣
∣S(σ )

∣
∣dσ

)
|ξ |.

But φ(t) = Φ̃(t)Φ̃−1(s)ξ , so this last estimate shows dφ
dt + R̃φ = 0 is uniformly stable. The additional

property that solutions are asymptotically constant also follows from the variation of parameters for-
mula. �
3. Proof of Theorem 1

Recall that ω(r) is a continuous, nondecreasing function for 0 � r < 1 satisfying ω(0) = 0, (4),
and (20). Since our result is local, we focus our attention on a very small ball centered at x = 0;
by rescaling, we may assume this is B1(0), the unit ball centered at x = 0, and that (3) holds for
0 < r < 1; in fact, given any small δ > 0, we can similarly assume that
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1∫
0

ω2(r)dr

r
< δ and ω(1) � δ. (48)

If the aij are continuous in U , then we know by the results of [1] that ∇u ∈ L p
�oc(U ) for all p ∈ (1,∞).

More generally, under the small oscillation assumption (3), we can fix any p ∈ (1,∞) and conclude
that ∇u ∈ L p

�oc(U ) provided δ = δ(p) in (48) is sufficiently small; cf. Corollary 6.2 in [17]. Henceforth,
we fix p > n and assume that δ(p) has been chosen small enough that ∇u ∈ L p(B1(0)).

For our analysis, it is advantageous to extend the problem to all of Rn , so let us redefine and
extend the aij outside of B1(0) by

aij(x) = δi j for |x| � 1. (49)

If we extend ω(r) to be ω(1) for r > 1, we see that ω(r) is still nondecreasing and ω(r)r−1+κ is still
nonincreasing; in particular, we easily see that

Mp(ω f , r) � cω(r)Mp( f , r) for 0 < r < ∞, (50)

where f ∈ H p
�oc(R

n\{0}) and c is independent of r. Now let us introduce a smooth cutoff function
χ(r) which is 1 for 0 � r � 1/4 and 0 for r � 1/2. Given a weak solution u of (1), we can write

∂i
(
aij∂ j(χu)

) = ∂i
(
aijχ

′θ ju
) + χ ′θiai j∂ ju.

Since we are interested in the behavior near x = 0 where χ(|x|)u(x) and u(x) agree, we can assume
that u is supported on |x| < 1/2 and satisfies

∂i
(
aij(x)∂ ju

) = ∂i f i + f0 in Rn, (51a)

where f i, f0 ∈ L p(Rn) are both supported in 1/4 � |x| � 1/2, and (using (2) with η = χ )∫
Rn

f0(x)dx = 0; (51b)

when convenient, we let 
f = ( f1, . . . , fn). Of course, we now must replace (2) with the following:∫
Rn

ai j(x)∂ ju∂iηdx =
∫
Rn

f i∂iηdx −
∫
Rn

f0ηdx, (52)

for all η ∈ C∞
0 (Rn).

Recall the decomposition u(x) = u0(r)+ 
v(r) · 
x+ w(x) given in (17). Orthogonality properties show
that

∇u ∈ L2(B1(0)
) ⇒

1∫
0

((
u′

0

)2 + |
v|2 + r2
∣∣
v ′∣∣2)

rn−1 dr < ∞ and ∇w ∈ L2(B1(0)
)
. (53)

We want to show that |u0(r) − u0(0)|r−1 → 0 and |w(x)||x|−1 → 0 as r = |x| → 0, so that the differ-
entiability of u is determined by the behavior of 
v as r → 0. The strategy is to show that 
v satisfies
a system of ODEs which depends upon w and that w satisfies a PDE which depends upon 
v . We
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obtain the system of ODEs by plugging u(x) = u0(r) + 
v(r) · 
x + w(x) into (52) and choosing special
η ∈ C∞

0 (Rn). For example, taking η = η(r) ∈ C∞
0 [0,∞), we obtain

∞∫
0

(
αu′

0 + r 
β · 
v ′ + 
γ · 
v + p[∇w])η′rn−1 dr =
∞∫

0

(
f̃ η′ − f0η

)
rn−1 dr, (54a)

where

α(r) = �

∫
Sn−1

aij(rθ)θiθ j dsθ , βk(r) = �

∫
Sn−1

aij(rθ)θiθ jθk dsθ ,

γ j(r) = �

∫
Sn−1

aij(rθ)θi dsθ , p[∇w](r) = �

∫
Sn−1

aij(rθ)∂ j w(rθ)θi dsθ , (54b)

f̃ (r) = �

∫
Sn−1

f i(rθ)θi dsθ , f0(r) = �

∫
Sn−1

f0(rθ)dsθ .

Using (3) and Lemma 1, we see that these terms satisfy

∣∣α(r) − 1
∣∣, ∣∣ 
β(r)

∣∣, ∣∣ 
γ (r)
∣∣ � ω(r) for 0 < r < 1,∣∣p[∇w](r)∣∣ � ω(r) �

∫
Sn−1

|∇w|ds for 0 < r < 1, (54c)

f̃ (r) = f0(r) = 0 for 0 < r < 1/4,

whereas for r > 1 we have α(r) = 1 and all the other terms vanish. We can integrate (54a) to find

α(r)u′
0(r) + r 
β(r) · 
v ′(r) + 
γ (r) · 
v(r) + p[∇w](r) = ϑ(r), (55a)

where

ϑ(r) = f̃ (r) + r1−n

r∫
0

f0(ρ)ρn−1 dρ (55b)

has support in 1/4 � r � 1/2. (Note that ϑ(r) = 0 for r < 1/4 follows from (54a) with suppη ⊂
[0,1/4) and η(0) = 1, whereas ϑ(r) = 0 for r > 1/2 is a consequence of (51b).)

Similarly, we can let η = η(r)x� in (52) and obtain a second-order linear system of ODEs. We can
use (55a) to eliminate u0 and then reduce the second-order system for 
v to a first-order system for
(
v, 
vr); of course, these systems also depend on w . This first-order system is simplified by changing
independent variables to t = − log r, so we introduce

ε(t) = ω
(
e−t), (56)

which satisfies (33) by (4). In Appendix A, we show that the first-order system for (
v, 
vt) may be
converted to the form (34):
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d

dt

(
φ

ψ

)
+

(
0 0
0 −nI

)(
φ

ψ

)
+ R(t)

(
φ

ψ

)
= g(t,∇w) + h(t), (57a)

where R ≡ 0 for t < 0, but for t > 0 it is of the form (34b) with

R1(t) ≈ �

∫
Sn−1

(A − nAθ ⊗ θ)dsθ as t → ∞, (57b)

where ≈ indicates that the difference is bounded by cε2(t); the term g(t,∇w) ≡ 0 for t < 0 but
satisfies

∣∣g(t,∇w)
∣∣ � cε(t) �

∫
Sn−1

|∇w|ds for t > 0, (57c)

and the term h is in L p with support in log 2 � t � 2 log 2 with L1-norm satisfying

‖h‖1 � c
(‖
f ‖p + ‖ f0‖p

)
. (57d)

Moreover, the new dependent variables (φ,ψ) are related to (
v, 
vt) according to:(
φ

ψ

)
− 1

n2

(
n
v − 
vt


vt

)
� cε(t)

(∣∣
v(t)
∣∣ + ∣∣
vt(t)

∣∣ + �

∫
|∇w|ds

)
. (57e)

Now, given w with suitable properties, we solve (57a) with initial conditions φ(0) = 0 = ψ(0) to
find (φ,ψ) and hence 
v . But we want to separately control the dependence of 
v upon w , so let
us write 
v = 
v w + 
v0 where 
v w corresponds to solving (57a) with h(t) ≡ 0 and 
v0 corresponds to
solving (57a) with g(t,∇w) ≡ 0. We want to apply Proposition 3 to estimate 
v w on (0,∞), so we
need to confirm that g = (g1, g2) satisfies g1 ∈ L1(0,∞) and g2 satisfies (34c). To show that g1 ∈ L1,
we use (57c) to conclude

∞∫
0

∣∣g1(t,∇w)
∣∣dt � c

( ∞∫
0

ε2(t)dt

)1/2( ∞∫
0

∫
Sn−1

|∇w|2 ds dt

)1/2

= c

( 1∫
0

ω2(ρ)
dρ

ρ

)1/2( 1∫
0

�

∫
|∇w|2 ds

dρ

ρ

)1/2

,

and then invoke (48) to conclude

‖g1‖1 � c
√

δ

( 1∫
0

�

∫
|∇w|2 ds

dρ

ρ

)1/2

. (58)

Similarly, to verify (34c), we estimate

eαt

∞∫ ∣∣g2(τ )
∣∣e−ατ dτ � cε(t)

∞∫
eα(t−τ ) �

∫
|∇w|ds dτ � cαε(t), (59a)
t t
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where

cα = c√
2α

( 1∫
0

�

∫
|∇w|2 ds

dρ

ρ

)1/2

. (59b)

As we shall see below, M2(∇w, r) = O (ω(r)) as r → 0, so the finiteness of cα and the bound in (58)
follow from the following calculations: for j = 0,1, . . . , let r j = 2− j , so that

1∫
0

∫
Sn

|∇w|2 ds
dρ

ρ
=

∞∑
j=0

2r j∫
r j

∫
Sn−1

|∇w|2 ds
dρ

ρ
� c

∞∑
j=0

M2
2(∇w, r j) (60a)

and

∞∑
j=0

ω2(r j) =
∞∑
j=0

ω2(r j)
r j − r j+1

r j+1
� c

1∫
0

ω2(ρ)
dρ

ρ
� cδ, (60b)

where we have used (48) at the end.
Now let us derive the PDE for w . Introduce the matrix Ω = (Ωi j) with entries

Ωi j = aij − δi j, (61)

and recall that |Ωi j(r)| � ω(r) for 0 < r < 1 and Ωi j(r) = 0 for r > 1. We can apply I − P to (51a), to
obtain

[
∂i

(
aij(x)∂ ju

)]⊥ = [∂i f i + f0]⊥ in Rn.

If we substitute (17) into this and use P [(u0 + 
v · 
x)] = (u0 + 
v · 
x) and P [w] = 0, we obtain the
following equation for w:

w + [
div(Ω∇w)

]⊥ + [
div

(
Ω∇(
v · 
x))]⊥ + [

div(Ω∇u0)
]⊥ = [∂i f i + f0]⊥.

But we can use (55a) to eliminate u0 and 
v = 
v w + 
v0 to write this as:

w + [
div(Ω∇w)

]⊥ + [
div

(
Ω∇(
v w · 
x))]⊥ − [

div
(
α−1Ωθ

(
r 
β · (
v w)′ + 
γ · 
v w + p[∇w]))]⊥

= [
∂i f i + f0 + div

(
α−1Ωθ

(
r 
β · (
v0)′ + 
γ · 
v0) − Ω∇(
v0 · 
x)) − div

(
α−1Ωθϑ

)]⊥
. (62)

Our strategy now is to simultaneously solve (57a) and (62) for 
v and w , then we can plug these
into (55a) and integrate to find u0 with u0(r) = 0 for r > 1/2. Indeed, for our chosen p > n, we
assume w is in the space Y consisting of functions in H1,p

�oc (R
n\{0}) with finite norm

‖w‖Y = sup
0<r<1

M1,p(w, r)

ω(r)r
+ sup

r>1

M1,p(w, r)

δr−n
. (63)

We plug w into (57a) and solve as described above to find 
v = 
v w + 
v0; since M2(∇w, r) �
cM p(∇w, r) = O (ω(r)) for 0 < r < 1, we can apply Proposition 3 to estimate 
v w . Now we want w to
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satisfy (62), so let us apply −1, i.e. convolution by the fundamental solution, to both sides of (62) to
obtain

w + T [w] = ξ, (64)

where

T [w] = −1([div(Ω∇w)
]⊥ + [

div
(
Ω∇(
v w · 
x))]⊥

− [
div

(
α−1Ωθ

(
r 
β · (
v w)′ + 
γ · 
v w + p[∇w]))]⊥)

ξ = −1([∂i f i + f0 − div
(
α−1Ωθϑ

) + div
(
α−1Ωθ

(
r 
β · (
v0)′ + 
γ · 
v0) − Ω∇(
v0 · 
x))]⊥)

.

We want to use the results of Sections 1 and 2 to show ξ ∈ Y and T is a bounded operator Y → Y
with small norm.

To show T : Y → Y has small norm, consider T [y] for ‖y‖Y � 1, i.e. we assume y satisfies

M1,p(y, r) � ω(r)r for 0 < r < 1, (65a)

and

M1,p(y, r) � δr−n = ω(r)r−n for r > 1. (65b)

Now let us consider separately the three terms,

T1[y] = −1([div(Ω∇ y)
]⊥)

, T2[y] = −1([div
(
Ω∇(
v y · 
x))]⊥)

,

T3[y] = −1([div
(
α−1Ωθ

(
r 
β · (
v y)′ + 
γ · 
v y + p[∇ y]))]⊥)

.

First we consider T1. Using Proposition 1 and (50), we have

M1,p
(
T1[y], r

)
� c

(
r−n

r∫
0

Mp(Ω∇ y,ρ)ρn dρ + r2

∞∫
r

Mp(Ω∇ y,ρ)ρ−2 dρ

)
. (66)

But recall |Ω(r)| � ω(r) for 0 < r < 1 and Ω(r) = 0 for r > 1. Thus, for 0 < r < 1, we can use (65a)
and (65b) with the facts that ω(r) is nondecreasing and ω(r)r−1+κ is nonincreasing to obtain

M1,p
(
T1[y], r

)
� c

(
r−n

r∫
0

ω2(ρ)ρn dρ + r2

1∫
r

ω2(ρ)ρ−2 dρ

)

� c
(
r−nω2(r)rn+1 + r2δω(r)r−1+κ

(
r−κ − 1

))
� cδω(r)r. (67a)

For r > 1 we simply get

M1,p
(
T1[y], r

)
� cr−n

1∫
δ2ρn dρ � cδ2r−n. (67b)
0
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The estimates (67a) and (67b) show that ‖T1[y]‖Y � cδ, so for δ sufficiently small we conclude that
T1 : Y → Y has norm less than 1/3.

Next we consider T2. To use Proposition 1, we need to estimate M p(∇(
v y · 
x), r). But 
v y and
r(
v y)′ can be expressed in terms of the solutions φ,ψ of (57a) with h ≡ 0, to which we can apply
Proposition 3 to find

sup
|x|<1

∣∣∇(
v y · 
x)∣∣ � c sup
r<1

(
r
∣∣(
v y)′∣∣ + ∣∣
v y

∣∣) � c sup
t>0

(|φ| + |ψ |) � c
(
cα + ‖g1‖1

)
, (68)

where cα is given in (59b) and ‖g1‖ is estimated as in (58). But, using (60a), p > 2, (65a), and (60b),
we have

1∫
0

�

∫
Sn−1

|∇ y|2 ds
dρ

ρ
� c

∞∑
j=0

M2
2(∇ y, r j) � c

∞∑
j=0

M2
p(∇ y, r j) � c

∞∑
j=0

ω2(r j) � cδ.

We conclude that for 0 < r < 1:

Mp
(∇(
v y · 
x), r

)
� c sup

|x|<1

∣∣∇(
v y · 
x)∣∣ � c
√

δ. (69)

We can use this in Proposition 1 and estimate as above to obtain for 0 < r < 1:

M1,p
(
T2[y], r

)
� c

(
r−n

r∫
0

ω(ρ)
√

δρn dρ + r2

1∫
r

ω(ρ)
√

δρ−2 dρ

)
� cω(r)

√
δr. (70a)

Meanwhile, for r > 1 we know 
v = 
v w ≡ 0, so by Proposition 1

M1,p
(
T2[y], r

)
� cr−n

1∫
0

ω(ρ)Mp
(∇(
v y · 
x),ρ)

ρn dρ � cδ3/2r−n. (70b)

For δ sufficiently small, we conclude from (70a), (70b) that T2 : Y → Y has norm less than 1/3.
To show T3 : Y → Y is small, we need to estimate M p(α−1Ωθ(r 
β · (
v y)′ + 
γ · 
v y + p[∇ y]), r) only

for 0 < r < 1 (since it vanishes for r > 1). But recalling the bounds on Ω , 
β , 
γ and p[∇ y], we have
for 0 < r < 1:

Mp
(
α−1Ωθ

(
r 
β · (
v y)′ + 
γ · 
v y) + p[∇ y], r

)
� cω2(r)

(
Mp

(
r
(
v y)′

, r
) + Mp

(
v y, r
) + Mp(∇ y, r)

)
� c

√
δω2(r),

where at the end we have used Proposition 3 and (68), similar to our derivation of (69). Applying
Proposition 1, we obtain for 0 < r < 1

M1,p
(
T3[y], r

)
� c

(
r−n

r∫
0

√
δω2(ρ)ρn dρ + r2

1∫
r

√
δω2(ρ)ρ−2 dρ

)
� cδ3/2ω(r)r,
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and for r > 1 we have simply

M1,p
(
T3[y], r

)
� cr−n

1∫
0

√
δω(ρ)ρn dρ � cδ3/2r−n.

Taking δ sufficiently small, we conclude that T3 : Y → Y has norm less than 1/3. We have therefore
shown that T = T1 + T2 + T3 : Y → Y has norm less than 1.

To show ξ ∈ Y , first note that supp f ⊂ A1/4 = {x: 1/4 � |x| � 1/2} implies M p( f , r) = 0 for r <

1/8 and r > 1/2, whereas M p( f , r) � c‖ f ‖p for 1/8 � r � 1/2. Now we separately treat

ξ1 = −1([∂i f i]⊥
)
, ξ2 = −1([ f0]⊥

)
, ξ3 = −1([div

(
α−1Ωθϑ(r)

)]⊥)
,

and

ξ4 = −1([div
(
α−1Ωθ

(
r 
β · (
v0)′ + 
γ · 
v0) − Ω∇(
v0 · 
x))]⊥)

.

Since both f i and f0 are supported in A1/4, we can apply Proposition 1 to estimate ξ1 as

M1,p(ξ1, r) �
{

c‖
f ‖pr2 for 0 < r < 1,

c‖
f ‖pr−n for r > 1,

and Proposition 2 to estimate ξ2 as

M1,p(ξ2, r) � M2,p(ξ2, r) �
{

c‖ f0‖pr2 for 0 < r < 1,

c‖ f0‖pr−n for r > 1.

Since Ωθϑ = 0 for |x| = r > 1 and r < 1/8, whereas M p(α−1Ωθϑ, r) � c(‖
f ‖p + ‖ f0‖p) for 1/8 <

r < 1, we similarly conclude

M1,p(ξ3, r) �
{

c(‖
f ‖p + ‖ f0‖p)r2 for 0 < r < 1,

c(‖
f ‖p + ‖ f0‖p)r−n for r > 1.

To estimate ξ4 we need to estimate M p(∇(
v0 · 
x), r). But 
v0 and r(
v0)′ can be expressed in terms of
the solutions φ, ψ of (57a) with g ≡ 0, to which we can apply Proposition 3 to find

sup
|x|<1

∣∣∇(
v0 · 
x)∣∣ � c‖h‖1.

Combined with (57d), we find M p(∇(
v0 · 
x), r) � c(‖
f ‖p + ‖ f0‖p), and then applying Proposition 1
yields

M1,p(ξ4, r) � c
(‖
f ‖p + ‖ f0‖p

)(
r−n

r∫
0

ω(ρ)ρn dρ + r2

1∫
r

ω(ρ)ρ−2 dρ

)

�
{

c(‖
f ‖p + ‖ f0‖p)ω(r)r for 0 < r < 1,

c(‖
f ‖p + ‖ f0‖p)r−n for r > 1.
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Plugging these estimates into (63), we find that ξ ∈ Y with

‖ξ‖Y � c
(‖
f ‖p + ‖ f0‖p

)
.

We conclude that (64) admits a unique solution w ∈ Y satisfying

‖w‖Y � c
(‖
f ‖p + ‖ f0‖p

)
, (71)

and then we use this to find 
v w and uw
0 as described above. We also know from Proposition 1 that

P w = 0, which in particular shows that
∫
|x|<r w(x)dx = 0 for every r > 0. Since p > n, we can apply

Morrey’s inequality (cf. Theorem 7.17 in [11]) to obtain

sup
|x|<r

∣∣w(x)
∣∣ � cnr

(
�

∫
|y|<r

|∇w|p dy

)1/p

. (72)

But for fixed r ∈ (0,1), we can introduce r j = r2− j to compute

�

∫
|y|<r

|∇w|p dy =
∞∑
j=0

2− jnr−n
j

∫
r j+1<|y|<r j

|∇w|p dy � c sup
0<ρ<1

Mp(∇w,ρ).

Recalling that (71) implies M p(∇w, r) � cω(r)(‖
f ‖p + ‖ f0‖p) for 0 < r < 1, we find

sup
|x|<r

∣∣w(x)
∣∣ � crω(r)

(‖
f ‖p + ‖ f0‖p
)

for 0 < r < 1. (73)

In particular, this implies that w is differentiable at x = 0 with ∂ j w(0) = 0.
What about 
v and u0? Since we now know M p(∇w, r) � cω(r)(‖
f ‖p + ‖ f0‖p), we obtain

1∫
0

�

∫
|∇w|2 ds

dρ

ρ
� c

∞∑
j=0

M2
p(∇w, r j) � c

(‖
f ‖p + ‖ f0‖p
)2

∞∑
j=0

ω2(r j) � cδ
(‖
f ‖p + ‖ f0‖p

)2
.

Consequently, our analysis of (57a) yields

sup
0<r<1

(∣∣
v(r)
∣∣ + r

∣∣
v ′(r)
∣∣) � c

(‖
f ‖p + ‖ f0‖p
)
. (74)

Using (54a), we perform the following estimates

∣∣u0(r) − u0(0)
∣∣ �

r∫
0

∣∣u′
0(ρ)

∣∣dρ

� c

r∫ (∣∣ϑ(ρ)
∣∣ + ∣∣ρ 
β(ρ) · 
v ′(ρ)

∣∣ + ∣∣ 
γ (ρ) · 
v∣∣ + ω(ρ)�

∫
|∇w|ds

)
dρ,
0
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r∫
0

(∣∣ϑ(ρ)
∣∣ + ∣∣ρ 
β(ρ) · 
v ′(ρ)

∣∣ + ∣∣ 
γ (ρ) · 
v∣∣)dρ � cω(r)r
(‖
f ‖p + ‖ f0‖

)
,

r∫
0

ω(ρ)�

∫
|∇w|ds dρ � ω(r)r

1∫
0

�

∫
|∇w|ds

dρ

ρ
� cω(r)r

(‖
f ‖p + ‖ f0‖
)

to obtain

∣∣u0(r) − u0(0)
∣∣ � cω(r)r

(‖
f ‖p + ‖ f0‖p
)
. (75)

But (75) implies that u0 is differentiable at r = 0 with u′
0(0) = 0.

Thus we have found a solution of (51a) in the form ũ(x) = u0(r)+ 
v(r) · 
x+ w(x) which is Lipschitz
continuous at x = 0, but we need to verify that ũ coincides with the solution u of (51a) that we began
with. However, if we let z(x) = u(x) − ũ(x), we find that z is a weak solution of the homogeneous
equation Lz = 0 in Rn , and z(x) → 0 as x → ∞ (since |x| > 1 implies u(x) ≡ 0 and ũ(x) = w(x) =
O (|x|−n) as |x| → ∞). The maximum principle shows that z ≡ 0, i.e. u = ũ.

We conclude that our solution u of (1) is Lipschitz continuous at x = 0. To obtain the desired
estimate (7), we first combine (73), (74), (75), and recall the definitions of 
f and f0 to conclude

∣∣u(x) − u(0)
∣∣ � c|x|(‖∇u‖L p(B ′) + ‖u‖L p(B ′)

)
for 0 < |x| < 1/2 and B ′ = B1/2(0). (76)

But as a solution of (1), u satisfies the elliptic estimate

‖∇u‖L p(B ′) � c‖u‖L p(B∗), where B∗ = B3/4(0), (77)

which can be found, for example, in [1] when the coefficients are continuous; however, their proof
extends directly to the case where the coefficients have small oscillation, which we may assume in
the unit ball by taking δ sufficiently small. But from [18], u also satisfies the following estimate:

sup
|y|�3/4

∣∣u(y)
∣∣ � c‖u‖L2(B), where B = B1(0). (78)

Using these in (76), we obtain

∣∣u(x) − u(0)
∣∣ � c|x|‖u‖L2(B) for 0 < |x| < 1/2, (79)

which is (7) for r = 1. The case of general r ∈ (0,1) can be achieved by scaling: x̃ = x/r and
ũ(x̃) = u(x). Thus (7) is proved.

Now let us add the hypothesis that every solution of (6) is asymptotically constant. Then, according
to Proposition 3, the solution (φ,ψ) satisfies φ(t) → φ∞ and ψ(t) → 0 as t → ∞. Using (57e), we
see that 
vt → 0 as t → ∞ and consequently

lim
r→0


v(r) = n lim
t→∞φ(t) = nφ∞ and lim

r→0
r
v ′(r) = 0.

In particular, 
v(|x|) · 
x is differentiable at 
x = 0. Putting this together with what we have already found
about u0 and w , we conclude that our weak solution u of (1) is differentiable at x = 0 and (8) holds.
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4. Proof of corollaries

To prove Corollary 1, let us write (6) as

φ̇ = B(t)φ for T < t < ∞, (80)

where B(t) is bounded, but not necessarily self-adjoint. (In fact, we know B(t) → 0 as t → ∞, but
we will not need this fact here.) Let μ(B) denote the largest eigenvalue of (B + Bt)/2, which satisfies
(cf. [3, Ch. II, Sec. 1])

μ(B) = lim
h→0+

|I + hB| − 1

h
.

Assuming that B(t) is continuous, the following inequality is proved in [3, Ch. III, Sec. 2]:

∣∣φ(t)
∣∣ �

∣∣φ(s)
∣∣ exp

( t∫
s

μ
(

B(τ )
)

dτ

)
for t � s � T . (81)

Let us verify that (81) holds even though B(t) may be discontinuous.
Let f (t) = |φ(t)| for t � T . It is easy to see from (80) that φ is Lipschitz continuous, so

Rademacher’s theorem implies that φ is differentiable almost everywhere. Consequently, almost ev-
erywhere f has a right-hand derivative ḟ+ satisfying

ḟ+(t) = lim
h→0+

|φ(t) + hφ̇(t)| − |φ(t)|
h

= lim
h→0+

|φ(t) + hB(t)φ(t)| − |φ(t)|
h

� μ
(

B(t)
)

f (t) a.e.

Since μ(B(t)) is bounded, we know that

w(t) := f (t)exp

(
−

t∫
T

μ
(

B(τ )
)

dτ

)

is continuous and has a right-hand derivative satisfying

ẇ+(t) = [
ḟ+(t) − μ

(
B(t)

)
f (t)

]
exp

(
−

t∫
T

μ
(

B(τ )
)

dτ

)
� 0 a.e.

We conclude that w(t) is nonincreasing for almost every t > T . But w(t) is continuous, so w(t) is
nonincreasing for all t > T . We conclude that (81) holds. Moreover, (81) together with

t∫
s

μ
(

B(τ )
)

dτ < K for t > s > T

implies that (80) is uniformly stable. Thus we may apply Theorem 1 to obtain Corollary 1.
To prove Corollary 2, we assume (12) and introduce a change of dependent variable (as in [6,

Section 11.1]):

φ(t) = (
I + S(t)

)
ξ(t)
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where

S(t) =
∞∫

t

R̃(τ )dτ , with R̃(t) = R
(
e−t).

We find that ξ satisfies

(
I + S(t)

)dξ

dt
+ R̃ Sξ = 0.

But S(t) → 0 as t → ∞, so we can take T sufficiently large and conclude that (I + S(t)) is invertible,
and consequently ξ satisfies

dξ

dt
+ Q (t)ξ = 0, (82)

where by hypothesis we have Q = (1 + S)−1 R̃ S ∈ L1(T ,∞). As we have observed, Q ∈ L1(T ,∞)

implies that all solutions of (82) are asymptotically constant, i.e. ξ(t) = ξ∞ + o(1) as t → ∞, so

φ(t) = (
I + S(t)

)(
ξ∞ + o(1)

) = ξ∞ + o(1)

and we see that all solutions of (6) are asymptotically constant. We have also observed that Q ∈
L1(T ,∞) implies that (82) is uniformly stable, so the same is true of (6).

To prove Corollary 3, observe that
∫ t

T μ(B(τ ))dτ → −∞ as t → ∞ together with (81) implies that
all solutions of (80) tend to zero as t → ∞, i.e. the null solution is asymptotically stable. But this
implies that 
v(r) in (21) satisfies 
v(r) → 0 as r → 0 and Corollary 3 follows.

5. Examples of Gilbarg–Serrin type

In [10], Gilbarg and Serrin consider examples of the form

aij(x) = δi j + g(r)θiθ j, (83)

where g(0) = 0 but vanishes slowly as r → 0. They use such examples to show that Dini continu-
ity is essential for their “extended maximum principle” to hold, but we shall use them to explore
the conditions in Theorem 1 and its corollaries. We assume that |g(r)| � ω(r) for r near 0 with ω
satisfying (4), and we can explicitly calculate the quantities introduced in Appendix A:

α(r) = 1 + g(r), β(r) = 0 = γ (r), A(r) = B(r) = 1 + g(r)

n
I, C(r) =

(
1 + g(r)

n

)
I.

Moreover, the matrix (5) is given by

R�k(r) = 1 − n

n
g(r)δ�k,

so the dynamical system (6) reduces to the scalar equation

dφ

dt
= n − 1

n
g̃(t)φ, (84)

where g̃(t) = g(e−t).
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Now consider a weak solution u of (1) in a domain containing x = 0 and aij of the form (83).
According to Theorem 1, u is Lipschitz continuous at x = 0 provided (84) is uniformly stable for t > T
with T sufficiently large; but it is easy to solve (84) and see that it is uniformly stable if and only if

t∫
s

g̃(τ )dτ < K for t > s > T . (85)

Moreover, μ(R(r)) = (1 − n−1)g(r), so (11) agrees with (85) and we see that Corollary 1 is sharp for
this class of examples. On the other hand, solutions of (84) are asymptotically constant if and only if
the improper integral

∞∫
T

g̃(τ )dτ converges to an extended real number < ∞. (86)

Thus Theorem 1 implies that u is differentiable at x = 0 if both (85) and (86) hold. The case

∞∫
T

g̃(t)dt = −∞ (87)

in (86) pertains to Corollary 3, which is sharp for this class of examples. On the other hand, the case
that g̃(t) is integrable pertains to Corollary 2 and coincides with the hypothesis (12a); however, in
Corollary 2 we also require (12b), since (as mentioned in the Introduction) the condition (12a) alone
does not imply the uniform stability of (6).

In fact, this class of examples may be used to show not only this last statement, but in general
that uniform stability is not implied by every solution being asymptotically constant: we only need
to construct g̃(t) for which (86) holds but (85) fails. Moreover, if (86) holds because g̃ is integrable
on (0,∞), then this explains the need for a condition such as (12b) in Corollary 2; on the other
hand, if we construct g̃ for which (87) holds and yet (85) fails, then we see that (11) is not implied
by (16), so both conditions are necessary in Corollary 3. In this latter regard, let us observe that [3]
gives an explicit example of a function g̃(t) satisfying (87) and yet (85) fails: there exist t j → ∞ for

which
∫ t2 j+1

t2 j
g̃(τ )dτ → ∞ and yet

∫ t2 j+2
t2 j+1

g̃(τ )dτ → −∞ more rapidly so that (87) still holds. Now the

example in [3] does not have g̃(t) → 0 as t → ∞, but the example can be modified to achieve this; in
fact, we can even arrange g̃(t) = O (t−2/3), which implies that g̃ ∈ L2(T ,∞) and so the aij are square-
Dini continuous at x = 0. Moreover, the example can be modified so that (87) is replaced by the
condition that g̃ is integrable on (0,∞). Thus (85) and (86) are completely independent conditions,
even under the assumption that the coefficients aij are square-Dini continuous at x = 0.

Appendix A

In this appendix we provide the details behind the derivation of the dynamical system (57). To
express this system, let us introduce n × n matrices A, B , C and vectors 
ξ , 
ζ by

A�k(r) = �

∫
Sn−1

aij(rθ)θiθ jθ�θk dsθ , B�k(r) = �

∫
Sn−1

a� j(rθ)θ jθk dsθ , C� j(r) = �

∫
Sn−1

a� j(rθ)dsθ ,

ξ�[∇w](r) = �

∫
n−1

aijθiθ�∂ j w dsθ , ζ�[∇w](r) = �

∫
n−1

a� j∂ j w dsθ ,
S S
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which satisfy for 0 < r < 1

∣
∣A − n−1 I

∣
∣,

∣
∣B − n−1 I

∣
∣, |C − I| � ω(r),∣∣
ξ [∇w](r)∣∣, ∣∣
ζ [∇w](r)∣∣ � ω(r) �

∫
Sn−1

|∇w|ds, (88)

while for r > 1 we use (49) to conclude A = n−1 I = B , C = I. (Notice that the matrix A(r) introduced
above is not the same as the matrix A(x) used in the Introduction.) Now using η = η(r)x� in (52), we
obtain the second-order system of ODEs

−[
rn(u′

0

β + r A
v ′ + B
v + 
ξ [∇w] − 
f #)]′ + rn−1(u′

0 
γ + rB
v ′ + C 
v + 
ζ [∇w] + 
f �
) = 0, (89)

where

f #
� (r) = �

∫
Sn−1

f i(rθ)θiθ� dsθ and f �
� (r) = �

∫
Sn−1

f0(rθ)θ� dsθ

are supported in 1/4 � r � 1/2. Next we can use (54a) to solve for u′
0(r) and eliminate u0 from (89);

this is the second-order system of ODEs (depending upon w) that we want to analyze:

−r

[
rn(r A
v ′ + B
v + 
ξ [∇w] − 
f #) − rn

α(r)

(
r 
β · 
v ′ + 
γ · 
v + p[∇w] − ϑ

) 
β
]′

+
[

rn(rB
v ′ + C 
v + 
ζ [∇w] + 
f �
) − rn

α(r)

(
r 
β · 
v ′ + 
γ · 
v + p[∇w] − ϑ

) 
γ
]

= 0. (90)

If we make the substitution r = e−t , then (90) becomes

[
e−nt

(
−A
vt + B
v + 
ξ [∇w] − 
f # − 1

α

(− 
β · 
vt + 
γ · 
v + p[∇w] − ϑ
) 
β

)]
t

+ e−nt
(

−B
vt + C 
v + 
ζ [∇w] + 
f � − 1

α

(− 
β · 
vt + 
γ · 
v + p[∇w] − ϑ
) 
γ

)
= 0,

which after some rearrangement can be written

[
−A
vt + B
v + 
ξ [∇w] − 
f # + 
β · 
vt − 
γ · 
v − p[∇w] + ϑ

α

β
]

t
− (B − nA)
vt + 
β · 
vt

α
( 
γ − n 
β)

+ (C − nB)
v − 
γ · 
v
α

( 
γ − n 
β) = n

[

ξ [∇w] − p[∇w] − ϑ

α

β
]

+ p[∇w] − ϑ

α

γ − 
ζ [∇w] − 
f �.

To avoid differentiating the coefficient matrices, let us convert this to a first-order system for the
2n-vector V = (V 1, V 2) where V 1 = 
v and

V 2 := −A
vt + B
v + 
ξ [∇w] − 
f # + 
β · 
vt − 
γ · 
v − p[∇w] + ϑ 
β. (91)

α
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Notice that, as in Section 2, we have omitted arrows over the vectors V 1, V 2, and V , and we shall
now also use the dot notation for d/dt . Since A is invertible (for δ sufficiently small), our first-order
system can be written as

V̇ 1 − A−1 B V 1 + A−1 V 2 +
[ 
β · V̇ 1 − 
γ · V 1

α

]
A−1 
β = A−1

[

ξ [∇w] − 
f # − p[∇w] − ϑ

α

β
]
,

V̇ 2 + (
C − B A−1 B

)
V 1 + (

B A−1 − n
)

V 2 + 
β · V̇ 1

α

( 
γ − (
n + A−1) 
β) + 
γ · V 1

α

((
n + A−1) 
β − 
γ )

= n

[

ξ [∇w] − p[∇w] − ϑ

α

β
]

+ p[∇w] − ϑ

α

γ − 
ζ [∇w] − 
f �. (92)

Now (53) implies that

∞∫
0

(|V 1|2 + |V̇ 1|2 + |∇w|2)e−nt dt < ∞,

and if we use the second equation in (92) we see that

∞∫
0

(|V 2|2 + |V̇ 2|2
)
e−nt dt < ∞.

We can summarize this as

∞∫
0

(|V |2 + |V̇ |2 + |∇w|2)e−nt dt < ∞. (93)

Notice that the terms involving V̇ 1 and V̇ 2 in (92) are of the form (I + D(t))V̇ where I is the iden-
tity matrix and |D(t)| � cε2(t). So we may multiply (92) by (I + D(t))−1 and, after some calculations,
see that V satisfies a first-order system in the form

dV

dt
+ M(t)V = F (t,∇w) + F0(t), (94a)

where M(t) is a 2n × 2n matrix of the form

M(t) = M∞ + S1(t) + S2(t),

M∞ =
( −I nI

(1 − n−1)I (1 − n)I

)
,

S1(t) =
(

I − A−1 B A−1 − nI
C − B A−1 B + 1−n

n I B A−1 − I

)
, (94b)

the Si satisfy

∣
∣S1(t)

∣
∣ � ε(t) and

∣
∣S2(t)

∣
∣ � cε2(t) for t > 0,

S1(t) = 0 = S2(t) for t < 0, (94c)
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the vector F (t,∇w) satisfies

∣∣F (t,∇w)
∣∣ � cε(t) �

∫
Sn−1

|∇w|ds for t > 0 and F (t,∇w) ≡ 0 for t < 0, (94d)

and F0(t) has support in log 2 � t � 2 log 2 with L1-norm satisfying

‖F0‖1 � c
(‖
f ‖p + ‖ f0‖

)
. (94e)

We can calculate the eigenvalues of M∞ to be λ = 0 (n times) and λ = −n (n times). The matrix

J =
(

nI nI
I (1 − n)I

)
(95a)

diagonalizes M∞ , i.e.

J−1M∞ J = diag(0, . . . ,0,−n, . . . ,−n), (95b)

so we introduce the change of dependent variables V → (φ,ψ) by

V = J

(
φ

ψ

)
. (95c)

We find that the dynamical system (94a) now takes the form (57a), where the conditions (57c)
and (57d) follow from (94d) and (94e) respectively, and R is of the form (34b) with

R1 = n − 1

n2
A−1 − n − 1

n
A−1 B + C − B A−1 B + 1

n
B A−1 − I. (96)

To simplify this expression for R1, let us write

A = n−1(1 + Ã), B = n−1(1 + B̃), and C = n−1(1 + C̃),

where | Ã|, |B̃|, |̃C| � cε(t) as t → ∞. Then

A−1 ≈ n(I − Ã),

where ≈ means that the difference is bounded by cε2(t) as t → ∞, and a calculation shows

R1 ≈ C̃ − B̃ = C − nB as t → ∞.

Since

C − nB = �

∫
Sn−1

(A − nAθ ⊗ θ)dsθ ,

we see that (57b) holds and we have completed our derivation of (57).
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