
Theoretical Computer Science 127 (1994) 181-186

Elsevier

181

Note

P-complete problems in data
compression

Sergio De Ago&no
Computer Science Department, Brandeis University, Waltham, MA 02254, USA

Communicated by F.P. Preparata

Received July 1990

Revised April 1993

Abstract

De Agostino, S., P-complete problems in data compression, Theoretical Computer Science 127

(1994) 181-186.

In this paper we study the parallel computational complexity of some methods for compressing data

via textual substitution. We show that the Ziv-Lempel algorithm and two standard variations are

P-complete. Hence an efficient parallelization of these algorithms is not possible uqless P = NC.

1. Introduction

The purpose of data compression is to develop methods for representing informa-

tion in the minimum amount of space. The two most common applications of data

compression are, therefore, data storage and data communication, since compress-

ing data allows more data to be placed in some device and speeds up transmission.

In this paper we deal with lossless text data compression, where the decompressed

data must be identical to the original. By text we mean data is in the form of

a sequence of characters drawn from an input alphabet. Application of lossless text

compression includes the compression of spoken or written language text,

numerical data, data base information, etc., where even the loss of a single bit may

not be acceptable.

Correspondence to: S. De Agostino, Computer Science Department, Brandeis University, Waltham, MA
02254, USA. Email: sergio@cs.brandeis.edu.

0304-3975/94/$07.00 0 1994-Elsevier Science B.V. All rights reserved

SSDI 0304-3975(93)E0142-Q

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82127383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

182 S. De Agostino

Textual substitution methods (often called “LZ” methods due to the work of

Lempel and Ziv [7]) are among the most practical and effective for lossless text

compression. Textual substitution replaces substrings in the text with pointers to

copies that are stored in a dictionary. The encoded string will be a sequence of pointers

and uncompressed characters. The static method is when the dictionary is known in

advance [S, 111. By contrast, with the dynamic method (often called “LZ2” method

due to the work of Ziv and Lempel [13)) the dictionary may be constantly changing

as the data is processed. A special way to change dynamically is the sliding dictionary

method (often called “LZl” method due to the work of Lempel and Ziv [IS]), where

the dictionary is a window that passes continuously from left to right over the input.

In this paper we consider the LZ2 method. The original ZivvLempel algorithm, that

we call LZ2 algorithm, achieves the maximum compression obtainable with a finite

state encoder when the length of the input string goes to infinity. Two standard

variations of this algorithm that are more effective in the practical cases are the

next-character heuristic [9, 121 and the first-character heuristic [IO]. While efficient

parallel algorithms (polylogarithmic time and polynomial number of processors) have

been designed for compression with static and sliding dictionaries [2, 33, we show that

the LZ2 algorithm, the next-character heuristic and the first-character heuristic are

hardly parallelizable.

We need to introduce the notions of P-complete problem and P-complete algorithm

that we adopt as defined in [4, 11. Let P denote the set of problems solvable in

polynomial sequential time and NC denote the set of problems solvable in poly-

logarithmic parallel time using a polynomial number of processors. A problem LEP is

said to be P-complete if every other problem in P can be transformed to L with an

NC-reduction (a reduction that belongs to NC). It follows that a P-complete problem

does not belong to NC unless NC = P. An algorithm T is said to be P-complete if the

problem LT= ((x, i, b): the ith bit of T(x) is b) is P-complete. We prove that the LZ2

algorithm, the next-character heuristic and the first-character heuristic are P-

complete. Since we strongly believe that NC and P are different, an efficient parallel-

ization of such algorithms is unlikely.

2. The compression algorithms

The LZ2 algorithm learns substrings by reading the input string from left to right

with a so-called incremental parsing procedure. The dictionary is initially empty. This

procedure adds a new substring to the dictionary as soon as a prefix of the still

unparsed part of the string does not match a dictionary element. So, the last character

of the new substring is left uncompressed while the prefix is replaced with a pointer to

the dictionary (see example below). The uncompressed characters left by the LZ2

algorithm guarantee progress of the reading of the string and do not cost anything in

terms of asymptotical performance since the pointer size goes to infinity. In practice,

we do not want to leave characters uncompressed. This can be avoided by initializing

P-complete problems in data compression 183

the dictionary with the alphabet characters, The next-character heuristic also parses

the string from left to right with a greedy procedure. It finds the longest match in the

current position and updates the dictionary by adding the concatenation of the match

with the next character. The first-character heuristic differs in the way it updates the

dictionary. The new element is defined as the concatenation of the last match with the

first character of the current match.

Example. abababaaaa

LZ2 algorithm

parsing: a, b, ab, aba, aa, a;

dictionary: a, b, ab, aba, aa;

coding: Oa, Ob, lb, 3a, la, Oa.

next-character heuristic

parsing: a, b, ab, aba, a, aa;

dictionary: a, b, ab, ba, aba, abaa, aa;

coding: 1, 2, 3, 5, 1, 7.

first-character heuristic

parsing: a, b, ab, ab, a, a, aa;

dictionary: a, b, ab, ba, aba, aa;

coding: 1, 2, 3, 3, 1, 1, 6.

3. The P-completeness of the LZ2 algorithm

In this section we show that the LZ2 algorithm is P-complete. The P-completeness

proof will be a reduction from the circuit value problem [6]. The circuit value problem

is the following: Given a circuit and values for its inputs, what is the value of its

output? Formally, a circuit C, is a string cr , . . c, where Ci is either an input gate with

value 0 or 1, or a boolean gate. The gates are numbered topologically so if ck receives

an input from Ci, then i < k. We shall put the following restriction on the circuit: ci is

either an INPUT gate or a NOT gate or an OR gate for 1 di,<n -2, c,_ 1 is a NOT

gate and c, is an OR gate. Obviously, the circuit value problem remains P-complete

under these restrictions. Let us denote by i(j) the number of gates c,,, with h < i, having

the output of Cj as input and by xk the concatenation of k symbols equal to x (x0 is the

empty string). We prove the following theorem.

Theorem 3.1. Tke LZ2 algorithm is P-complete.

184 S. De Agostino

Proof. We reduce the circuit to a binary string. A certain pointer will be in the LZ2

coding of this string iff the output of the circuit is 1. Since the string is binary, the

problem is P-complete for any fixed cardinality of the alphabet. A string Xi is

associated with each gate ci with the following rules:

l ci INPUT gate with value 1: Xi = b”a,

l ci INPUT gate with value 0: Xi=ab2’a,

l ci NOT gate having the output of cj as input: Xi = h2jaa”“h2’a,

l Ci OR gate having the outputs of cj and ck as inputs:

(i) cj and ck both either OR gate or INPUT gate:

X.=b2jaai(j’b2iab2kaai(k)b2ia I 9

(ii) cj either OR gate or INPUT gate and ck NOT gate:

Xi = b2jaai(j’b2iaab2kaui(k)b2i~,

(iii) Cj and ck both NOT gate:

Xi = ab2jaai(j)b2iaab2kaai(k)bzi~,

Define Yi=ab2i-lb2i-lab2ia62i-lab2i, The reduction maps each gate ci to the string

YiXi, so that the circuit C, = c1 . . . c, is reduced to the string X = Y1 X1 Y2X2 . . Y,X,.

We see now how the parsing of X simulates the circuit. By parsing Y1 we add to the

dictionary six substrings that are a, 6, ha, bb, ab, abb. Then the substring Xi, asso-

ciated with the input gate ci, is added to the dictionary and is equal to bba (ubba) iff its

input is 1 (0). Let c, be the first OR gate in the topological order of the circuit to

receive input values both equal to 1 or 0 (if such gate is not defined, the case is much

simpler and the correctness of the reduction still follows from the arguments below).

We can verify that, for 2,<i<m, when Yi is parsed the substrings ub2i-1, bziel, ab”,

ab”- ‘u and b2’ are added to the dictionary and the first character of Xi starts a new

dictionary element. If ci is an INPUT gate then the substring Xi is added to the

dictionary and is equal to b2’u (ub2’u) iff the input value is l(0). If ci is a NOT gate with

input cj then by parsing Xi the substrings b2jua”” (b2iuai(“- ‘) and b2’a (ab”u) are

added iff the output value of ci is 0 (1). Since an OR gate needs just one input equal to

1 to have 1 as its own output value, if ci is an OR gate with inputs from INPUT gates

or NOT gates then by parsing Xi the substring b2’a is added iff its output value is 1. It

follows that these conditions verify also for the gates receiving inputs from an OR

gate. The inputs of c, are both equal to 1 (0), so the substring b2muu (ub2”uu) is added

to the dictionary, where the last a is prefix of Y,,,. The substrings
/,,2i,,+l

,b 2m+1u,b2(m+l), &“Z+l and &,2(“I+l, are added by parsing the suffix of Y,,,+ 1.

Thus, the substrings b’(‘“+ ‘) and ub2(‘“’ ‘) are in the dictionary and the first character

of Xm+1 starts a new dictionary element. It follows that, for 1 < i<n, we learn the

substrings b2”) and ab2(‘) by parsing Yi, the first character of Xi starts a new

dictionary element and the parsing of Xi has the properties shown above, even if i > m.

Therefore, the circuit output is 1 iff b2”u is added to the dictionary, since c, is an OR

gate, i.e., iff the pointer to the dictionary element b ” is in the coding. Observe that

P-complete problems in data compression 185

the parsing of the substring Yi provides five dictionary elements when i > 2 and, since

c,-I is a NOT gate, b2” is the fifth of the elements provided by the parsing of Y,,.

Therefore, the pointer to b2” is equal to 5n + 1+ 1+ 2t + 4(r - 1) where I, t and r are, the

number of INPUT, NOT and OR gates, respectively. Cl

4. The P-completeness of the next- and the first-character heuristics

We show the P-completeness of the next-character heuristic with a reduction from

the same restricted version of the circuit value problem. The circuit will be reduced

again to a binary string and a certain pointer will be in the coding iff the output of the

circuit is 1.

Theorem 4.1. The next-character heuristic is P-complete.

Proof. The reduction maps the circuit C, to a string X with a prefix P=aZ, . . . Z2,,,
where Z. = abiaibiaabi-lbibi+l

defming’Yi = aab2’- ’

aab’. The suffix S= YIXl Y2X2 . Y,X, is constructed

a and associating Xi with ci in the following way:

l ci INPUT gate with value 1: Xi = ab2’a,

l ci INPUT gate with value 0: Xi=aab2’a,

l ci NOT gate having the output of cj as input: Xi=ab2’aai’j’ab2’a,

l ci OR gate having the outputs of Cj and ck as inputs:

(i) cj and ck both either OR gate or INPUT gate:

(ii) Cj either OR gate or INPUT gate and ck NOT gate:

X. = ab2jaai(j)ab2iaaab2kaai(k)ab2ia I 9

(iii) Cj and ck both NOT gate:

X. = aab2jaai(j)ab2iaacb2kaa i(k),b2ia,

Initially, the first character a is matched in the dictionary and the substring aa is

added to it. When the substring Zi is parsed, the substrings ab’- ‘, ba’-‘, ab’, aab’-‘,

b’, b’+ ‘, aab’ are matched and the substrings ab’, ba’, ab’a, aab’, b' + I, b’+ ‘a, aab’a are

added to the dictionary. The dictionary elements ab’a and aab’a are the ones we utilize

to parse the suffix S. The substring Yi guarantees that the first character of Xi starts

a dictionary element, for 1 <i< n. If ci is an INPUT gate then the substring Xi is

matched, which is equal to ab2’a (aab2’a) iff the input value is 1 (0), and ab2’aa

(aab2’aa) is added to the dictionary. When ci is a NOT gate with input cj, the
substrings &,2jaai(j) (ab2jaai(j)- 1) and ab2’a (aab2’a) are matched while the substrings
,b2jaai(Aa (ab2jaai(j)- 1 a) and ab2’aa (aab2’aa) are added to the dictionary iff the

output value of ci is 0 (1). When ci is an OR gate, the substring ab”a is matched and

the substring ab”aa is added to the dictionary iff its output value is 1. It follows that

186 S. De Agostino

the circuit output is 1 iff the pointer to the dictionary element ab”‘a is in the coding.

The parsing of the substring Zi provides seven dictionary elements and ab2’a is the

third element. Since the dictionary is initialized with the alphabet and the substring aa

is added at the beginning, the pointer to ab’“a is equal to 14n- 1. 0

The first-character heuristic is proved to be P-complete by modifying slightly the

reduction for the next-character heuristic.

Theorem 4.2. The j&-character heuristic is P-complete.

Proof. We change the prefix P of the string X defining Zi = ab’a’b’aab’- ’ b2’bi+ ‘aab’. The

suffix S remains the same. When the substring Zi is parsed, the substrings ab’- *, ba’- ‘,
abi, aabi- 1, Q, hi, hi+ 1

, aab’ are matched and the substrings ab’, ba’, ab’a, aab’, b’+ ‘,
b’+‘a, aab’a are added to the dictionary. The same seven elements are added to the

dictionary when Zi is parsed and ab’a is still the third element, as in the former proof. The

parsing of the suffix S is the same as the one for the next character heuristic. Therefore

a pointer equal to 14n - 1 will be in the coding iff the output of the circuit is 1. 0

Acknowledgment

I would like to thank Prof. J.A. Storer for helpful comments and discussions.

References

[1] R.J. Anderson and E.W. Mayr, Parallelism and greedy algorithms, in: F.P. Preparata, ed., Adcances in

Compuring Research: Parallel and Distributed Computiny (JAI Press, Greenwich, 1987) 17-38.

[2] M. Crochemore and W. Rytter, Efficient parallel algorithms to test square-freeness and factorize
strings, fnjorm. Process. L&f. 38 (1991) 57-60.

[3] S. De Agostino and J.A. Storer, Parallel algorithms for optimal compression using dictionaries with

the prefix property, submitted.
143 A. Gibbons and W. Rytter Ejicient Paralkl .4lgorithms (Cambridge Univ. Press, Cambridge, 1989)

344-373.

[S] A. Hartman, and M. Rodeh, Optimal parsing of strings, in: A. Apostolic0 and 2. Galil, eds.,

Combinatorial Alyorirhms on Words (Springer, Berlin, 1985) 155-167.

[6] R.E. Ladner, The circuit value problem is log space complete for P, SIGACT News 7 (1975) 18-20.

[7] A. Lempel and .I. Ziv, On the complexity of finite sequences, LEEE Trans. Inform. Theory 22 (1976)

75-81.

[S] A. Lempel and J. Ziv, A universal algorithm for sequential data compression, IEEE Trans. Inform.

Theory 23 (1977) 337-343.
[9] V.S. Miller and M.N. Wegman, Variations on theme by Ziv-Lempel, in: A. Apostolico and Z. Galil,

eds., Combinatorial Algorithms on Words (Springer, Berlin, 1985) 131-140.
[lo] J.A. Storer and T.G. Szymanski, Data compression via textual substitution, J. ACM 29 (1982)

928-951.

[1 I] R.A. Wagner, Common phrases and minimum text storage, Comm. ACM 16 (1973) 148-152.
[12] T.A. Welch, A technique for high-performance data compression, IEEE Comput. 17 (1984) 8-19.

[13] J. Ziv and A. Lempel, Compression of individual sequences via variable rate coding, IEEE Trans.

Injbrm. Theory 24 (1978) 530-536.

