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a b s t r a c t

The primitive notions in rough set theory are lower and upper approximation operators
defined by a fixed binary relation and satisfying many interesting properties. Many
types of generalized rough set models have been proposed in the literature. This paper
discusses the rough approximations of Atanassov intuitionistic fuzzy sets in crisp and fuzzy
approximation spaces in which both constructive and axiomatic approaches are used. In
the constructive approach, concepts of rough intuitionistic fuzzy sets and intuitionistic
fuzzy rough sets are defined, properties of rough intuitionistic fuzzy approximation
operators and intuitionistic fuzzy rough approximation operators are examined. Different
classes of rough intuitionistic fuzzy set algebras and intuitionistic fuzzy rough set algebras
are obtained from different types of fuzzy relations. In the axiomatic approach, an
operator-oriented characterization of rough sets is proposed, that is, rough intuitionistic
fuzzy approximation operators and intuitionistic fuzzy rough approximation operators
are defined by axioms. Different axiom sets of upper and lower intuitionistic fuzzy set-
theoretic operators guarantee the existence of different types of crisp/fuzzy relationswhich
produce the same operators.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The theory of rough sets was originally proposed by Pawlak [1] as a formal tool for modeling and processing
intelligent systems characterized by insufficient and incomplete information. The basic structure of rough set theory is an
approximation space consisting of a universe of discourse and a binary relation imposed on it. By introducing the concepts of
lower and upper approximations of all decision classeswith respect to an approximation space induced from the conditional
attribute set, knowledge hidden in information tablesmay be unraveled and expressed in the formof decision rules.Wehave
witnessed a rapid development of and a fast growing interest in rough set theory recently and many models and methods
have been proposed and studied (see e.g. the literature cited in [2,3]).

In the classical Pawlak rough set model [1], an equivalence relation is a key and primitive notion in the construction
of an approximation space. This equivalence relation, however, seems to be a very restrictive condition that may limit
the application domain of the rough set model. Thus one of the main directions in the research of rough set theory
is naturally the generalization of concepts of Pawlak rough set approximation operators. There are two ways to define
rough set approximation operators: the constructive and the axiomatic approach. In the constructive approach, binary
relations on a universe of discourse, partitions or coverings of the universe of discourse, neighborhood systems, and Boolean
algebras are all primitive notions. The lower and upper approximation operators are constructed by means of these notions
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[4,1,5–8]. Constructive definitions of rough sets can also be generalized to the fuzzy environment [9–17]. For example, by
using an equivalence relation on a universe of discourse, Dubois and Prade defined lower and upper approximations of
fuzzy sets in the Pawlak approximation space to obtain an extended notion called rough fuzzy set [10]. A similar fuzzy
relation can be used to replace an equivalence relation, the result is a deviation of rough set theory called fuzzy rough set
[10,13]. More generalizations of fuzzy rough sets were defined by employing an implicator and a triangular norm on [0, 1]
[11,14,17]. Based on arbitrary fuzzy relations, fuzzy partitions on the universe of discourse, and Boolean subalgebras of the
power set of the universe of discourse, extended notions called rough fuzzy sets and fuzzy rough sets were also obtained
[11,12,4,14–16]. Alternatively, a rough fuzzy set is the approximation of a fuzzy set in a crisp approximation space. The
rough fuzzy set model may be used to handle knowledge acquisition in information systems with fuzzy decisions. And a
fuzzy rough set is the approximation of a crisp set or a fuzzy set in a fuzzy approximation space. The fuzzy rough set model
may be used to unravel knowledge hidden in fuzzy decision systems.

On the other hand, the axiomatic approach, which is appropriate for studying the structures of rough set algebras,
considers the reverse problem, that is, the lower and upper approximation operators are taken as primitive notions. A set
of axioms is used to characterize approximation operators that are the same as those derived by using the constructive
approach. Various classes of approximation operators are characterized by different axiom sets, and the axiom sets of
approximation operators guarantee the existence of certain types of binary relations producing the same operators.
Under this point of view, rough set theory may be interpreted as an extension of the classical set theory with two
additional unary operators. Many authors explored and developed the axiomatic approach in the study of rough set theory
[18–22]. The most important axiomatic studies on crisp rough sets were contributed by Yao [8,23], in which various
classes of crisp rough set approximation operators were characterized by different sets of axioms. Furthermore, the
research of the axiomatic approach has also been extended to approximation operators in the fuzzy environment
[9,11,24,25,22,26,14–16]. For instance, Thiele [22,26] investigated axiomatic characterizations of fuzzy rough approximation
operators and rough fuzzy approximation operators within modal logic. Radzikowska [13] defined a broad family called
(I, T )-fuzzy rough sets determined by an implicator I and a triangular norm T on [0, 1] and suggested axiomatic sets
for characterizing the operators. The studies of axiomatic research on various generalized approximation operators in fuzzy
environmentweremade byWu et al. [14–16], inwhich various classes of fuzzy approximation operatorswere characterized
by different sets of axioms.

In 1986, Atanassov [27] introduced the concept of an intuitionistic fuzzy (IF) set. An AIF set1 is considered as a
generalization of fuzzy set [33] and has been found to be useful to deal with vagueness. In the sense of Atanassov an IF
set is characterized by a pair of functions valued in [0, 1]: the membership function and the non-membership function. The
evaluation degrees of membership and non-membership are independent. Thus an AIF set is more material and concise to
describe the essence of fuzziness, and AIF set theory may be more suitable than fuzzy set theory for dealing with imperfect
knowledge in many problems. In recent years, several authors attempted to investigate in combining AIF set theory and
rough set theory, various tentative definitions of the concept of an ‘‘IF rough set’’ were explored [34–36,13,37]. For example,
based on fuzzy rough sets in the sense of Nanda andMajumda [4], Chakrabarty et al. [34] proposed the concept of an IF rough
set. In Chakrabarty’s opinion, an IF rough set is a generalization of fuzzy rough set and the upper and lower approximations
are both AIF sets. Such a notion was reintroduced by Jena and Ghosh in [36]. Samanta and Mondal [37] also introduced
this notion, they called it a rough IF set in which the membership and non-membership functions are no longer fuzzy sets
but fuzzy rough sets in the sense of Nanda and Majumda. It is well known that fuzzy rough sets in the sense of Nanda
and Majumda [4] are not constructed from an approximation space, that is, fuzzy rough sets in the sense of Nanda and
Majumda are not defined by binary relations, thus the above mentioned IF rough sets and rough IF sets are not defined
by an approximation space. In comparison with the above approaches and along the lines of the Pawlak rough sets, Rizvi
et al. [38] introduced a concept of a rough IF set by employing a Pawlak approximation space (U, R), however, in such a case,
the lower and upper approximations are not AIF sets in the universe U but AIF sets in the class of equivalence classes of the
equivalence relation R. To overcome this drawback, by employing an approximation space constituted from an IF triangular
norm T , an IF implicator I, and a T -equivalence AIF relation on the universe of discourse, Cornelis et al. [35] defined a
concept of an IF rough set in which the lower and upper approximations are AIF sets in the universe of discourse. Such an IF
rough set is indeed a natural generalization of Pawlak’s original concept of rough sets.We observe that, on the one hand, a T -
equivalence AIF relation will become an equivalence crisp relation in the degenerated case, thus IF rough sets induced from
the T -equivalence AIF relationwill limit the application of rough set theory in complex systems, therefore, just as in the crisp
and fuzzy cases, the requirement of equivalence relation in an approximation space should be relaxed. As a complement for
Cornelis’ studies, Zhou et al. [39] explore the rough approximations of AIF sets based on IF implicators. On the other hand,
the algebraic structure of a class of IF rough sets has not been discussed in detail, meanwhile, the approximations of AIF sets
with respect to a crisp/fuzzy approximation space have not been discussed which may be useful to make IF decisions.

The present paper studies rough IF approximation operators and IF rough approximation operators in which both
the constructive and axiomatic approaches are used. In the constructive approach, based on an arbitrary crisp relation

1 Though the term ‘‘intuitionistic fuzzy set’’ has been the argument of a large debate [28–32], we will use AIF set instead of intuitionistic fuzzy set in
the sense of Atanassov due to its underlying mathematical structure and being a popular topic of investigation with increasing literature in the fuzzy set
community.
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(and an arbitrary fuzzy relation, respectively), a pair of upper and lower rough IF approximation operators (and IF rough
approximation operators, respectively) are defined and their properties are also investigated. In an axiomatic approach,
rough IF approximation operators and IF rough approximation operators are axiomatized by abstract operators. Various
classes of intuitionistic fuzzy approximation operators are characterized by different sets of axioms, and certain axiom sets of
approximation operators guarantee the existence of the corresponding crisp/fuzzy relations producing the same operators.

2. Preliminaries

In this section, we introduce some basic definitions and properties which will be used in this paper. The family of all
subsets (respectively, fuzzy subsets) of a set X is denoted byP(X) (respectively,F (X)). The complement of a set A (whatever
Amay be) is denoted by ∼ A. For α ∈ [0, 1],α will be denoted by the constant fuzzy set, i.e.,α(x) = a for all x ∈ U .

Definition 2.1 ([40,41]). Let a set U be fixed. An Atanassov intuitionistic fuzzy set (we will use ‘‘AIF’’ instead of ‘‘Atanassov
intuitionistic fuzzy’’ hereinafter) A in U is an object having the form

A = {⟨x, µA(x), γA(x)⟩ | x ∈ U},

where the functions µA : U → [0, 1] and γA : U → [0, 1] satisfy 0 ≤ µA(x) + νA(x) ≤ 1 for all x ∈ U , and µA(x) and νA(x)
define the degree of membership and the degree of non-membership of the element x ∈ U to A, respectively. The family of
all AIF subsets in U is denoted by I F (U). The complement of an AIF set A is denoted by ∼ A = {⟨x, γA(x), µA(x)⟩ | x ∈ U}.

Formally, an AIF set A associates two fuzzy sets µA : U → [0, 1] and γA : U → [0, 1] and can be represented as
A = (µA, γA). Obviously, any fuzzy set A = µA = {⟨x, µA(x)⟩ | x ∈ U} may be identified with the AIF set in the form
A = {⟨x, µA(x), 1 − µA(x)⟩ | x ∈ U}. Thus an AIF set is an extension of a fuzzy set.

We introduce operations on I F (U) as follows [27,41]: ∀A, B ∈ I F (U),

• A ⊆ B if and only if (iff) µA(x) ≤ µB(x) and γA(x) ≥ γB(x) for all x ∈ U ,
• A ⊇ B iff B ⊆ A,
• A = B iff A ⊆ B and B ⊆ A,
• A ∩ B = {⟨x,min(µA(x), µB(x)),max(γA(x), γB(x))⟩ | x ∈ U},
• A ∪ B = {⟨x,max(µA(x), µB(x)),min(γA(x), γB(x))⟩ | x ∈ U}.

Here we define some special AIF sets: a constant AIF set (α, β) = {⟨x, α, β⟩ | x ∈ U}, where α, β ∈ [0, 1] and α + β ≤ 1;
the AIF universe set is U = 1U = (1, 0) = {⟨x, 1, 0⟩ | x ∈ U} and the AIF empty set is ∅ = 0U = (0, 1) = {⟨x, 0, 1⟩ | x ∈ U}.

For any y ∈ U , AIF sets 1y and 1U−{y} are, respectively, defined by: ∀x ∈ U,

µ1y(x) =


1, if x = y,
0, if x ≠ y. γ1y(x) =


0, if x = y,
1, if x ≠ y.

µ1U−{y}(x) =


0, if x = y,
1, if x ≠ y. γ1U−{y}(x) =


1, if x = y,
0, if x ≠ y.

According to the above definitions, the following basic properties about AIF sets can be easily derived:

(1) A ⊆ B and B ⊆ C H⇒ A ⊆ C;

(2) A ∩ B ⊆ A ∪ B;
(3) A ⊆ B and C ⊆ D H⇒ A ∪ C ⊆ B ∪ D and A ∩ C ⊆ B ∩ D;

(4) ∼ (∼ A) = A;

(5) ∼ (A ∪ B) = (∼ A) ∩ (∼ B), ∼ (A ∩ B) = (∼ A) ∪ (∼ B);
(6) ∼ U = ∅, ∼ ∅ = U, 1y =∼ 1U−{y}, 1U−{y} =∼ 1y.

Definition 2.2. Let R ∈ P(U × U) be a crisp binary relation on U . R is referred to as serial if for any x ∈ U there exists
a y ∈ U such that (x, y) ∈ R; R is referred to as reflexive if (x, x) ∈ R for all x; R is referred to as symmetric if for any
x, y ∈ U, (x, y) ∈ R implies (y, x) ∈ R; R is referred to as transitive if for any x, y, z ∈ U, (x, y) ∈ R and (y, z) ∈ R imply
(x, z) ∈ R; R is referred to as equivalent if R is reflexive, symmetric, and transitive.

Definition 2.3. Let R ∈ F (U × U) be a fuzzy binary relation on U . R(x, y) is the degree of the relation between x and y,
where (x, y) ∈ U ×U . R is referred to as a serial fuzzy relation if ∨y∈U R(x, y) = 1 for all x ∈ U; R is referred to as a reflexive
fuzzy relation if R(x, x) = 1 for all x ∈ U; R is referred to as a symmetric fuzzy relation if R(x, y) = R(y, x) for all x, y ∈ U; R is
referred to as a transitive fuzzy relation if R(x, z) ≥ ∨y∈U(R(x, y)∧R(y, z)) for all x, z ∈ U; R is referred to as an equivalence
fuzzy relation if R is a reflexive, symmetric, and transitive fuzzy relation.

Definition 2.4. Let U be a nonempty and finite universe of discourse. For an arbitrary crisp relation R on U , we can define a
set-valued function Rs : U → P(U) by

Rs(x) = {y ∈ U|(x, y) ∈ R}, x ∈ U .



L. Zhou, W.-Z. Wu / Computers and Mathematics with Applications 62 (2011) 282–296 285

Rs(x) is referred to as the successor neighborhood of xwith respect to (w.r.t.) R. The pair (U, R) is called a crisp approximation
space. For any A ⊆ U , the lower and upper approximations of A w.r.t. (U, R), denoted by R(A) and R(A), are, respectively,
defined as follows:

R(A) = {x ∈ U|Rs(x) ⊆ A},

R(A) = {x ∈ U|Rs(x) ∩ A ≠ ∅}.

The pair (R(A), R(A)) is referred to as a crisp rough set, and R, R : P(U) → P(U) are referred to as lower and upper
crisp approximation operators, respectively. If R is an equivalence relation on U , then the pair (U, R) is called a Pawlak
approximation space and (R(A), R(A)) is called a Pawlak rough set [1].

From the definition, the following theorem can be easily derived [42].

Theorem 2.1. Let (U, R) be a crisp approximation space, and R and R the lower and upper crisp approximation operators defined
by Definition 2.4. Then
(1)

R is serial ⇐⇒ (L0) R(∅) = ∅,

⇐⇒ (U0) R(U) = U,

⇐⇒ (LU0)R(A) ⊆ R(A), ∀A ∈ P(U).

(2)

R is reflexive ⇐⇒ (LR) R(A) ⊆ A, ∀A ∈ P(U),

⇐⇒ (UR) A ⊆ R(A), ∀A ∈ P(U).

(3)

R is symmetric ⇐⇒ (LS) R(R(A)) ⊆ A, ∀A ∈ P(U),

⇐⇒ (US) A ⊆ R(R(A)), ∀A ∈ P(U).

(4)

R is transitive ⇐⇒ (LT) R(A) ⊆ R(R(A)), ∀A ∈ P(U),

⇐⇒ (UT) R(R(A)) ⊆ R(A), ∀A ∈ P(U).

Definition 2.5. Let U be a nonempty and finite universe of discourse and R a fuzzy relation on U , the pair (U, R) is called
a generalized fuzzy approximation space. For any set A ∈ F (U), the lower and upper approximations of A w.r.t. (U, R),
denoted by R(A) and R(A), are fuzzy sets of U whose membership functions are, respectively, defined as follows:

R(A)(x) =


y∈U

[R(x, y) ∧ A(y)], x ∈ U,

R(A)(x) =


y∈U

[(1 − R(x, y)) ∨ A(y)], x ∈ U .

The pair (R(A), R(A)) is referred to as a generalized fuzzy rough set, and R and R : F (U) → F (U) are, respectively, called
lower and upper generalized fuzzy rough approximation operators.

Especially, if R is a crisp relation on U , that is, (U, R) is a crisp approximation space, then the fuzzy rough approximation
operators degenerate to rough fuzzy approximation operators. It can be easily checked that

R(A)(x) =


y∈Rs(x)

A(y), x ∈ U,

R(A)(x) =


y∈Rs(x)

A(y), x ∈ U .

Under such a circumstance, the pair (R(A), R(A)) is referred to as a generalized rough fuzzy set.

Theorem 2.2 ([16]). The lower and upper fuzzy rough (respectively, rough fuzzy) approximation operators, R and R, defined
in Definition 2.5) satisfy the properties:

∀A, B ∈ F (U), ∀α ∈ [0, 1],

(FL1) R(A) =∼ R(∼ A), (FU1) R(A) =∼ R(∼ A),

(FL2) R(A ∪α) = R(A) ∪α, (FU2) R(A ∩α) = R(A) ∩α;

(FL3) R(A ∩ B) = R(A) ∩ R(B), (FU3) R(A ∪ B) = R(A) ∪ R(B).
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The relationships between special fuzzy/crisp relations and fuzzy approximation operators are summarized as follows:

Theorem 2.3 ([16]). Let (U, R) be a fuzzy/crisp approximation space, and R and R the lower and upper approximation operators
defined in Definition 2.5. Then
(1)

R is serial ⇐⇒ (FL0) R(∅) = ∅,

⇐⇒ (FU0) R(U) = U,

⇐⇒ (FL0)′ R(α) = α, ∀α ∈ [0, 1],

⇐⇒ (FU0)′ R(α) = α, ∀α ∈ [0, 1],
⇐⇒ (FLU0) R(A) ⊆ R(A), ∀A ∈ F (U).

(2)
R is reflexive ⇐⇒ (FLR) R(A) ⊆ A, ∀A ∈ F (U),

⇐⇒ (FUR) A ⊆ R(A), ∀A ∈ F (U).

(3)
R is symmetric ⇐⇒ (FLS) R(1U−{x})(y) = R(1U−{y})(x), ∀(x, y) ∈ U × U,

⇐⇒ (FUS) R(1x)(y) = R(1y)(x), ∀(x, y) ∈ U × U .

(4)
R is transitive ⇐⇒ (FLT) R(A) ⊆ R(R(A)), ∀A ∈ F (U),

⇐⇒ (FUT) R(R(A)) ⊆ R(A), ∀A ∈ F (U).

Remark 2.1. If (U, R) is a crisp approximation space, then [16]

R is symmetric ⇐⇒ (FLS)′ R(R(A)) ⊆ A, ∀A ∈ F (U),

⇐⇒ (FUS)′ A ⊆ R(R(A)), ∀A ∈ F (U).

3. Construction of rough intuitionistic fuzzy sets

Just as a rough fuzzy set is the result of approximation of a fuzzy set in a crisp approximation space, a rough IF set is the
result of approximation of an AIF set in a crisp approximation space. In this section, we introduce the concept of rough IF
sets and investigate the properties of rough IF approximation operators.

Definition 3.1. Let (U, R) be a crisp approximation space, for A = {⟨x, µA(x), γA(x)⟩ | x ∈ U} ∈ I F (U), the upper and lower
approximations of Aw.r.t. (U, R), denoted by R(A) and R(A), are, respectively, defined as follows:

R(A) = {⟨x, µR(A)(x), γR(A)(x)⟩ | x ∈ U},

R(A) = {⟨x, µR(A)(x), γR(A)(x)⟩ | x ∈ U},

where

µR(A)(x) =


y∈Rs(x)

µA(y), γR(A)(x) =


y∈Rs(x)

γA(y);

µR(A)(x) =


y∈Rs(x)

µA(y), γR(A)(x) =


y∈Rs(x)

γA(y).

It is easy to observe that R(A) and R(A) are two AIF sets in U , thus AIF mappings R, R : I F (U) → I F (U) are, respectively,
referred to as the upper and lower rough IF approximation operators, and the pair (R(A) , R(A)) is called the rough IF set of
Aw.r.t. (U, R).

For any A ∈ I F (U), according to Definition 2.5, we can observe that
µR(A) = R(µA), γR(A) = R(γA).

Then

R(A) = (µR(A), γR(A)) = (R(µA), R(γA)). (1)
Similarly,

R(A) = (µR(A), γR(A)) = (R(µA), R(γA)). (2)

Remark 3.1. When A ∈ F (U), µA(x) + γA(x) = 1 for all x ∈ U , then it is easy to observe that (R(A) , R(A)) is a rough fuzzy
set [16].
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Theorem 3.1. Let (U, R) be a crisp approximation space, then the upper and lower rough IF approximation operators defined
in Definition 3.1 satisfy the following properties:

∀A, B ∈ I F (U), ∀α, β ∈ [0, 1] with α + β ≤ 1,

(ILc) R(1U−{y}) ∈ P(U), ∀y ∈ U, (IUc) R(1y) ∈ P(U), ∀y ∈ U;

(IL1) R(∼ A) =∼ R(A), (IU1) R(∼ A) =∼ R(A);

(IL2) R(U) = U, (IU2) R(∅) = ∅;

(IL3) R(A ∩ B) = R(A) ∩ R(B), (IU3) R(A ∪ B) = R(A) ∪ R(B);
(IL4) R(A ∪ B) ⊇ R(A) ∪ R(B), (IU4) R(A ∩ B) ⊆ R(A) ∩ R(B);
(IL5) A ⊆ B H⇒ R(A) ⊆ R(B), (IU5) A ⊆ B H⇒ R(A) ⊆ R(B);
(IL6) R(A ∪ (α, β)) = R(A) ∪ (α, β), (IU6) R(A ∩ (α, β)) = R(A) ∩ (α, β).

Proof. We only prove property (IL3), the others can be proved similarly.
According to Eqs. (1) and (2), by Theorem 2.2, we have

R(A ∩ B) = (µR(A∩B), γR(A∩B))

= (R(µA∩B), R(γA∩B))

= (R(µA ∩ µB), R(γA ∪ γB))

= (R(µA) ∩ R(µB), R(γA) ∪ R(γB))

= (µR(A) ∩ µR(B), γR(A) ∪ γR(B))

= (µR(A)∩R(B), γR(A)∩R(B)).

Thus we conclude (IL3). �

Properties (IL1) and (IU1) in Theorem 3.1 show that R and R are dual with each other. With respect to certain special
types, say, serial, reflexive, symmetric, and transitive crisp binary relations on the universe of discourse U , the rough IF
approximation operators have additional properties.

Theorem 3.2. Let (U, R) be a crisp approximation space, and R, R : I F (U) → I F (U) the lower and upper rough IF
approximation operators. Then

(1)

R is serial ⇐⇒ (IL0) R(∅) = ∅,

⇐⇒ (IU0) R(U) = U,

⇐⇒ (IL0)′ R( (α, β)) = (α, β), ∀α, β ∈ [0, 1], α + β ≤ 1,

⇐⇒ (IU0)′ R( (α, β)) = (α, β), ∀α, β ∈ [0, 1], α + β ≤ 1,

⇐⇒ (ILU0) R(A) ⊆ R(A), ∀A ∈ I F (U).

(2)

R is reflexive ⇐⇒ (ILR) R(A) ⊆ A, ∀A ∈ I F (U),

⇐⇒ (IUR) A ⊆ R(A), ∀A ∈ I F (U).

(3)

R is symmetric ⇐⇒ (ILS) R(R(A)) ⊆ A, ∀A ∈ I F (U),

⇐⇒ (IUS) A ⊆ R(R(A)), ∀A ∈ I F (U),

⇐⇒ (ILS)′ µR(1U−{x})(y) = µR(1U−{y})(x), ∀(x, y) ∈ U × U,

⇐⇒ (IUS)′ µR(1x)(y) = µR(1y)(x), ∀(x, y) ∈ U × U,

⇐⇒ (ILS)′′ γR(1U−{x})(y) = γR(1U−{y})(x), ∀(x, y) ∈ U × U,

⇐⇒ (IUS)′′ γR(1x)(y) = γR(1y)(x), ∀(x, y) ∈ U × U .

(4)

R is transitive ⇐⇒ (ILT) R(A) ⊆ R(R(A)), ∀A ∈ I F (U),

⇐⇒ (IUT) R(R(A)) ⊆ R(A), ∀A ∈ I F (U).
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Proof. We only prove (1), the others can be proved similarly.
(1) Firstly, according to Eqs. (1) and (2), by Theorem 2.3, it is easy to verify that

R is serial ⇐⇒ (IL0) ⇐⇒ (IU0).

Secondly, by Theorem 2.3, we have

R is serial ⇐⇒ R(α) = α, R(β) = β, ∀α, β ∈ [0, 1]

⇐⇒ R( (α, β)) =


µR((α,β))

, γR((α,β))


=


R

µ(α,β)


, R


γ(α,β)


=


R(α), R(β)


= (α,β)

= (α, β), ∀α, β ∈ [0, 1], α + β ≤ 1.

By the duality of R and R, we then conclude that

R is serial ⇐⇒ (IU0)′.

Finally, by Theorem 2.3, we have

R is serial ⇐⇒ R(µA) ⊆ R(µA), R(γA) ⊆ R(γA), ∀A ∈ I F (U)

⇐⇒ µR(A) ⊆ µR(A), γR(A) ⊆ γR(A), ∀A ∈ I F (U)

⇐⇒

µR(A), γR(A)


⊆


µR(A), γR(A)


, ∀A ∈ I F (U)

⇐⇒ (ILU0) R(A) ⊆ R(A), ∀A ∈ I F (U). �

4. Construction of intuitionistic fuzzy rough sets

In this section, we introduce the constructive definition of IF rough sets and investigate the properties of IF rough
approximation operators. We first review a special lattice on [0, 1]2 with its logical operations [43,44].

Definition 4.1 ([43] (Lattice (L∗, ≤L∗))). Let L∗
= {(x1, x2) ∈ [0, 1]2 | x1 + x2 ≤ 1}. Define a relation ≤L∗ on L∗ as follows:

∀(x1, x2), (y1, y2) ∈ L∗,

(x1, x2) ≤L∗(y1, y2) ⇐⇒ x1 ≤ y1 and x2 ≥ y2.

Then ≤L∗ is a partial ordering on L∗ and the pair (L∗, ≤L∗) is a complete lattice with the smallest element 0L∗ = (0, 1) and
the greatest element 1L∗ = (1, 0) [43]. The meet operator ∧ and the join operator ∨ on (L∗, ≤L∗) which are linked to the
ordering ≤L∗ are, respectively, defined as follows:

∀(x1, x2), (y1, y2) ∈ L∗,

(x1, x2) ∧ (y1, y2) = (min(x1, y1),max(x2, y2)),
(x1, x2) ∨ (y1, y2) = (max(x1, y1),min(x2, y2)).

For an AIF set A ∈ I F (U), we write A(x) = (µA(x), γA(x)) for x ∈ U , then it is clear that A ∈ I F (U) iff A(x) ∈ L∗ for all
x ∈ U . For any A, B ∈ I F (U), we can represent the corresponding AIF sets by using L∗ as follows:

• A(x) = (µA(x), γA(x)) ∈ L∗, x ∈ U ,
• U(x) = (1, 0) = 1L∗ , ∀x ∈ U ,
• ∅(x) = (0, 1) = 0L∗ , ∀x ∈ U ,
• x = y H⇒ 1y(x) = 1L∗ and 1U−{y}(x) = 0L∗ , x, y ∈ U ,
• x ≠ y H⇒ 1y(x) = 0L∗ and 1U−{y}(x) = 1L∗ , x, y ∈ U ,
• A ⊆ B ⇐⇒ A(x) ≤L∗ B(x), ∀x ∈ U ⇐⇒ B(x) ≥L∗ A(x), ∀x ∈ U ,
•


A ∩ B


(x) = A(x) ∧ B(x) =


µA(x) ∧ µB(x), γA(x) ∨ γB(x)


∈ L∗, x ∈ U ,

•

A ∪ B


(x) = A(x) ∨ B(x) =


µA(x) ∨ µB(x), γA(x) ∧ γB(x)


∈ L∗, x ∈ U .

Definition 4.2. Let (U, R) be a fuzzy approximation space. For any A ∈ I F (U), we define the upper and lower
approximations of Aw.r.t. (U, R), denoted by R(A) and R(A), respectively, as follows:

R(A) =

x, µR(A)(x), γR(A)(x)


| x ∈ U


,

R(A) =

x, µR(A)(x), γR(A)(x)


| x ∈ U


,
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where

µR(A)(x) =


y∈U

[R(x, y) ∧ µA(y)], γR(A)(x) =


y∈U

[(1 − R(x, y)) ∨ γA(y)];

µR(A)(x) =


y∈U

[(1 − R(x, y)) ∨ µA(y)], γR(A)(x) =


y∈U

[R(x, y) ∧ γA(y)].

The pair (R(A), R(A)) is referred to as the IF rough set of Aw.r.t. (U, R).

It can be seen that R(A) and R(A) are AIF sets in U . (In fact, ∀x ∈ U , notice that A ∈ I F (U), we have γA(x) ≤ 1 − µA(x),
then

µR(A)(x) =


y∈U

[R(x, y) ∧ µA(y)]

= 1 −


y∈U

[(1 − R(x, y)) ∨ (1 − µA(y))]

≤ 1 −


y∈U

[(1 − R(x, y)) ∨ γA(y)].

Consequently,

µR(A)(x) + γR(A)(x) =


y∈U

[R(x, y) ∧ µA(y)] +


y∈U

[(1 − R(x, y)) ∨ γA(y)]

≤ 1 −


y∈U

[(1 − R(x, y)) ∨ γA(y)] +


y∈U

[(1 − R(x, y)) ∨ γA(y)] = 1.

Thus we have proved that R(A) ∈ I F (U). Similarly, we can verify that (µR(A)(x), γR(A)(x)) ∈ L∗ for all x ∈ U , i.e., R(A) ∈

I F (U).) Based on this observation, we call R, R : I F (U) → I F (U) the upper and lower IF rough approximation operators,
respectively.

For any A ∈ I F (U), according to Definition 2.5, we can observe that

µR(A) = R(µA), γR(A) = R(γA).

Then

R(A) = (µR(A), γR(A)) = (R(µA), R(γA)). (3)

Similarly,

R(A) = (µR(A), γR(A)) = (R(µA), R(γA)). (4)

Remark 4.1. When A ∈ F (U),µA(x)+γA(x) = 1 for all x ∈ U , then it is easy to observe that (R(A) , R(A)) is no other than a
fuzzy rough set [16]. On the other hand, if R in Definition 4.2 is a crisp binary relation on U , then Definition 4.2 degenerates
to Definition 3.1, thus an IF rough set can be regarded as a generalization of a rough IF set.

The following Theorem 4.1 presents some basic properties of IF rough approximation operators.

Theorem 4.1. Let (U, R) be a fuzzy approximation space. Then the IF rough approximation operators defined in Definition 4.2 sat-
isfy the following properties:

∀A, B ∈ I F (U), ∀(α, β) ∈ L∗,

(ILf) R(1U−{y}) ∈ F (U), ∀y ∈ U, (IUf) R(1y) ∈ F (U), ∀y ∈ U;

(IL1) R(∼ A) =∼ R(A), (IU1) R(∼ A) =∼ R(A);

(IL2) R(U) = U, (IU2) R(∅) = ∅;

(IL3) R(A ∩ B) = R(A) ∩ R(B), (IU3) R(A ∪ B) = R(A) ∪ R(B);
(IL4) R(A ∪ B) ⊇ R(A) ∪ R(B), (IU4) R(A ∩ B) ⊆ R(A) ∩ R(B);
(IL5) A ⊆ B H⇒ R(A) ⊆ R(B), (IU5) A ⊆ B H⇒ R(A) ⊆ R(B);
(IL6) R(A ∪ (α, β)) = R(A) ∪ (α, β), (IU6) R(A ∩ (α, β)) = R(A) ∩ (α, β).

Proof. It is similar to the proof of Theorem 3.1. �
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Definition 4.3. Let A = {⟨x, µA(x), γA(x)⟩ | x ∈ U} ∈ I F (U) and (α, β) ∈ L∗, we introduce the (α, β)-level cut set of the
AIF set A, denoted by Aβ

α , as follows:

Aβ
α = {x ∈ U | µA(x) ≥ α, γA(x) ≤ β}.

Meanwhile,

(a) we respectively call the sets

Aα = {x ∈ U | µA(x) ≥ α} and Aα+ = {x ∈ U | µA(x) > α}

the α-level cut set and the strong α-level cut set of membership degree generated by A;
(b) we respectively call the sets

Aβ
= {x ∈ U | γA(x) ≤ β} and Aβ+

= {x ∈ U | γA(x) < β}

the β-level cut set and the strong β-level cut set of non-membership degree generated by A.

Likewise, we define other types of cut sets of the AIF set A as follows:

Aβ
α+ = {x ∈ U | µA(x) > α, γA(x) ≤ β},which is called (α+, β)-level cut set of A;

Aβ+

α = {x ∈ U | µA(x) ≥ α, γA(x) < β},which is called (α, β+)-level cut set of A;

Aβ+

α+ = {x ∈ U | µA(x) > α, γA(x) < β},which is called (α+, β+)-level cut set of A.

Theorem 4.2. The cut sets of AIF sets on (α, β)-level satisfy the following properties:
∀A, B ∈ I F (U), ∀(α, β) ∈ L∗,

(1) Aβ
α = Aα ∩ Aβ

;

(2) (∼ A)α =∼ Aα+, (∼ A)β =∼ Aβ+;

(3) A ⊆ B H⇒ Aβ
α ⊆ Bβ

α;

(4) (A ∩ B)α = Aα ∩ Bα, (A ∩ B)β = Aβ
∩ Bβ , (A ∩ B)βα = Aβ

α ∩ Bβ
α;

(5) (A ∪ B)α = Aα ∪ Bα, (A ∪ B)β = Aβ
∪ Bβ , (A ∪ B)βα ⊇ Aβ

α ∪ Bβ
α .

Proof. It follows directly from Definition 4.3. �

The following lemma is well known [16].

Lemma 4.1. Assume that R is a fuzzy relation on U, denote

Rα = {(x, y)|R(x, y) ≥ α}, Rα(x) = {y ∈ U|R(x, y) ≥ α}, α ∈ [0, 1],
Rα+ = {(x, y)|R(x, y) > α}, Rα+(x) = {y ∈ U|R(x, y) > α}, α ∈ [0, 1).

Then Rα and Rα+ are two crisp relations on U and
(1) if R is reflexive, then Rα and Rα+ are also reflexive;
(2) if R is symmetric, then Rα and Rα+ are also symmetric;
(3) if R is transitive, then Rα and Rα+ are also transitive.

In what follows, for simplicity we call both rough IF approximation operators and IF rough approximation operators the
intuitionistic fuzzy approximation operators. The following Theorems 4.3–4.5 show that intuitionistic fuzzy approximation
operators can be represented by crisp approximation operators.

Theorem 4.3. Let (U, R) be a fuzzy approximation space and R the upper IF rough approximation operator defined
in Definition 4.2. Then:

∀A ∈ I F (U), ∀x ∈ U,
(1)

µR(A)(x) =


α∈[0,1]

[α ∧ Rα(Aα)(x)] =


α∈[0,1]

[α ∧ Rα(Aα+)(x)]

=


α∈[0,1]

[α ∧ Rα+(Aα)(x)] =


α∈[0,1]

[α ∧ Rα+(Aα+)(x)].

(2)

γR(A)(x) =


α∈[0,1]

[α ∨ (1 − R1−α(Aα)(x))] =


α∈[0,1]

[α ∨ (1 − R1−α(Aα+)(x))]

=


α∈[0,1]

[α ∨ (1 − R(1−α)+(Aα)(x))] =


α∈[0,1]

[α ∨ (1 − R(1−α)+(Aα+)(x))].
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And moreover, for any α ∈ [0, 1],
(3) [R(A)]α+ ⊆ Rα+(Aα+) ⊆ Rα+(Aα) ⊆ Rα(Aα) ⊆ [R(A)]α.

(4) [R(A)]α+
⊆ R(1−α)+(Aα+) ⊆ R(1−α)+(Aα) ⊆ R1−α(Aα) ⊆ [R(A)]α.

(3)′ [R(A)]α+ ⊆ Rα+(Aα+) ⊆ Rα(Aα+) ⊆ Rα(Aα) ⊆ [R(A)]α.

(4)′ [R(A)]α+
⊆ R(1−α)+(Aα+) ⊆ R1−α(Aα+) ⊆ R1−α(Aα) ⊆ [R(A)]α.

Proof. It follows directly from Eqs. (3) and (4) and Theorem 3 in [16]. �

Likewise, for the lower IF approximation operator, we have the following

Theorem 4.4. Let (U, R) be a fuzzy approximation space and R the lower IF rough approximation operator defined
in Definition 4.2. Then:

∀A ∈ I F (U), ∀x ∈ U,
(1)

µR(A)(x) =


α∈[0,1]

[α ∨ R1−α(Aα+)(x)] =


α∈[0,1]

[α ∨ R(1−α)+(Aα)(x)]

=


α∈[0,1]

[α ∨ R(1−α)+(Aα+)(x)] =


α∈[0,1]

[α ∨ R1−α(Aα)(x)].

(2)

γR(A)(x) =


α∈[0,1]

[α ∧ (1 − Rα(Aα)(x))] =


α∈[0,1]

[α ∧ (1 − Rα+(Aα)(x))]

=


α∈[0,1]

[α ∧ (1 − Rα+(Aα+)(x))] =


α∈[0,1]

[α ∧ (1 − Rα(Aα+)(x))].

And moreover for any α ∈ [0, 1],
(3) [R(A)]α+ ⊆ R1−α(Aα+) ⊆ R(1−α)+(Aα+) ⊆ R(1−α)+(Aα) ⊆ [R(A)]α.

(4) [R(A)]α+
⊆ Rα(Aα+) ⊆ Rα+(Aα+) ⊆ Rα+(Aα) ⊆ [R(A)]α.

(3)′ [R(A)]α+ ⊆ R1−α(Aα+) ⊆ R(1−α)(Aα) ⊆ R(1−α)+(Aα) ⊆ [R(A)]α.

(4)′ [R(A)]α+
⊆ Rα(Aα+) ⊆ Rα(Aα) ⊆ Rα+(Aα) ⊆ [R(A)]α.

According to Definition 3.1, Theorems 4.3 and 4.4, we can conclude the following

Theorem 4.5. Let (U, R) be a crisp approximation space, and R and R the upper and lower rough IF approximation operators
defined in Definition 3.1. Then:

∀A ∈ I F (U), ∀x ∈ U, α ∈ [0, 1],
(1)

µR(A)(x) =


α∈[0,1]

[α ∧ R(Aα)(x)] =


α∈[0,1]

[α ∧ R(Aα+)(x)],

γR(A)(x) =


α∈[0,1]

[α ∨ (1 − R(Aα)(x))] =


α∈[0,1]

[α ∨ (1 − R(Aα+)(x))].

(2)

µR(A)(x) =


α∈[0,1]

[α ∨ R(Aα)(x)] =


α∈[0,1]

[α ∨ R(Aα+)(x)],

γR(A)(x) =


α∈[0,1]

[α ∧ (1 − R(Aα)(x))] =


α∈[0,1]

[α ∧ (1 − R(Aα+)(x))].

(3)

[R(A)]α+ ⊆ R(Aα+) ⊆ R(Aα) ⊆ [R(A)]α,

[R(A)]α+
⊆ R(Aα+) ⊆ R(Aα) ⊆ [R(A)]α.

(4)

[R(A)]α+ ⊆ R(Aα+) ⊆ R(Aα) ⊆ [R(A)]α,

[R(A)]α+
⊆ R(Aα+) ⊆ R(Aα) ⊆ [R(A)]α.

By Eqs. (3) and (4), in terms of Theorem 2.3, we can conclude the following Theorem 4.6 which shows that a special type
of fuzzy relation can be characterized by properties of IF rough approximation operators.
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Theorem 4.6. Let (U, R) be a fuzzy approximation space, and R and R the lower and upper IF rough approximation operators
defined in Definition 4.2. Then

(1)

R is serial ⇐⇒ (IL0) R(∅) = ∅,

⇐⇒ (IU0) R(U) = U,

⇐⇒ (ILU0) R(A) ⊆ R(A), ∀A ∈ I F (U).

(2)

R is reflexive ⇐⇒ (ILR) R(A) ⊆ A, ∀A ∈ I F (U),

⇐⇒ (IUR) A ⊆ R(A), ∀A ∈ I F (U).

(3)

R is symmetric ⇐⇒ (ILS)′ µR(1U−{x})(y) = µR(1U−{y})(x), ∀(x, y) ∈ U × U,

⇐⇒ (IUS)′ µR(1x)(y) = µR(1y)(x), ∀(x, y) ∈ U × U,

⇐⇒ (ILS)′′ γR(1U−{x})(y) = γR(1U−{y})(x), ∀(x, y) ∈ U × U,

⇐⇒ (IUS)′′ γR(1x)(y) = γR(1y)(x), ∀(x, y) ∈ U × U .

(4)

R is transitive ⇐⇒ (ILT) R(A) ⊆ R(R(A)), ∀A ∈ I F (U),

⇐⇒ (IUT) R(R(A)) ⊆ R(A), ∀A ∈ I F (U).

5. Axiomatic characterization of intuitionistic fuzzy approximation operators

In an axiomatic approach, rough sets are axiomatized by abstract operators. For the case of rough IF sets and IF rough
sets, the primitive notion is a system (I F (U), ∩, ∪, ∼, L,H), where L,H : I F (U) → I F (U) are AIF operators from I F (U)
to I F (U). In this section, we show that intuitionistic fuzzy approximation operators can be characterized by axioms.

For simplicity, we denote the family of membership functions and the family of non-membership functions on U by f (U)
and f̄ (U), respectively. For any A, B ∈ I F (U), clearly, µA, µB ∈ f (U) and γA, γB ∈ f̄ (U). Moreover, we define: µA ⊆ µB iff
µA(x) ≤ µB(x) for all x ∈ U , likewise, γA ⊆ γB iff γA(x) ≤ γB(x) for all x ∈ U; µA = µB iff µA(x) = µB(x) for all x ∈ U ,
likewise, γA = γB iff γA(x) = γB(x) for all x ∈ U . Consider a system (I F (U), ∩, ∪, ∼, L,H), where L,H: I F (U) → I F (U) are
operators from I F (U) to I F (U). Furthermore, L and H can be, respectively, represented by a pair of operators L = (Lµ, Lγ ),
H = (Hµ,Hγ ), where Lµ,Hµ : f (U) → f (U) and Lγ ,Hγ : f̄ (U) → f̄ (U). For A ∈ I F (U), L(A) = (Lµ(µA), Lγ (γA)) such that
µL(A) = Lµ(µA) and γL(A) = Lγ (γA), H(A) = (Hµ(µA),Hγ (γA)) such that µH(A) = Hµ(µA) and γH(A) = Hγ (γA).

Definition 5.1. Let L,H: I F (U) → I F (U) be two operators with L = (Lµ, Lγ ) and H = (Hµ,Hγ ). L and H are referred to as
dual operators if for each A = {⟨x, µA(x), γA(x)⟩ | x ∈ U} ∈ I F (U), the following axioms are satisfied:

(IFL1) L(A) =∼ H(∼ A), i.e., Lµ(µA) = Hγ (µA), Lγ (γA) = Hµ(γA);

(IFU1) H(A) =∼ L(∼ A), i.e., Hµ(µA) = Lγ (µA),Hγ (γA) = Lµ(γA).

Theorem 5.1. Let L,H: I F (U) → I F (U) be two dual operators. Then there exists a fuzzy relation R on U such that L(A) = R(A)

and H(A) = R(A) for all A ∈ I F (U) iff L satisfies the following axioms (IFLf), (IFL2) and (IFL3), or equivalently, H satisfies
axioms (IFUf) , (IFU2) and (IFU3) : ∀A, B ∈ I F (U), ∀(α, β) ∈ L∗,

(IFLf) L(1U−{y}) ∈ F (U), ∀y ∈ U;

(IFL2) L(A ∪ (α, β)) = L(A) ∪ (α, β), i.e., Lµ(µA ∪α) = Lµ(µA) ∪α, Lγ (γA ∩ β) = Lγ (γA) ∩ β;

(IFL3) L(A∩ B) = L(A)∩ L(B), i.e., Lµ(µA∩B) = Lµ(µA ∩µB) = Lµ(µA)∩ Lµ(µB), Lγ (γA∩B) = Lγ (γA ∪ γB) = Lγ (γA)∪ Lγ (γB);

(IFUf) H(1y) ∈ F (U), ∀y ∈ U;

(IFU2)H(A ∩ (α, β)) = H(A) ∩ (α, β), i.e., Hµ(µA ∩α) = Hµ(µA) ∩α, Hγ (γA ∪ β) = Hγ (γA) ∪ β;

(IFU3)H(A ∪ B) = H(A) ∪ H(B), i.e., Hµ(µA∪B) = Hµ(µA ∪ µB) = Hµ(µA) ∪ Hµ(µB), Hγ (γA∪B) = Hγ (γA ∩ γB) =

Hγ (γA) ∩ Hγ (γB).

Proof. ‘‘⇒’’ follows immediately from Theorem 4.1.
‘‘⇐’’ Suppose that the operator H satisfies axioms (IFUf). Then we can define a fuzzy relation R on U by H as follows:

R(x, y) = Hµ(µ1y)(x) = 1 − Hγ (γ1y)(x), (x, y) ∈ U × U .
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For any A ∈ I F (U), notice that

µA =


y∈U

(µ1y ∩ µA(y)), γA =


y∈U

(γ1y ∪ γA(y)).

Then, for any x ∈ U , according to Definition 4.2, (IFU2), and (IFU3), we have

µR(A)(x) =


y∈U

[R(x, y) ∧ µA(y)]

=


y∈U

[Hµ(µ1y)(x) ∧ µA(y)]

=


y∈U

[Hµ(µ1y) ∩ µA(y)](x)

=


y∈U

Hµ[µ1y ∩ µA(y)](x)

= Hµ


y∈U

(µ1y ∩ µA(y))


(x)

= Hµ(µA)(x) = µH(A)(x),

and

γR(A)(x) =


y∈U

[(1 − R(x, y)) ∨ γA(y)]

=


y∈U

[Hγ (γ1y)(x) ∨ γA(y)]

=


y∈U

[Hγ (γ1y) ∪ γA(y)](x)

=


y∈U

Hγ [γ1y ∪ γA(y)](x)

= Hγ


y∈U

(γ1y ∪ γA(y))


(x)

= Hγ (γA)(x) = γH(A)(x).

Thus H(A) = R(A).
L(A) = R(A) follows directly from H(A) = R(A) and Definition 5.1. �

Theorem 5.2. Let L,H : I F (U) → I F (U) be two dual operators. Then there exists a crisp binary relation R on U such that
L(A) = R(A) and H(A) = R(A) for all A ∈ I F (U) iff L satisfies the following axioms (IFLc), (IFL2) and (IFL3), or equivalently, H
satisfies axioms (IFUc), (IFU2) and (IFU3): ∀A, B ∈ I F (U), ∀(α, β) ∈ L∗,

(IFLc) L(1U−{y}) ∈ P(U), ∀y ∈ U;

(IFL2) L(A ∪ (α, β)) = L(A) ∪ (α, β), i.e., Lµ(µA ∪α) = Lµ(µA) ∪α, Lγ (γA ∩ β) = Lγ (γA) ∩ β;

(IFL3) L(A∩ B) = L(A)∩ L(B), i.e., Lµ(µA∩B) = Lµ(µA ∩µB) = Lµ(µA)∩ Lµ(µB), Lγ (γA∩B) = Lγ (γA ∪ γB) = Lγ (γA)∪ Lγ (γB);

(IFUc) H(1y) ∈ P(U), ∀y ∈ U;

(IFU2)H(A ∩ (α, β)) = H(A) ∩ (α, β), i.e., Hµ(µA ∩α) = Hµ(µA) ∩α, Hγ (γA ∪ β) = Hγ (γA) ∪ β;

(IFU3)H(A ∪ B) = H(A) ∪ H(B), i.e., Hµ(µA∪B) = Hµ(µA ∪ µB) = Hµ(µA) ∪ Hµ(µB), Hγ (γA∪B) = Hγ (γA ∩ γB) =

Hγ (γA) ∩ Hγ (γB).

Proof. ‘‘⇒’’ follows immediately from Theorem 3.1.
‘‘⇐’’ Suppose that the operator H satisfies axioms (IFUc), (IFU2), and (IFU3). Then we can define a crisp relation R on U

by

(x, y) ∈ R ⇐⇒ R(x, y) = 1 ⇐⇒ Hµ(µ1y)(x) = 1,Hγ (γ1y)(x) = 0, ∀(x, y) ∈ U × U,

(x, y) ∉ R ⇐⇒ R(x, y) = 0 ⇐⇒ Hµ(µ1y)(x) = 0,Hγ (γ1y)(x) = 1, ∀(x, y) ∈ U × U .

Thus, similarly to Theorem 5.1, we can conclude that L(A) = R(A) and H(A) = R(A). �
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Remark 5.1. As can be seen from Theorem 5.1, axioms (IFLf), (IFL1), (IFU1), (IFL2), and (IFL3), or equivalently, axioms
(IFUf), (IFL1), (IFU1), (IFU2), and (IFU3) are considered as basic axioms for characterizing IF rough approximation operators.
Similarly, according to Theorem 5.2, axioms (IFLc), (IFL1), (IFU1), (IFL2), and (IFL3), or equivalently, axioms (IFUc), (IFL1),
(IFU1), (IFU2), and (IFU3) are considered as basic axioms for characterizing rough IF approximation operators. So we have
the following definitions of IF rough set algebras and rough IF set algebras.

Definition 5.2. Let L,H : I F (U) → I F (U) be a pair of dual operators. If L satisfies axioms (IFLf), (IFL2) and (IFL3), or
equivalently, H satisfies axioms (IFUf), (IFU2) and (IFU3), then the system (I F (U), ∩, ∪, ∼, L,H) is referred to as an IF
rough set algebra, L and H are, respectively, called the lower and upper IF rough approximation operators. Furthermore, if
L satisfies axioms (IFLc), (IFL2), and (IFL3), or equivalently, H satisfies axioms (IFUc), (IFU2), and (IFU3), then the system
(I F (U), ∩, ∪, ∼, L,H) is referred to as a rough IF set algebra, and L andH are, respectively, called the lower and upper rough
IF approximation operators.

The following Theorems 5.3–5.7 show that special types of intuitionistic fuzzy approximation operators can be
characterized by different axiom sets.

Theorem 5.3. Let L,H : I F (U) → I F (U) be a pair of dual IF rough approximation operators, i.e., L satisfies
axioms (IFLf),(IFL1),(IFL2), and (IFL3), and H satisfies axioms (IFUf),(IFU1),(IFU2), and (IFU3). Then there exists a serial fuzzy
relation R on U such that L(A) = R(A) and H(A) = R(A) for all A ∈ I F (U) iff L and H satisfy axioms:

(IFL0) L(∅) = ∅,
(IFU0) H(U) = U,
(IFL0)′ L( (α, β)) = (α, β),∀(α, β) ∈ L∗,

(IFU0)′ H( (α, β)) = (α, β),∀(α, β) ∈ L∗,
(IFLU0)L(A) ⊆ H(A), i.e., Lµ(µA) ⊆ Hµ(µA), Lγ (γA) ⊇ Hγ (γA), ∀A ∈ I F (U).

Similarly, if L,H : I F (U) → I F (U) are a pair of dual rough IF approximation operators, i.e., L satisfies
axioms (IFLc),(IFL1),(IFL2), and (IFL3), and H satisfies axioms (IFUc),(IFU1),(IFU2), and (IFU3), then there exists a serial crisp
relation R onU such that L(A) = R(A) andH(A) = R(A) for all A ∈ I F (U) iff L andH satisfy axioms (IFL0),(IFU0),(IFL0)′,(IFU0)′,
and (IFLU0).

Proof. ‘‘⇒’’ follows from Theorems 3.2 and 4.6, and ‘‘⇐’’ follows from Theorems 3.2, 4.6, 5.1 and 5.2. �

Theorem 5.4. Let L,H : I F (U) → I F (U) be a pair of dual IF rough approximation operators. Then there exists a reflexive fuzzy
relation R on U such that L(A) = R(A) and H(A) = R(A) for all A ∈ I F (U) iff L satisfies axiom (IFLR), or equivalently, H satisfies
axiom (IFUR):

(IFLR) L(A) ⊆ A, i.e., Lµ(µA) ⊆ µA, Lγ (γA) ⊇ γA, ∀A ∈ I F (U);
(IFUR) A ⊆ H(A), i.e., Hµ(µA) ⊇ µA,Hγ (γA) ⊆ γA, ∀A ∈ I F (U).

Similarly, if L,H : I F (U) → I F (U) are a pair of dual rough IF approximation operators, then there exists a reflexive crisp
relation R on U such that L(A) = R(A) and H(A) = R(A) for all A ∈ I F (U) iff L satisfies axiom (IFLR), or equivalently, H satisfies
axiom (IFUR).

Proof. ‘‘⇒’’ follows from Theorems 3.2 and 4.6, and ‘‘⇐’’ follows from Theorems 3.2, 4.6, 5.1 and 5.2. �

Theorem 5.5. Let L,H : I F (U) → I F (U) be a pair of dual IF rough approximation operators. Then there exists a symmetric
fuzzy relation R on U such that L(A) = R(A) and H(A) = R(A) for all A ∈ I F (U) iff L satisfies axiom (IFLS) ′, or equivalently, H
satisfies axiom (IFUS)′:

(IFLS)′ Lµ(µ1U−{x})(y) = Lµ(µ1U−{y})(x), or, Lγ (γ1U−{x})(y) = Lγ (γ1U−{y})(x), ∀(x, y) ∈ U × U;

(IFUS)′ Hµ(µ1x)(y) = Hµ(µ1y)(x), or, Hγ (γ1x)(y) = Hγ (γ1y)(x), ∀(x, y) ∈ U × U.

Similarly, if L,H : I F (U) → I F (U) are a pair of dual rough IF approximation operators, then there exists a symmetric crisp
relation R on U such that L(A) = R(A) and H(A) = R(A) for all A ∈ I F (U) iff L satisfies axiom (IFLS), or equivalently, H satisfies
axiom (IFUS):

(IFLS) A ⊆ L(H(A)), i.e., Lµ(Hµ(µA)) ⊇ µA, Lγ (Hγ (γA)) ⊆ γA, ∀A ∈ I F (U);
(IFUS) H(L(A)) ⊆ A, i.e., Hµ(Lµ(µA)) ⊆ µA,Hγ (Lγ (γA)) ⊇ γA, ∀A ∈ I F (U).

Proof. ‘‘⇒’’ follows from Theorems 3.2 and 4.6, and ‘‘⇐’’ follows from Theorems 3.2, 4.6, 5.1 and 5.2. �

Theorem 5.6. Let L,H : I F (U) → I F (U) be a pair of dual IF rough approximation operators, then there exists a transitive
fuzzy relation R on U such that L(A) = R(A) and H(A) = R(A) for all A ∈ I F (U) iff L satisfies axiom (IFLT), or equivalently, H
satisfies axiom (IFUT):

(IFLT) L(A) ⊆ L(L(A)), i.e., Lµ(µA) ⊆ Lµ(Lµ(µA)), Lγ (γA) ⊇ Lγ (Lγ (γA)), ∀A ∈ I F (U);
(IFUT) H(H(A)) ⊆ H(A), i.e., Hµ(Hµ(µA)) ⊆ Hµ(µA),Hγ (Hγ (γA)) ⊇ Hγ (γA), ∀A ∈ I F (U).
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Similarly, if L,H : I F (U) → I F (U) are a pair of dual rough IF approximation operators, then there exists a transitive crisp
relation R on U such that L(A) = R(A) and H(A) = R(A) for all A ∈ I F (U) iff L satisfies axiom (IFLT), or equivalently, H satisfies
axiom (IFUT).

Proof. ‘‘⇒’’ follows from Theorems 3.2 and 4.6, and ‘‘⇐’’ follows from Theorems 3.2, 4.6, 5.1 and 5.2. �

According to Theorems 5.4–5.6, we can immediately deduce the following

Theorem 5.7. Let L,H : I F (U) → I F (U) be a pair of dual IF rough approximation operators, then there exists an equivalence
fuzzy relation R on U such that L(A) = R(A) and H(A) = R(A) for all A ∈ I F (U) iff L satisfies axioms (IFLR),(IFLS)′, and (IFLT),
or equivalently, H satisfies axioms (IFUR),(IFUS)′, and (IFUT).

Similarly, if L,H : I F (U) → I F (U) are a pair of dual rough IF approximation operators, then there exists an equivalence
crisp relation R on U such that L(A) = R(A) and H(A) = R(A) for all A ∈ I F (U) iff L satisfies axioms (IFLR),(IFLS), and (IFLT),
or equivalently, H satisfies axioms (IFUR),(IFUS), and (IFUT).

6. Conclusion

Both rough sets and IF sets capture facets of imprecision, a natural extension is to combine the two set theories into a new
hybrid one. In this paper, we have introduced two classes of IF approximation operators and investigated their properties.
We have defined rough IF sets and IF rough sets which, respectively, resulted from the approximations of AIF sets w.r.t. a
crisp approximation space and a fuzzy approximation space. Properties of rough IF approximation operators and IF rough
approximation operators corresponding to special approximation spaces have been discussed. An axiomatic approach has
been introduced to characterize the intuitionistic fuzzy approximation operators. By this way, we have solved the problem
of finding assumptions permitting given AIF set-theoretic operators to represent upper and lower approximations derived
from special crisp or fuzzy relations, that is, we have proved that axiom sets of rough IF approximation operators (and IF
rough approximation operators, respectively) guarantee the existence of certain types of crisp relations (and fuzzy relations,
respectively) producing the same operators.

This work may be viewed as an extension of the study in [16] when the approximated fuzzy sets are replaced by AIF
sets. For further study, by employing rough IF sets and IF rough sets wewill explore knowledge acquisition in IF information
systems.
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