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SUMMARY

Leukemia stem cells (LSCs) initiate and sustain the
acute myeloid leukemia (AML) clonal hierarchy and
possess biological properties rendering them resis-
tant to conventional chemotherapy. The poor survival
of AML patients raises expectations that LSC-tar-
geted therapies might achieve durable remissions.
We report that an anti-interleukin-3 (IL-3) receptor
a chain (CD123)-neutralizing antibody (7G3) targeted
AML-LSCs, impairing homing to bone marrow (BM)
and activating innate immunity of nonobese diabetic/
severe-combined immunodeficient (NOD/SCID) mice.
7G3 treatment profoundly reduced AML-LSC engraft-
ment and improved mouse survival. Mice with pre-
established disease showed reduced AML burden in
the BM and periphery and impaired secondary trans-
plantation upon treatment, establishing that AML-
LSCs were directly targeted. 7G3 inhibited IL-3-medi-
ated intracellular signaling of isolated AML CD34+

CD38� cells in vitro and reduced their survival. These
results provide clear validation for therapeutic mono-
clonal antibody (mAb) targeting of AML-LSCs and for
translation of in vivo preclinical research findings
toward a clinical application.

INTRODUCTION

The 5 year survival rate of patients under 60 years of age with AML

is less than 30%, with progressively worse prognosis for more

elderly patients (Estey and Dohner, 2006). The cellular and molec-

ular basis for this dismal picture is unclear; however, a large body

of work is emerging in experimental systems that predicts LSCs

may lie at the heart of posttreatment relapse and chemoresist-

ance. AML is organized as a cellular hierarchy sustained by

LSCs at their apex (Bonnet and Dick, 1997; Guan and Hogge,

2000; Guzman et al., 2001; Hope et al., 2004; Lapidot et al.,
1994; Wang and Dick, 2005). LSCs are the only AML cells capable

of self-renewal while still generating rapidly proliferating progen-

itors and terminal leukemic blasts. The rare occurrence, generally

dormant nature, and abnormal apoptotic response via the NF-kB

pathway of LSCs are all properties that may render them resistant

to conventional chemotherapeutics that target proliferating cells

(Bonnet and Dick, 1997; Guan and Hogge, 2000; Guzman et al.,

2001; Hope et al., 2004; Ishikawa et al., 2007; Lapidot et al.,

1994; Wang and Dick, 2005). In addition, minimal residual

disease occurrence and poor survival have been attributed to

the ability of LSCs to engraft NOD/SCID mice (Pearce et al.,

2006) and high CD34+CD38� frequency at time of diagnosis in

AML patients (van Rhenen et al., 2005). Consequently, it is imper-

ative that new treatments are developed to complement estab-

lished chemotherapy by specifically eliminating AML-LSCs for

the long-term management of the disease (Abutalib and Tallman,

2006; Aribi et al., 2006; Morgan and Reuter, 2006; Stone, 2007).

As with normal hematopoietic stem cells (HSCs), very little is

known of the molecular regulation that governs the self-renewal,

differentiation, and survival of AML-LSCs, although both of these

stem cell types share the properties of slow division, self-renewal

ability, and expression of some surface markers including the

CD34+CD38� immunophenotype (Bhatia et al., 1997; Bonnet

and Dick, 1997; Lapidot et al., 1994). CD123, which is widely re-

ported to be overexpressed on AML blasts, CD34+ leukemic

progenitors, and AML-LSCs in comparison with normal HSCs

(Florian et al., 2006; Graf et al., 2004; Hauswirth et al., 2007;

Jordan et al., 2000; Munoz et al., 2001; Riccioni et al., 2004;

Sperr et al., 2004; Testa et al., 2002; Yalcintepe et al., 2006),

represents a promising cell-surface target for the development

of therapeutics that specifically target AML-LSCs but not

HSCs. CD123 is the a subunit of the IL-3 receptor (IL-3R), the

major binding protein for IL-3, which together with CD131 (bc)

forms the functional heterodimeric high-affinity IL-3R. The

binding of IL-3 to CD123 is species specific and leads to activa-

tion of the receptor that promotes cell survival and proliferation

(Bagley et al., 1997; Miyajima et al., 1993).

Overexpression of CD123 on AML cells confers a range of

growth advantages over normal HSCs; AML cells proliferate
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extensively with IL-3 treatment in vitro (Budel et al., 1989; Miyau-

chi et al., 1987; Pebusque et al., 1989; Vellenga et al., 1987), and

some AML samples secrete cytokines including IL-3 (Elbaz and

Shaltout, 2001; Guan et al., 2003; Nowak et al., 1999). Moreover,

high-level CD123 expression on AML cells correlates with the

level of IL-3-stimulated and spontaneous signal transducer and

activator of transcription 5 (STAT5) activation, the proportion of

cycling cells, a more primitive cell-surface phenotype, and resis-

tance to apoptosis (Graf et al., 2004; Testa et al., 2002, 2004).

Clinically, high CD123 expression in AML is associated with

higher blast counts at diagnosis and a lower complete remission

rate that results in reduced survival (Graf et al., 2004; Testa et al.,

2002, 2004). Collectively, these data point to the significance of

CD123 expression in leukemia cell stimulation and AML patient

outcome.

The increased expression of CD123 on LSCs compared with

HSCs presents an opportunity for selectively targeting AML-

LSCs with a therapeutic antibody. Besides the possibility that

IL-3 is required for LSC functions, an antibody to CD123 could

stimulate host immune-mediated mechanisms for cell killing.

An antibody with both IL-3R-neutralizing and innate immunity-

activating properties could represent an ideal therapeutic

candidate for clinical testing. The mAb 7G3, raised against

CD123, has previously been shown to inhibit IL-3-mediated

proliferation of leukemic cell lines (Sun et al., 1996). While

AML-LSCs are often cited to be enriched in the CD34+CD38�

fraction, recent reports have demonstrated that other fractions,

such as the CD34+CD38+ subpopulation, also have NOD/SCID

repopulating capacity (McKenzie et al., 2006; Taussig et al.,

2008). In this report, we show that CD123 is highly expressed

on the bulk of AML cells as well as the CD34+CD38� fraction

compared to normal hematopoietic cells. Importantly, we

demonstrate that 7G3 targeting of CD123 in the absence of

exogenous human cytokines impairs AML-LSCs in vivo. This

occurs through at least two mechanisms involving inhibition of

homing of CD34+CD38� cells and engraftment of AML-LSCs in

the NOD/SCID xenograft model, as well as activation of innate

immunity in NOD/SCID mice. As a prerequisite for the potential

role of 7G3 in inhibiting IL-3-mediated growth advantages on

AML-LSCs, we demonstrate that both the unsorted and the

CD34+CD38� subpopulations of AML cells proliferate and

survive via IL-3-mediated intracellular signaling pathways and

that these are inhibited by 7G3 in vitro. The recent characteriza-

tion of defined populations of cancer stem cells (CSCs) in a range

of human malignancies (Wang, 2007), as well as their relative

resistance to conventional chemotherapy and radiotherapy

(Rich and Bao, 2007), supports the broad applicability of our

approach and provides rationale for the progression of AML-

LSC-targeted therapeutics from preclinical evaluation to clinical

trials.

RESULTS

Ex Vivo 7G3 Treatment Selectively Inhibits AML
Engraftment in NOD/SCID Mice
Since AML-LSCs are central to long-term AML growth and they

are difficult to assay in vitro, we used the SCID-leukemia initi-

ating cell (SL-IC) assay to determine whether 7G3 can directly

target AML-LSCs and inhibit their repopulating ability. Ex vivo
32 Cell Stem Cell 5, 31–42, July 2, 2009 ª2009 Elsevier Inc.
7G3 incubation markedly reduced the engraftment of 10 of 11

primary AML samples in sublethally irradiated NOD/SCID mice

to a mean of 11.4% ± 1.9% of isotype-matched (IgG2a-treated)

controls (p = 0.00021, Figure 1A, Table 1). This reduction in

engraftment was sustained in five of seven samples when as-

sessed between 8 and 10 weeks following inoculation (5.7% ±

1.7% of controls, p = 0.004). Ex vivo 7G3 treatment inhibited

the engraftment of AML-8 harvested at both diagnosis and

relapse to a similar extent. AML-5 was the only AML sample in

which engraftment was not reduced by ex vivo 7G3 treatment.

Although the reason for this is unknown, it is noteworthy that

AML-5 is a monosomy 7 sample (noted for poor prognosis)

with relatively low CD123 expression (Table 1).

We next investigated the sensitivity of normal cord blood (CB)

and BM (NBM) to 7G3 using the same strategy as for AML

samples to determine if there was differential targeting of normal

HSCs. When measured at 4–11 weeks postinoculation, 7G3

significantly reduced the engraftment of only two of five normal

samples (Figure 1B and Table 1). The inhibitory effect of 7G3

on the engraftment of normal cells (76.5% ± 8.9% engraftment

relative to IgG2a controls) was significantly less (p < 0.0001)

than against AML cells. Additionally, 7G3 treatment did not alter

the differentiation profiles of the engrafted normal human hema-

topoietic populations (data not shown). Furthermore, to demon-

strate the clinical relevance and specificity of 7G3 treatment

against LSCs and not normal HSCs, we showed that a mouse

anti-human HLA-A,B,C antibody indiscriminately inhibited the

engraftment of two AML and three normal samples (see Fig-

ure S1 available online). Independent analysis at two different

institutions (Sydney and Toronto) revealed that CD123 expres-

sion on AML CD34+CD38� cells (relative fluorescence index

[RFI] 38.2 ± 6.6) was significantly higher than on their normal

counterparts (RFI 9.6 ± 1.6) (Figure 1C and Table 1). The engraft-

ment levels of ex vivo 7G3-treated samples were inversely

correlated with the intensity of CD123 expression on the

CD34+CD38� population (Figure S2; Spearman R = �0.69).

Taken together, we can conclude that normal HSCs are consid-

erably less sensitive to 7G3 than AML-LSCs, due, at least in part,

to their relatively low levels of cell-surface CD123 expression.

The reduction in AML engraftment caused by ex vivo 7G3

treatment was also associated with improved survival. Mice

transplanted with IgG2a- or 7G3-treated AML-9 cells exhibited

median survival of 11.5 and 24 weeks, respectively (Figure 1D),

with 40% of the 7G3 group surviving beyond the end of the

experiment (25 weeks), in contrast with the control group, in

which no mice survived beyond 20 weeks.

7G3 Inhibits AML Homing Capacity in NOD/SCID Mice
To gain insight into the mechanism whereby 7G3 inhibited AML-

LSC engraftment, we investigated the influence that antibody

binding had on AML cell trafficking, since the SL-IC assay

requires AML-LSCs to traffic to the BM in order to survive and

proliferate, thereby establishing a leukemic graft. Homing assays

were performed on two AML samples (AML-8-rel and -9)

following ex vivo 7G3 treatments. 7G3 reduced the homing effi-

ciency of AML-9 in the BM to 12.2% ± 2.7% and in the spleen to

9.4% ± 2.4% of controls (Figure 2A), and inhibited the homing of

AML-8-rel in the BM to 34.7% ± 5.6% (Figure 3A) and in the

spleen to 46.9% ± 3.5% of controls. To better distinguish the
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Figure 1. Ex Vivo 7G3 Treatment Selectively Inhibits the Repopulating Ability of AML Primary Cells in NOD/SCID Mice
(A) Percentage of human AML cells in the BM of mice transplanted with 7G3 or IgG2a control-treated AML cells at indicated time points. n = 3–10 per treated

group.

(B) Levels of human engraftment in the BM of mice transplanted with 7G3 or IgG2a control-treated CB and NBM cells. Bars of CB represent the results from three

separate experiments. n = 4–6 mice per group in each experiment.

(C) CD123 expression on total and CD34+CD38� fractions of AML and normal cells. Each point represents an individual sample. Bars represent the mean.

(D) Kaplan-Meier survival curves of mice transplanted with IgG2a or 7G3 ex vivo-treated AML-9 cells. Survival curves were compared by log rank test. n = 10 per

group. Error bars represent mean ± SEM; *p < 0.05, **p < 0.01, and ***p % 0.0001 between selected groups.
effects of 7G3 on AML homing, lodgment, and proliferation, ex

vivo-treated AML-8-rel cells were transplanted intravenously

(i.v.) via the tail vein or directly into the right femur (RF). The intra-

femoral (IF) approach circumvents the AML-LSC trafficking/

homing processes associated with the circulation (Mazurier

et al., 2003). While 7G3 remained effective in significantly

reducing the engraftment in both the injected femur and the non-

injected bones, IF inoculation did attenuate the inhibitory effects

of 7G3 on engraftment in comparison with i.v. inoculation

(Figure 2B).

In order to more directly demonstrate 7G3 inhibition of

AML-LSCs, we investigated the impact of 7G3 treatment on

CD34+CD38� cells since AML-LSCs are significantly enriched

in this fraction (Bonnet and Dick, 1997). The number of

CD34+CD38� cells from AML-8-rel and AML-9 homing to the

BM was reduced by ex vivo 7G3 treatment to 8.4% ± 0.018%

and 12.0% ± 4.3% of control, respectively (Figure 2C). Similarly,

the number of AML-9 CD34+CD38� cells homing to the spleen

was reduced to 3.8% ± 1.5% of control. To further confirm this

finding, the homing assay was repeated with sorted

CD34+CD38� cells from AML-9 following ex vivo antibody treat-

ment. The homing efficiency of human cells in the 7G3-treated

group was reduced to 7.8% ± 1.7% of IgG2a controls in the

BM and 11.2% ± 0.84% in the spleen (Figure 2D). Consistent

with the observation that 7G3 diminished AML-LSC homing
capacity, ex vivo 7G3 treatment reduced the number of

CD34+CD38� cells in the BM xenografts of three AML samples

(Figure 2E). By contrast, the number of CD34+CD38� cells

present in xenografts established from four independent normal

hematopoietic samples following ex vivo 7G3 treatment was

81.9% ± 11.6% of IgG2a controls (p = 0.19, data not shown).

Collectively, we can conclude that 7G3 inhibits not only homing

but also lodgment and proliferation of AML-LSCs in the BM

microenvironment.

7G3-Mediated Inhibition of AML-LSC Homing
and Engraftment Is Fc Dependent
In order to determine whether the inhibitory effects of 7G3 are Fc

mediated, the homing efficiency of AML cells was examined

following treatment with F(ab0)2 fragments of various CD123-

targeting antibodies. Incubation of AML-8-rel with two MAbs

clones, 6H6 and 9F5, that bind CD123 but are weakly neutral-

izing reduced the homing efficiency in the BM to a similar extent

as 7G3 (Figure 3A). In contrast, when AML-8-rel cells were

treated ex vivo with 7G3 or 6H6 F(ab0)2 fragments, the inhibitory

effects of each antibody on AML homing were attenuated.

In addition, the Fc requirement for inhibition of NOD/SCID

repopulation was also examined. While ex vivo incubation of

AML-9 and AML-10 cells with 7G3 or 9F5 significantly reduced

their ability to repopulate mouse BM, the corresponding F(ab0)2
Cell Stem Cell 5, 31–42, July 2, 2009 ª2009 Elsevier Inc. 33
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Table 1. Patient Characteristics, CD123 Expression, and Effects of mAb 7G3 on Engraftment of AML and Normal Hematopoietic Cells

Cells

Transplanted

Age/

Sex

AML

Subtype Cytogenetics

Flt3

Mutational

Status WCC

Current

Clinical

Status

Sample

Type

Overall

Survival

(Days)

CD34+

CD38�

(%)

CD123

(RFI)

Effect of 7G3

(Engraftment

as % Control)

AML

1 69/Fa M0b Normal Mutant 231a Deceased Apheresis 288c 2.9d 52.1e 15.2f

2 70/F M1 Normal Mutant 270 Deceased Apheresis 196 2.2 26.1 5.3

3 64/F M5b Normal Wild-type 80 Deceased BM 1378 0.048 9.9g 19.5

4 75/M M5a Trisomy 8 Mutant 300 Deceased Apheresis 27 3.5 36.5 4.7

5 19/F M2 Maturation/

monosomy 7

NA 108 Deceased NA NA 6.2 13.8 97.1

6 53/M M4Eo Inv16 Mutant 300 Deceased BM 504 4.9 24.2 1.5

7 80/M M5 NA NA 122 NA Apheresis 45 1.9 80 2

8 47/F M4 NA NA 33 Deceased Apheresis 436 8.28 46 11.1

8—

Relapse

47/F M4 NA NA 33 Deceased Apheresis 436 6.6 52.4 17.3

9 55/F M5a 46XX NA 161 NA Apheresis 4 35.1 76.1 1.4

10 80/F M2 46XX NA 130 NA Apheresis NA 38.5 7.6 23.2

11 78/M M2 Normal Wild-type 166 Deceased BM 26 0.2 51.7g NE

12 67/M M5b Normal Mutant 212 Deceased BM 2 0 20g NE

Normal

NBM-1 26/M – – – – – BM – 0.4 12 139.9

NBM-2 35/M – – – – – BM – 2.3 6.7 34.8

NBM-3 32/M – – – – – BM – 0.4 7 50.4

NBM-4 NA – – – – – BM – NA NA 70.3

CB-1 NA – – – – – CB – NA 12.7 79.1

NBM-3 was a CD34+ sorted normal BM sample. BM, bone marrow. CB, cord blood. NA, not available. NE, no engraftment in controls. WCC, peripheral

blood white cell count (3109/L).
a At diagnosis (this column).
b FAB criteria (this column).
c From date of initial diagnosis (this column).
d Percent of total population (this column).
e RFI of CD34+CD38� population (this column).
f Mean engraftment in the ex vivo 7G3-treated group as a percentage of the IgG2a-treated group, based on Figures 1A and 1B (this column).
g Sample had very low proportion of CD34+ cells.
antibody fragments were ineffective (Figure 3B), despite 7G3

F(ab0)2 retaining its IL-3Ra-neutralizing activity (data not shown).

The requirement for Fc regions to inhibit homing and re-

population, combined with the reduced efficacy of 7G3 when

trafficking in the circulation was circumvented by IF transplanta-

tion, strongly supports a role for the innate immune system in

mediating at least a portion of the inhibitory effects of 7G3.

CD122+ Cells Contribute to 7G3-Mediated Inhibition
of AML Homing and Repopulation in NOD/SCID Mice
While NOD/SCID mice are devoid of functional T and B cells, and

are defective in complement fixation, they retain residual levels

of innate effector activity (principally due to NK cells and macro-

phages) that can affect stem cell engraftment. To determine

whether residual NOD/SCID innate immunity contributed to the

inhibitory effects of 7G3 on LSCs, mice were injected with anti-

CD122 mAb prior to transplantation with ex vivo 7G3-treated

AML-8-rel cells. In the IgG2a control-treated groups, leukemic

engraftment in the CD122+ cell-depleted mice was increased

to 113.3% ± 2.8% of nondepleted mice (Figure 3C), reflective
34 Cell Stem Cell 5, 31–42, July 2, 2009 ª2009 Elsevier Inc.
of our earlier data showing increased detection of HSCs in

such recipients (McKenzie et al., 2005). We found that depletion

of CD122+ cells significantly attenuated the ability of 7G3 to

reduce leukemia engraftment from 82.7% ± 9.4% to 39.8% ±

14.3% inhibition relative to control antibody (Figure 3C), although

a significant difference still remained between 7G3-treated and

IgG2a-treated groups. Similarly, when we used NOD/SCID inter-

leukin-2 receptor g chain null mice (NOD/SCID/IL-2Rgnull), which

have lower residual NK cell activity than NOD/SCID mice (Ito

et al., 2002), we observed similar attenuation, but not complete

ablation, of the inhibitory effects of ex vivo 7G3 treatment on

AML-1 engraftment in the BM (33.3% ± 12.6% of control

compared with 1.1% ± 0.9% of control for NOD/SCID mice,

Figure S3).

Additionally, anti-CD122 antibody treatment also partially

attenuated the ability of 7G3 to block AML cell homing to the

BM observed in both AML-8-rel and AML-9. As shown in

Figure 3D, the homing efficiency of AML-9 cells treated with

7G3 was 8.4% ± 1.4% of control, and this was attenuated to

18.2% ± 3.1% with depletion of CD122+ cells. The number of
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Figure 2. Inhibition of AML-LSC Homing Contributes to the Inhibitory Efficacy of 7G3

(A) Homing efficiency of AML-9 cells to the BM and spleen of mice following ex vivo 7G3 treatment from two separate experiments. n = 3–6 per group.

(B) Engraftment of ex vivo antibody-treated AML-8-rel cells in the injected femur (RF) and whole BM (WBM) after i.v. (IV) or intrafemoral (IF) transplantation. n =

4–5 mice per group.

(C) Absolute number of CD34+CD38� AML cells homed in the BM and spleen of NOD/SCID mice injected with ex vivo 7G3-treated leukemic cells. n = 2–3 or

5 mice per group for AML-8 and AML-9, respectively.

(D) Homing efficiency of sorted CD34+CD38� AML-9 cells after ex vivo treatment into both BM and spleen of mice. n = 3 mice per group.

(E) The number of CD34+CD38� cells in the AML graft of mouse BM transplanted with AML-1, -5, and -9 after ex vivo IgG2a or 7G3 treatment. Each symbol

represents a single mouse; horizontal bars indicate the mean. Error bars represent mean ± SEM; *p < 0.05, **p < 0.01, and ***p % 0.0001 between IgG2a

and 7G3 groups.
CD34+CD38� cells that homed to the BM of mice was also

reduced to 5.3% ± 1.1% of control (Figure 3E), and this number

was only marginally increased by the addition of anti-CD122

antibody (8.2% ± 1.9% of control, Figure 3E).

Collectively, our results indicate that the ability of 7G3 to inhibit

engraftment and homing of AML cells in NOD/SCID mice is

mediated by at least two cooperative pathways: immune effector

activity caused by NK and/or other CD122+-dependent cells,

and specific inhibitory effects of 7G3 on AML-LSC homing and

engraftment.

7G3 Reduces AML Burden in NOD/SCID Mice
Several in vivo treatment strategies were adopted to determine

whether direct injection of 7G3 into NOD/SCID mice affected

AML engraftment: (1) administering 7G3 to the mice 6 hr before

cell transplantation almost completely ablated AML-1 engraft-

ment in mouse BM to 1.3% ± 0.9% of IgG2a control at 5 weeks

posttransplantation (Figure 4A); (2) initiating 7G3 treatment at

24 hr posttransplantation, to allow for LSC homing, also reduced

the engraftment of two of three AML samples at 5 weeks post-

transplantation (Figure 4B), indicating that early administration

of 7G3, when the leukemic burden is low, can efficiently impair

the engraftment of AML cells in NOD/SCID mice; (3) commen-

cing 7G3 or IgG2a administration 28 days posttransplantation,

in an established disease model, and continuing treatment until

time of sacrifice, a significant reduction in the BM burden of

AML was seen in two of five samples, likely reflective of the
heterogeneity of AML seen clinically. AML-2 responded to 7G3

with reductions in BM engraftment at 9 and 14 weeks posttrans-

plantation (Figure4C),while treatment of mice withonly fourdoses

of 7G3over 8 days significantly reduced the engraftment of AML-1

(Figure 4D). Moreover, while some AML samples did not have

a significant reduction in leukemic burden in the BM with initiation

of 7G3 treatment at either 4 or 28 days posttransplantation,

a significant reduction in AML burden in the liver and spleen, but

not the peripheral blood, was observed (Figures 4E–4G).

To further assess the clinical potential of a CD123-targeting

mAb, 7G3 treatments were commenced in mice at 35 days post-

transplantation with NBM cells and caused no significant reduc-

tion in BM infiltration when administered for 8 days or continu-

ously for 5 weeks (Figure 4D and data not shown). Moreover,

7G3 caused no significant impairment of multilineage engraft-

ment of normal cells (data not shown). Together, these data

suggest that 7G3 is biologically active in vivo and can repress

the growth of AML with lesser effects on normal human hemato-

poietic cells.

Since murine NOD/SCID cells do not bind 7G3, we carried out

preclinical toxicity studies in a more relevant large animal model,

the cynomolgus monkey. A chimeric variant of mAb 7G3 was

engineered that maintains CD123 binding specificity and

neutralization activity reformatted with a human IgG1 Fc region.

This model permits evaluation of any effect on resting hemato-

poiesis where there is a source of endogenous IL-3 and a normal

immune system. The mAb was administered by i.v. infusion once
Cell Stem Cell 5, 31–42, July 2, 2009 ª2009 Elsevier Inc. 35
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Figure 3. Fc Region of the Antibody and Innate Immunity Mediate 7G3 Antileukemic Effects

(A) Homing efficiency of AML-8-rel cells to the BM following ex vivo treatment with IgG2a, 7G3, 7G3 F(ab0)2, 6H6, 6H6 F(ab0)2, or 9F5. n = 3 per group.

(B) Engraftment of AML-9 and -10 in the BM of mice following ex vivo IgG2a, 7G3, 7G3 F(ab0)2, 9F5, or 9F5 F(ab0 )2 treatment. n = 5 per group.

(C and D) 7G3-mediated inhibition of AML-9 engraftment (C) and homing efficiency (D) was attenuated in mice depleted of CD122+ cells (+). n = 3 per group.

(E) Numbers of CD34+CD38� AML-9 cells homed to the BM of irradiated NOD/SCID mice with (+) or without (�) CD122+ cell depletion. n = 3 per group. Data are

representative of results obtained with two AML samples. Error bars represent mean ± SEM; *p < 0.05, **p < 0.01 between selected groups.
weekly for 4 consecutive weeks at 0, 10, 30, and 100 mg/kg to

a total of 32 cynomolgus monkeys (16 males and 16 females).

CD123 binding by the chimeric variant was confirmed to be

equivalent to the original parent 7G3 mouse mAb, and binding

of both MAbs to cynomolgus CD123 was also demonstrated.

There were no antibody-related effects on clinical observations

nor on a comprehensive list of hematological parameters

measured over 70 days after the first antibody treatment (data

not shown). Overall, these data indicate that a CD123-targeting

antibody does not exert adverse effects on normal hematopoi-

esis and are consistent with our NOD/SCID mouse experiments

demonstrating that 7G3 treatment can specifically inhibit AML

engraftment.

In Vivo Treatment with 7G3 Targets AML-LSCs
In order to determine if key properties of LSC such as self-renewal

are targeted, serial transplantation was performed following

in vivo 7G3 treatment. While 10 weeks of 7G3 treatment did not

overtly decrease the engraftment of AML-10 in the BM or spleen

of primary engrafted mice (Figure 5A), the AML cells harvested

from 7G3-treated mice had significantly impaired homing ability

to the BM and spleens of secondary recipient mice compared

with IgG2a-treated controls (Figure 5B). The repopulation ability

was also significantly impaired: while eight of nine secondary

recipient mice transplanted with untreated control cells were

engrafted, only three of eight mice inoculated with cells from

7G3-treated mice showed evidence of engraftment in the BM

(Figure 5C). In the secondary mice, 7G3 also significantly reduced

the proportion of CD34+CD38� primitive cells in the BM
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(Figure 5D). Similar results were obtained in an independent

experiment with AML-9 cells (Figure S4). In addition, when anti-

body treatment was combined with a suboptimal dose of cytara-

bine (Ara-C) to assess the potential for synergistic effects against

another independent AML sample (AML-10), 7G3 again caused

a marked reduction in the proportion of secondary mice

engrafted (Figure S5). Collectively over three experiments, 26 of

27 (96%) secondary mice showed evidence of engraftment by

cells harvested from IgG2a-treated mice, while only 12 of 23

(52%) were engrafted by cells from 7G3-treated mice. These

results demonstrate that in vivo 7G3 administration specifically

targets AML-LSCs in NOD/SCID mice, resulting in decreased

homing and engraftment in secondary recipients.

7G3 Inhibits Spontaneous and IL-3-Induced
Proliferation of Primitive AML Cells In Vitro
Due to the lack of cross-reactivity between the human and

mouse IL-3 and CD123 systems, the ability of 7G3 to eliminate

LSCs through targeting IL-3 signaling pathway is unable to be

directly tested. To determine whether blocking IL-3 signaling

can be one of the 7G3 inhibitory functions on AML-LSCs, we

incubated different subtypes of primary AML cells with 7G3 or

IgG2a in the medium containing IL-3. 7G3 inhibited exogenously

added IL-3-induced proliferation in 32 of 35 primary AML

samples (Figure 6A). Interestingly, 7G3 inhibited the growth of

cells in nine of the samples to 50%–75% of control in the

absence of exogenous IL-3, suggesting that these samples

may possess an autocrine/paracrine IL-3 pathway or alternate

growth mechanisms that can be blocked by 7G3. This profound
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Figure 4. The Schedule of 7G3 Administration Influences Its Antileukemic Efficacy in NOD/SCID Mice
(A) Engraftment levels of AML-1 cells in the BM of mice treated with a single dose of IgG2a or 7G3 (300 mg) 6 hr prior to transplantation.

(B) Percentage of AML cells in the BM of mice (n = 5–6 per group) when the treatment was commenced 24 hr posttransplantation for four doses.

(C) Engraftment levels of AML-2 in the BM of mice when treatment was initiated at day 28 posttransplantation for 9 weeks’ duration. n = 3–5 per group for each

time point.

(D) Percentage of human AML-1 or NBM cells in the BM of mice after four doses of IgG2a or 7G3 starting on day 28 (AML-1) or 35 (NBM) posttransplantation.

(E–G) Assessment of leukemia infiltration in the liver (E), spleen (F), and peripheral blood (G) for the experiments in which initiating 7G3 treatments at 4 or 28 days

did not cause a significant reduction in leukemic burden in the BM. Data are collected from six experiments for the different organs with n = 6–53 mice per group.

Each symbol represents data from an individual mouse as a percent of average control for each experiment. Horizontal bars indicate the median in (E)–(G) and

mean in (A) and (D). Otherwise results were expressed as mean ± SEM; *p < 0.05, **p < 0.01 between IgG2a and 7G3 groups.
inhibition by 7G3 was IL-3 specific since 7G3 had no effect on

GM-CSF-induced cell proliferation (Figure 6B). In order to more

directly link the 7G3-mediated reduction in proliferation to prim-

itive AML cells, we demonstrated that 7G3 was able to signifi-

cantly reduce IL-3-mediated survival of CD34+CD38�CD123+

cells in three of four different patient samples (Figure 6C). In addi-

tion, 7G3 significantly reduced the survival of CD34+CD38� cells

from two samples (AML-14 and AML-15) in the absence of exog-

enously added IL-3. These data verify that 7G3 inhibits IL-3-

induced and spontaneous proliferation of primary leukemic cells,

and CD34+CD38�CD123+ cell survival through binding to

CD123.

7G3 Blocks IL-3-Mediated Signaling in AML Cells
We next tested whether 7G3 inhibited leukemic cell growth by

blocking the activation of the IL-3R and its downstream pathway.

The IL-3R bc chain (CD131) was found to be coexpressed with

CD123 on CD34+ primary AML cells measured by both flow

cytometry and PCR analyses (data not shown). Furthermore,

IL-3-induced CD131 activation in primary AML cells and TF-1

assessed by tyrosine phosphorylation was inhibited by 7G3 in

a concentration-dependent manner (Figure 6D and Figure S6,

respectively). Inhibition of downstream STAT5 phosphorylation

was also observed in TF1, bulk, and CD34+CD38� AML cells

(Figure 6E), as well as inhibition of both STAT5 and Akt phos-

phorylation in TF-1 cells (Figure S6), while the weakly neutralizing
clones, 9F5 and 6H6 (Sun et al., 1996), were ineffective at inhib-

iting IL-3-mediated proliferation (data not shown) or signaling

(Figure S6), demonstrating that different CD123 epitopes are

functionally distinct. Collectively, these in vitro studies establish

that 7G3 has the potential to also target LSCs by blocking IL-3-

mediated signaling. Thus, in a clinical context, CD123 targeting

has the potential to deliver antileukemic effects via activation

of host immunity and inhibition of the IL-3 pathway.

DISCUSSION

In this report, we show that AML-LSCs can be targeted with the

CD123-specific 7G3 mAb, resulting in impaired human AML cell

engraftment and proliferation in NOD/SCID mice and improved

long-term survival. The mechanism of LSC impairment by 7G3

treatment in the NOD/SCID model appeared complex and multi-

factorial, involving inhibition of LSC homing to the BM niche, and

stimulation of residual innate immunity in NOD/SCID recipients.

Although the consequences of blocking huIL-3 signaling with

7G3 in LSCs cannot be fully assessed in NOD/SCID mice, the

in vitro data we generated showed marked impairment of the

signaling, survival, and proliferation of primitive CD34+CD38�

AML cells. Since this subpopulation is highly enriched for

LSCs, this result strongly suggests that impairment of IL-3

signaling will also be part of the multifactorial mechanism of

action of 7G3 in a human context. Collectively, our results
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Figure 5. 7G3 Inhibits Self-Renewal Ability of AML-LSCs

(A) Engraftment levels of AML-10 cells in BM and spleen after 10 weeks of 7G3 or IgG2a treatment. The schedule of antibody treatment is shown in the schematic

overview.

(B–D) (B) Homing efficiency, (C) levels of engraftment in the BM and spleen, and (D) the percentage of CD34+CD38� cells in the BM of secondary recipient mice.

Mice in (C) and (D) were analyzed at 12 weeks posttransplantation. Each symbol represents a single mouse, and horizontal bars indicate the mean value. *p <

0.05, **p < 0.01 between the two groups.
demonstrate that CD123 is an important marker for the targeting

of LSCs and downstream progenitors that are capable of rapid

proliferation. Our studies also show that, while the NOD/SCID

mouse strain is immune deficient due to depleted T, B, and NK

cells, it still proves to be an effective animal model for the preclin-

ical testing of antibody-mediated immunotherapy.

Targeting LSCs by means of the 7G3 antibody against CD123

is an attractive approach, since (1) this receptor has been widely

shown to be selectively overexpressed in LSCs; (2) the IL-3R

classically stimulates multiple biological functions; and (3) 7G3

has the dual benefit of being a blocking antibody as well as medi-

ating ADCC by effector cells providing additional and specific

efficacy against leukemic cells, which a small molecule inhibitor

of downstream signaling (e.g., JAK/STAT) may not be able to

provide. Initial in vitro characterization showed that 7G3 robustly

impaired IL-3 binding to its receptor in a broad panel of AML

samples, thereby preventing IL-3-dependent CD131 tyrosine

phosphorylation and downstream signaling, which are required

to promote both cell survival and proliferation (Guthridge et al.,

2000, 2006). Furthermore, inhibition of AML proliferation by

7G3 in the absence of exogenous IL-3 in 9 of 32 samples

suggests that there is autocrine or paracrine secretion of IL-3

in some AML samples at physiologically significant levels. These

experimental data are consistent with other reports demon-

strating the expression of IL-3 mRNA and protein in primary

AML samples (Guan et al., 2003; Nowak et al., 1999), as well

as elevated serum IL-3 levels associated with leukemic burden

in AML patients (Elbaz and Shaltout, 2001). By contrast, normal

CD34+CD38� cell proliferative potential is not affected by IL-3
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(De Bruyn et al., 2000), and lineage-negative NBM cells did not

have detectable IL-3 mRNA expression (Guan et al., 2003), sug-

gesting that normal HSC function is relatively independent of IL-3

and is consistent with IL-3 being dispensable for normal hemato-

poiesis in IL-3-deficient mice (Nishinakamura et al., 1996). In

AML, the level of CD123 expression and responsiveness to cyto-

kines including IL-3 have been associated with poor prognosis

(Graf et al., 2004; Testa et al., 2002, 2004; Tsuzuki et al., 1997).

Thus, 7G3 inhibition of the CD123 signaling pathway in the

context of AML patients, many of whom are likely to express

high levels of circulating IL-3 (Elbaz and Shaltout, 2001), may

provide significant additional benefit beyond the mechanisms

we have already uncovered with the NOD/SCID model.

Residual murine NK cells, macrophages, or other host immune

cells clearly contribute to the action of 7G3. Depletion of innate

immunity in NOD/SCID mice with anti-CD122 mAb significantly,

but not completely, attenuated the inhibitory effects of 7G3 on

the homing and repopulating abilities of AML-LSCs. Additional

evidence supporting this mechanism of 7G3-mediated inhibition

of LSC function includes evidence that the Fc portion of 7G3 is

critical for its activity, as well as the reduced potency of 7G3 in

a NOD/SCID strain without NK cell activity. These findings

support the further modification of 7G3 to enhance ADCC

activity.

Our experiments provide two key findings that support the

development of MAbs targeting CD123 as a novel therapy for

AML. First, combined with those from other groups, our data

showed that CD123 was highly expressed on the surface of

CD34+CD38� populations enriched for AML-LSCs compared
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Figure 6. mAb 7G3 Inhibits Proliferation of Primary AML Cells

(A) Inhibition of primary AML cell proliferation by 7G3. Each line represents an individual AML sample exposed to the three different conditions. n = 35.

(B) Concentration-dependent effects of 7G3 on the proliferation of a primary AML sample induced by GM-CSF (0.1 ng/ml) or IL-3 (1 ng/ml). Data are represen-

tative of results obtained with 21 different AML samples.

(C) 7G3 inhibits IL-3-mediated survival of isolated CD34+CD38�CD123+ primary AML cells. The percentage of surviving cells is shown.

(D) Western blot showing that 7G3 inhibits IL-3-induced CD131 tyrosine phosphorylation in a dose-dependent manner. n = 2 AML samples.

(E) 7G3 inhibits IL-3-induced phosphorylation of STAT5 in TF-1, primary AML, and sorted CD34+CD38� AML cells shown by representative histograms of intra-

cellular FACS (red, no IL-3; blue, IL-3 with IgG2a; green, IL-3 with 7G3); bar graphs represent the cumulative data in sorted CD34+CD38� cells. Mean ± SEM in

triplicates (B) or duplicates (C and E); *p < 0.05, **p < 0.01, ***p % 0.0001 between indicated groups.
to their normal hematopoietic counterparts from both newborn

CB and adult BM. Reduction of AML engraftment by ex vivo

7G3 treatment with less effect on normal HSCs, in comparison

with the nonspecific ablation of both normal and AML sample

engraftment by the antibody against HLA-A,B,C epitope, is

consistent with the CD123 expression data. Similarly, in vivo

7G3 treatment appears to preferentially reduce AML engraft-

ment relative to NBM xenograft. Second, the marked impairment

of engraftment in secondary recipients demonstrates that 7G3

treatment targets the AML-LSCs in vivo, impairing LSC homing

and reducing the repopulation of secondary recipients similar

to the data from ex vivo treatment. Overall, this establishes

7G3 as a compelling LSC therapeutic in this preclinical model.

Interestingly, the IF injection method established that at least

a part of the action of 7G3 on LSC homing occurred during lodg-

ment in microenvironmental niches and not during circulation
through the blood, or during extravasation across endothelial

membranes, since this method directly bypasses the latter

processes by delivering cells to the femoral cavity.

The clinical potential for a CD123-targeting mAb is supported

by three lines of evidence. First, our study has shown that ex vivo

or in vivo 7G3 treatments selectively target AML cells compared

with their normal counterparts. Second, toxicity testing in pri-

mates has shown that a chimeric IgG1 variant of 7G3 had no

significant effects on any measured hematological parameters

over 70 days. If normal hematopoiesis or HSCs had been

affected, alteration of some of the parameters would be expected

within this time frame. Third, the same chimeric variant mAb is

being investigated in a phase I clinical trial as weekly treatment

of patients with relapsed or refractory or high-risk AML. To

date, with a total of >180 infusions administered to 26 patients

comprising five dose-level cohorts up to 10 mg/kg, no signal of
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treatment-related toxicity has been detected from hematology,

biochemistry, or vital signs. Other than two mild infusion reac-

tions, only one serious adverse event, an infection, was consid-

ered possibly related to treatment with the mAb. The incidence

of adverse events did not increase with escalating dose, no grade

3–4 adverse events have been considered treatment related, and

unrelated adverse events have been consistent with complica-

tions and risks of AML (A.W. Roberts et al., 2008, ASH Annual

Meeting, abstract).

Although 7G3 effectively targeted AML-LSCs, it was most

successful under conditions where the leukemic burden was

low. When 7G3 treatment began at 4 weeks posttransplantation,

BM engraftment was significantly impaired in only two of five

primary AMLs. However, in this model of established AML,

7G3 distinctly reduced the AML burden in peripheral hematopoi-

etic tissues (spleen, liver) in the majority of the samples we

tested, perhaps due to a greater access of innate immune cells

eliminating 7G3-coated AML cells (Fujii et al., 2007). While

sample-to-sample variability was encountered at high leukemic

burden, the increased effectiveness of 7G3 at low leukemic

burden suggests a potential application of anti-CD123 treatment

during remission following treatment with conventional chemo-

therapeutic agents.

The concept of antibody targeting of malignancy is well estab-

lished. For example, several MAbs directed at hematological

malignancies have been evaluated in clinical trials, including

rituximab (which targets CD20) and epratuzumab (CD22) in B

cell malignancies, alemtuzumab (CD52) in chronic lymphocytic

leukemia, daclizumab (CD25) in T cell malignancies, and gemtu-

zumab ozogamicin (CD33) in AML. However, these mAb thera-

pies are unlikely to target CSCs, and, while impressive cytore-

duction and clinical responses have been observed, none are

curative. Therefore, the multifaceted properties of 7G3 shown

in this preclinical model of AML support a broader proposal for

CSC-targeted cancer drug development (Wang, 2007) in which

potential therapies that target key traits of CSCs are identified

and tested using primary patient samples in relevant in vivo xen-

otransplantation models. The ongoing clinical evaluation of

a chimeric CD123 mAb in advanced AML (http://clinicaltrials.

gov/ct2/show/NCT00401739?term=CSL360&rank=1) will be the

first of its kind to test whether the significant activity of an LSC-

targeted mAb therapy in the xenograft models shown in this

study translates into a clinical benefit for patients. Ultimately,

this clinical testing will also provide more definitive proof of

a role for IL-3 in the pathology of AML.

EXPERIMENTAL PROCEDURES

AML Patient Samples, Normal Hematopoietic Cells, and Cell Lines

Patient samples were collected after informed consent according to institu-

tional guidelines, and studies were approved by the Royal Adelaide Hospital

Human Ethics Committee, Melbourne Health Human Research Ethics

Committee, Research Ethics Board of the University Health Network, and

the South Eastern Sydney and Illawarra Area Health Service Human Research

Ethics Committee. Diagnosis was made using cytomorphology, cytogenetics,

and leukocyte antigen expression and evaluated according to the French-

American-British (FAB) classification. Mononuclear cells were enriched by

Lymphoprep (Axis-Shield PLC, Dundee, Scotland) or Ficoll (GE Healthcare,

Uppsala, Sweden) density gradient separation and frozen in liquid nitrogen.

Human CB and NBM cells were obtained from full-term deliveries or consent-

ing patients receiving hip replacement surgery, or commercially from Cambrex
40 Cell Stem Cell 5, 31–42, July 2, 2009 ª2009 Elsevier Inc.
Corporation (East Rutherford, NJ) and Lonza (Basel, Switzerland), respec-

tively, and processed as previously described (Mazurier et al., 2003).

Ex Vivo Antibody Treatment

Thawed AML or normal hematopoietic cells were incubated with IgG2a, 7G3,

7G3 F(ab0)2, 9F5, 9F5 F(ab0)2, 6H6, or 6H6 F(ab0)2 (10 mg/ml) for 2 hr in X-VIVO

10 medium (Cambrex Corporation or Lonza) supplemented with 15%–20%

bovine serum albumin-insulin-transferrin (StemCell Technologies Inc, Vancou-

ver, Canada) at 37�C before i.v. transplantation into sublethally irradiated

NOD/SCID mice for repopulating assays. Engraftment was measured at

4–10 weeks at two different time points.

Xenotransplantation of Human Cells into NOD/SCID Mice

and In Vivo Antibody Treatment

Animal studies were performed under the institutional guidelines approved by

the University Health Network/Princess Margaret Hospital Animal Care

Committee or the Animal Care and Ethics Committee of the University of

New South Wales. Transplantation of human cells into NOD/SCID mice was

performed as previously described (Mazurier et al., 2003). Briefly, all mice

received sublethal irradiation 24 hr before i.v. or IF transplantation with either

5–10 3 106 human AML cells, 3 3 105 lineage-depleted CD34+ CB cells, 8 3

106 BM cells, or 1 3 106 sorted CD34+ BM cells per mouse. Anti-CD122

antibody purified from the hybridoma cell line TM-b1 (generously provided

by Professor T. Tanaka, Hyogo University of Health Sciences) (Tanaka

et al., 1993) was injected intraperitoneally (i.p.) immediately after irradiation

(200 mg/mouse). Engraftment levels of human AML and normal hematopoietic

cells were evaluated by the percentage of huCD45+ cells by flow cytometry

(Lock et al., 2002). The number of CD34+CD38� AML cells in the BM and

spleen was also calculated based on the average number of cells harvested,

and the engraftment levels and percent of CD34+CD38� AML cells in each

mouse. To measure effects on LSC activity, secondary transplantations

were also performed by i.v. transplantation of 7–10 3 106 AML cells isolated

from the BM (two femurs and two tibias) of IgG2a- or 7G3-treated primary

mice into secondary recipient mice.

For in vivo testing, IgG2a or 7G3 (300 mg per injection) was injected i.p. into

mice three times a week with schedules described in the legends to each

figure. In vivo treatment of 7G3 was also tested in combination with the chemo-

therapeutic reagent Ara-C as described in Figure S5.

In Vivo Homing Assay

Homing assays were performed on ex vivo 7G3-treated cells, sorted

CD34+CD38� cells from primary patient samples, or cells harvested from previ-

ously engrafted mice, as previously described (Jin et al., 2006). Briefly, cells har-

vested from BM and spleen of mice transplanted 16 hr previously were stained

with anti-human CD45-FITC, CD38-PE, and CD34-PC5 followed by flow cytom-

etry for human cells using 5 3 104 to 5 3 106 collected events. Homing effi-

ciency of human cells into the mouse tissues was calculated based on the

number of total huCD45+ cells in the tissue and the number of cells injected.

Cell Staining, Sorting, and Flow Cytometry

For flow cytometry, cells were stained as previously described (Bonnet and

Dick, 1997; Lock et al., 2002) with conjugated anti-human antibodies against

CD15, CD14, CD19, CD33, CD34, CD38, and CD45 (BD Biosciences, or Bio-

Legend, CA). CD123 expression was measured with anti-CD123 clone 9F5,

and RFI was determined by the ratio of the geometric mean of the 9F5-stained

signal to matched isotype control. Stained cells were analyzed using FACScan

or FACSCalibur flow cytometers (BD Biosciences). For sorting, cells were

stained with anti-human antibodies against CD34, CD38, and CD123, and pro-

pidium iodide was also added to exclude dead cells when the cells were sorted

using Moflo and BD Aria cell sorters (BD Biosciences).

Survival Analysis of CD34+CD38�CD123+ AML Cells

Sorted cells plated at 1.5 3 105 cells/ml in IMDM/0.5% FCS were treated with

150 mg/ml 7G3 or IgG2a (clone BM4) for 30 min prior to addition of 1 nM IL-3.

Cells were analyzed for survival at 48 and 72 hr by staining with 1:100 Annexin

V-FLUOS (Roche, Basel, Switzerland) as described previously (Guthridge

et al., 2006). Absolute cell number was also assessed by addition of 50 ml

Flow-Count fluorospheres (Beckman Coulter).

http://clinicaltrials.gov/ct2/show/NCT00401739?term&equals;CSL360&amp;rank&equals;1
http://clinicaltrials.gov/ct2/show/NCT00401739?term&equals;CSL360&amp;rank&equals;1
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Proliferation Assays

AML cell-growth responses to IL-3 or GM-CSF were measured by 3H-thymi-

dine assay as previously described (Lopez et al., 1988). Briefly, 2 3 104 mono-

nuclear cells per well in 96-well plates were stimulated with IL-3 (1 ng/ml) or

GM-CSF (0.1 ng/ml) in the presence of 0–10 nM 7G3 or IgG2a in 200 ml

IMDM + 10% HI-FCS (Hyclone, UT) for 48 hr with 0.5 mCi of 3H-thymidine

(MP Biomedicals Australasia, Sydney, Australia) added for the last 6 hr of

culture. Cells were deposited onto glass fiber paper using a Packard Filtermate

cell harvester (PerkinElmer Life and Analytical Sciences, Melbourne, Australia)

and counted using a Top Count (PerkinElmer). All cytokines were supplied by

R&D Systems (MN).

Cytokine Signaling Assays

Phosphorylation of signaling proteins was detected by immunoprecipitation

and immunoblots. TF-1 and primary AML cells were washed and rendered

quiescent overnight before incubation with IgG2a, 9F5, 6H6, or 7G3

(0–100 nM) for 20 min on ice. Cells were then stimulated with 1 nM IL-3 for

10 min at 37�C. Cells were lysed in NP-40 lysis buffer, and CD131 was immu-

noprecipitated using 1C1 and 8E4 antibodies conjugated to Sepharose beads

(Guthridge et al., 2004). Immunoprecipitates were subjected to SDS-PAGE

and immunoblotting as previously described (Guthridge et al., 2004). Anti-

bodies used were the following: antiphosphotyrosine mAb 4G10 (Upstate

Biotechnology Inc, NY), anti-phospho-Akt Ser473 (Cell Signaling Technology

Inc, MA), and, anti-phosphorylated STAT5 mAb (Zymed Laboratories Inc,

CA). All antibodies were used according to manufacturers’ instructions. Blots

were stripped and reprobed with antibody to bc (1C1) as a loading control.

For intracellular FACS, quiescent TF-1, bulk, and sorted primary AML cells

were stimulated with 20 ng/ml IL-3 plus 20 mg/ml IgG2a or 7G3 for 1 hr. Sorted

subpopulations were incubated with 150 mg/ml 7G3 or IgG2a for 30 min on ice

before stimulation with 1 nM IL-3 for 15 min. Cells were fixed with BD Cytofix

Buffer (BD Biosciences), methanol permeabilized, and stained with anti-phos-

phoSTAT5 (BD Biosciences) or isotype control. Cells were then analyzed using

a FACSCalibur flow cytometer (BD Biosciences).

Statistical Analysis

Data are presented as the mean± SEM. Thesignificance of differences between

groups was determined using the unpaired, two-sided Student’s t test, or the

nonparametric Mann-Whitney U test. Survival curves were compared using

the log rank test.

SUPPLEMENTAL DATA

Supplemental Data include six figures and can be found with this article online

at http://www.cell.com/cell-stem-cell/supplemental/S1934-5909(09)00207-0.
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