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1. INTRODUCTION 

If A is bounded linear transformation from a complex Hilbert space H 
into itself, then the numerical range of A is by definition the set 

W(A) = {(Ax, x) : Ij x I/ = I>. 

It is wellknown and easy to prove that if o(A) denotes the spectrum of A, then 

4-4 C WA), 

where the bar indicates closure. 
The purpose of this paper is two-fold. We first present an extension of 

the foregoing relation and the proceed to indicate how the extension may be 
used in two other situations, namely bounded linear operators on a Banach 
space, and certain nonlinear transformations on a real or complex Hilbert 
space. The extension is mild, Specifically, we will show that if 0 6 W(A), 
then 

u(A-lB) C W(B)/m 

for any operator B on H. Here the set on the right is by definition the set of 
quotients b/a with 6 E W(B) and a E W(A). 

The extension has interesting consequences. For example it implies that if 
A is strictly positive and B > 0, then the product AB has a nonnegative 
spectrum. Also, if A is positive and B is self-adjoint then the product AB 
has real spectrum. 

1 Research supported in part by the National Science Foundation under grant 
GP-524. 
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2. LINEAR OPERATORS ON A HILBERT SPACE 

We begin with the proof of the extension. 

THEOREM 1. Let A and B operators on the complex Hilbert space H. . 
If 0 $ W(A) then 

o(A-lB) C m/W(A). 

PROOF. Observe first of all that since u(A) C W(A), the hypothesis 
guarantees that A-l exists (as a bounded linear operator on H). Secondly, 
the identity 

A-lB - X = A-l(B - XA) 

shows that if h E a(A-lB), then 0 E o(B - AA). This in turn implies that 

- - 
0 E W(B - XA) C W(B) - W(A), 

and this means that 

hEW(A)/W(A). 

We indicated two corollaries above. To get another we recall that any 
operator A on H has a “polar decomposition” 

A = UP, 

and that if A is invertible, then U is unitary and P is strictly positive. 
Following Berberian [I] we call the unitary operator U cramped if its spectrum 
is contained in an arc of the unit circle with central angle < r. 

COROLLARY (Berberian). If 0 4 W(A), then the unitary part of A is 
cramped. 

PROOF. Use the fact that W(A) ’ 1s convex to see that if 0 $ W(A), then 
W(A) is contained in a sector 

S = (reie :r>o:e,<e<e,: 

with @a - 0, < rr. Then write U = A * P-l and apply the theorem to see 
that u(U) is a subset of the arc 

{eie : O1 < 0 < 0,). 

REMARK. (i) The inclusion o(A-lB) Cm/m is not valid with the 

409/17/z-2 
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weaker assumption that A is merely invertible. Indeed if A and B are 
self-adjoint o(AB) need not even be real. This follows from the computation 

in two-dimensional Hilbert space 

(ii). The more symmetic statement 

a(AB)Cm*m if 
- - 

0 $ W4 ” JV4 

is also not valid. To see this let A be the operator 

Then W(A) = W(A*) is the disk of radius l/2 about 1 and so the set 
W(A) - W(A*) lies to the left of Rez = 9/4. On the other hand 9/4 < 
l/2(3 + 45) E o(AA*). 

Returning to the theorem, the reader will note that the proof really does 
not concern operators on a Hilbert space at all. Indeed, the essential ingre- 
dients are these: An algebra & with unit, and two mappings A -+ u(A), 
A --f W(A) from LZ? to subsets of the complex plane which have the following 
properties: 

(1) W(A + B) C W(A) + W(B) 
(2) W(XA) C NV(A) 

(3) o(A) = W4) 
(4) h $ a(A) if and only if (A - h)-l E&. 

(We write B-l ESCJ to mean that the element B of ~2 has an inverse and that 
this inverse in fact belongs to &‘.) In what follows we will indicate how this 
observation extends the theorem to two other situations. 

3. LINEAR OPERATORS ON A BANACH SPACE 

For our first application we need a few facts about Banach spaces. First, 
if X is a Banach space then the Hahn-Banach theorem guarantees that for 
each x E X there is an x* E X* of norm 1 such that (x, x*) = Ij x 11. The 
space X (or more properly, the unit ball of X) is called smooth [2] if there is 
exactly one such x* for each x E X. Thus in a smooth space there is a unique 
map v form X to X* such that 

II dx)ll = II 2 IL <x9 v(x)> = Ii x II2 (x E X). 
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As an example the reader can easily verify that Lp is smooth for 1 < p < co. 
The isometry 9 sends f E Lp to 

ffi. 

If X is smooth and q~ is the indicated mapping, then it is easy to see that 
v is conjugate homogeneous: 

44 = %+4, OL complex. 

(However, if ‘p is additive, then the norm in X satisfies the parallelogram 
law and hence X is a Hilbert space.) Again, if X is smooth and f E X* attains 
its supremum on the unit ball of X, thenf belongs to the range of F. Now a 
result of Bishop and Phelps [3] states that for any Banach space X the 
collection of bounded linear functionals on X which attain their suprema on 
the unit ball of X is always (norm) dense in X*. By using this fact and the 
preceding remark it follows that if X is smooth, then the range of 9 is dense 
in X*. 

Now using the function q~ we can define a “semi-inner-product” on X by 

Lx, rl = <x3 dYD (x, Y E -0 
It is readily verified that the following hold: 

h 4 = II x II2 

[x,+~2~Y1=[~1,Y1+[~2,Yl 
P? Yl = xx9 Yl, Lx, AYI = G, Yl 
I[? Yll G II x II II Y Il. 

If now A is a bounded linear operator on X we can define the numerical 
range of A by setting 

W(A) = {[Ax, x] : II x II = l}. 

Clearly we will have 
w(A + B) C W(A) + W(B). 

@‘(AA) C XIV(A). 

Lumer [4] also shows that the boundary of o(A) is a subset of W(A). We 
need the following stronger result: 

PROPOSITION. o(A) C W(A). 

PROOF. The argument parallels the linear case: If h is at a positive 
distance 6 from W(A), then for unit vectors x 

II@ - A)% II 2 IV - 4x, 41 = I[& 4 - h I 2 6 = 41 x II 
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and 

The first of these implies that A - X is one-to-one with a closed range. 
The second implies that (A - A) * is bounded below on the range of 9) and 
since this is dense in X*, (A - A) * is bounded below, hence one-to-one, 
and this means that A - h has a dense range. It now follows from the 
Open Mapping Theorem that A - h has a bounded inverse. Hence A 6 IV(A) 
implies X 4 o(A) as asserted. 

We may summarize the preceding discussion as follows: 

THEOREM 2. Let X be a smooth Banach space and define W(A) as above. 
Then if 0 $ W(A) we have 

u( A-lB) C W(B)/m 
for any operator B on X. 

If the Banach space X is not smooth then there will be many isometries 
qua from X to x* satisfying 

(x, %(X)> = II x II2 (x E X). 

Each of these maps defines a semi-inner product [ , loL on X and a bounded 
linear operator T on X has corresponding numerical ranges W,(T). It is 
natural to define the numerical range of T on X by 

W(T) = U W,(T). 
c( 

The argument used for the smooth case is easily adapted to prove that 
U(T) C w<) is still valid and so we can conclude that Theorem 2 holds 
without the hypothesis that X is smooth. 

In this connection Lumer has shown [4] that W(T) is real (or positive) 
if and only if some Wa(T) is real (or positive). Thus T = T* (or T > 0) 
has intrinsic meaning and with these conventions we can state the following 
corollary: 

COROLLARY. If A > 0, B > 0 and C = C*, then u(AB) is positive and 
a(AC) is real. 

4. NONLINEAROPERATORS ON A HILBERT SPACE 

Our final application is more delicate. Here we let H be a real or complex 
Hilbert space and let JZZ be the collection of maps from H to itself which are 
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continuous and which send bounded sets into bounded sets. Clearly JZZ is an 
algebra with unit. We take the numerical range of A E cc4 to be 

W(A) = 1 (Ax, - Ax,, Xl - x2> : Xl # x2 

II Xl - x2 II2 1. 

There are two possible definitions of the spectrum of A E &‘, namely, (T (A), 
and a,(A) defined respectively as the complements of the sets 

p(A) = {h : (A - h)-l E ~8) 

pi(A) = {A : (A - A)-l exists and is Lipschitzian}. 

(By definition, B is Lipschitzian if 

IIBx, - Bx,II G M*Ilx, - *2/l 

for some constant M > 0 and all x1 , x2 .) 
It is easy to see that o(A) C a,(A). M oreover, a theorem of Zarantonello [5] 

asserts that, with W(A) as defined above, we have the inclusion 

Taking o(A) as the definition of the spectrum of A and applying Theorem 1, 
we get the following result: 

THEOREM 3. Let A and B be bounded and continuous on H. If 0 6 W(A), 
-- 

then for each h $ W(B)/ W(A) the mapping A-lB - h has a bounded, continuous 

inaerse de$ned on H. 

Taking q(A) as the definition of the spectrum of A we get: 

THEOREM 4. Let B be bounded and continuous, let A be Lipschitzian and 
-- 

suppose 0 4 W(A). Thenfor each h outside the set W(B)/ W(A) the transformation 

A-1B - X has a Lipschitzian inverse defined on H. 

PROOF. If 0 # ul(B - AA), then (B - hA)-l exists and is Lipschitzian. 
Hence the product (B - XA)-lA is also Lipschitzian. Since however 

(A-lB - h)(B - hA)-lA = A-‘(B - hA)(B - hA)-lA = 1, 

this implies that A-IB - h has a Lipschitzian inverse and so h $ ul(A-1B). 
In other words, 

h E u,(A-lB) =G- 0 E u,(B - hA) 

and the remainder of the proof is as before. 
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