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Abstract

The paper provides an upper bound on the size of a (generalized) separating hash family, a notion intro-
duced by Stinson, Wei and Chen. The upper bound generalizes and unifies several previously known bounds
which apply in special cases, namely bounds on perfect hash families, frameproof codes, secure frameproof
codes and separating hash families of small type.
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1. Introduction

This paper is concerned with generalised separating hash families, which are defined as fol-
lows.

Definition 1. Let X and Y be sets of cardinalities n and m, respectively. We call a set F of N

functions f :X → Y an (N;n,m)-hash family.

Definition 2. Let f :X → Y be a function, and let C1,C2, . . . ,Ct ⊆ X. We say that f separates
C1,C2, . . . ,Ct if f (C1), f (C2), . . . , f (Ct ) are pairwise disjoint.
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Note that for a function f to separate subsets C1,C2, . . . ,Ct , the subsets Ci must be pairwise
disjoint.

Definition 3. Let X and Y be sets of cardinalities n and m, respectively, and let F be an
(N;n,m)-hash family of functions from X to Y . We say that F is an (N;n,m, {w1,w2, . . . ,wt })
separating hash family (which we shall also write as an SHF(N;n,m, {w1,w2, . . . ,wt })) if it sat-
isfies the following property. For all pairwise disjoint subsets C1,C2, . . . ,Ct ⊆ X with |Ci | = wi

for i ∈ {1,2, . . . , t}, there exists at least one function f ∈ F that separates C1,C2, . . . ,Ct . The
multiset {w1,w2, . . . ,wt } is the type of the separating hash family.

To avoid trivialities, we always assume that t � 2 and that u � n, where we define u =∑t
i=1 wi . Clearly we must have that t � m if an SHF(N;n,m, {w1,w2, . . . ,wt }) exists. Note

that when m � n, an injective function is a separating hash family (with N = 1) and the problem
becomes trivial. So we may always assume that m < n.

This notion was introduced in the special case when t = 2 by Stinson, van Trung and Wei [9]
and in full generality by Stinson, Wei and Chen [10]. One of the attractions of the concept
of separating hash families is its simultaneous generalisation of several well-studied classes
of combinatorial objects. For example, an (N;n,m,u) perfect hash family (see, for example,
Blackburn and Wild [7]) is a separating hash family in the special case when u = t and wi = 1
for all i. A (k,u)-hashing family (introduced by Barg, Cohen, Encheva, Kabatiansky and Zé-
mor [3], see also Alon, Cohen, Krivelevich and Litsyn [1]) is a separating hash family in the case
when t = k + 1, w1 = w2 = · · · = wk = 1 and wk+1 = u − k. Given an (N;n,m)-hash family
F = {f1, f2, . . . , fN :X → Y }, we may define an m-ary code C ⊆ YN of length N by

C = {(
f1(x), f2(x), . . . , fN(x)

)
: x ∈ X

}
.

When F is a separating hash family, it is easy to see that the code C has exactly n codewords.
So we are able to rephrase the separating hash family property in the language of coding theory.
This rephrasing provides a link with various codes that have been studied for applications in
copyright protection and cryptography. Indeed, w-frameproof codes (see Staddon et al. [8]) are
separating hash families of type {1,w} and w-secure frameproof codes [8] are separating hash
families of type {w,w}. Codes with the identifiable parent property (2-IPP codes) are separating
hash families which are simultaneously of type {1,1,1} and {2,2}. See Stinson et al. [10] for
references to some of the extensive literature on these objects.

The paper aims to prove the following bound on the size of a separating hash family.

Theorem 1. Suppose an SHF(N;n,m, {w1,w2, . . . ,wt }) exists. Define u = ∑t
i=1 wi . Then

n � γm�N/(u−1)�,

where γ is a constant which depends only on w1,w2, . . . ,wt .

We provide three proofs of this theorem. The first proof (in Section 2) shows that we may
take γ = (

u
2

)
in the theorem; this proof uses general results and so the argument is quite short.

Our second proof (in Section 3) extends techniques of Stinson et al. [10] to reduce the value
we may take for γ . We show that we may take γ = 2(u − w1)w1 − w1, where we assume
(without loss of generality) that w1 is the smallest of the integers wi . Our final proof (in Section 4)
obtains a significantly better value for γ : we may take γ = w1w2 + u − w1 − w2, where we
assume (without loss of generality) that w1 and w2 are the smallest two of the integers wi . We
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give an argument to indicate that this value for γ cannot be improved without introducing some
significant new ideas.

Theorem 1 generalises bounds due to Stinson, Wei and Chen [10] (which apply only when
u � 4), Stinson and Zaverucha [11] (which apply only for separating hash families of types
{w − 1,w} and {w,w}) and Blackburn [5] (which apply for separating hash families of types
{1,w}).

We claim that the exponent �N/(u − 1)� in the bound of Theorem 1 is realistic, since the
exponent in a bound of this form cannot be improved to a value less than N/(u − 1). To prove
this, first note that a probabilistic construction due to Blackburn [4] shows that an (N;n,m,u)

perfect hash family exists provided that

N >
log 4(

(
n
u

) − (
n−u
u

)
)

logmu − log(mu − u!(m
u

)
)
.

In particular, this implies that for any fixed u, and any real number δ such that δ < N/(u − 1),
there exists an (N; �mδ�,m,u) perfect hash family whenever m is sufficiently large. Since an
(N;n,m,u) perfect hash family is an SHF(N;n,m, {w1,w2, . . . ,wt }) for any wi such that∑t

i=1 wi = u, we have established our claim.

2. A proof using labelled graphs

Let F = {f1, f2, . . . , fN :X → Y } be an (N;n,m)-hash family. We define a labelled graph
Γ (F) as follows. We define the vertex set of Γ (F) to be the domain X of the functions in F .
We join distinct vertices x and x′ by an edge labelled i if and only if fi(x) = fi(x

′). So Γ (F)

contains no loops, but there might be as many as N edges between a pair of vertices.
We now state a lemma from Blackburn [6] which will be central to the proof of Theorem 1.

The lemma was originally stated using coding theory terminology, but we rephrase the lemma in
terms of hash families.

Lemma 2. (See Blackburn [6, Lemma 2].) Let u be a positive integer. Let F be an (N;n,m)-
hash family, and suppose that n �

(
u
2

)
(m − 1) + 2. Let T be a tree on u vertices, whose edges

are labelled with elements of the set {1,2, . . . ,N}. Then the graph Γ (F) defined above contains
a subgraph isomorphic to T (as a labelled graph).

We now prove the following lemma, which is an important special case of Theorem 1.

Lemma 3. Let F be an SHF(N;n,m, {w1,w2, . . . ,wt }). Let u = ∑t
i=1 wi . Suppose that N < u.

Then

n �
(

u

2

)
(m − 1) + 1.

Proof. Suppose, for a contradiction, that an SHF(N;n,m, {w1,w2, . . . ,wt }) exists with N < u

and n �
(
u
2

)
(m − 1) + 2. Let F = {f1, f2, . . . , fN } be such a hash family, where fi :X → Y for

some sets X and Y . We aim to apply Lemma 2, and to this end we define a tree T as follows.
Let the vertices of T be a set of size u. Partition the vertices of T into t parts T1, T2, . . . , Tt ,

where |Ti | = wi . We now choose the edges of T in such a way that no edge lies within a part
of the partition. This can always be done: one way of doing this is as follows. Choose ‘special’
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Fig. 1. Constructing the tree T .

elements s1, s2, . . . , st ∈ T such that si ∈ Ti . For i ∈ {1,2, . . . , t − 1}, join si to all the elements
in Ti+1. Finally, join st to all the elements in T1 \ {s1}. An example of this process is given in
Fig. 1. Finally, we label the edges of T with elements of {1,2, . . . ,N} in such a way that every
possible label occurs at least once. We may do this since T has u − 1 edges, and N < u.

Recall the graph Γ (F) defined above. By Lemma 2, the graph Γ (F) contains an isomor-
phic copy L of T . Let φ :T → L be an isomorphism, and define pairwise disjoint subsets
C1,C2, . . . ,Ct ⊂ X of the vertices of Γ (F) by Ci = φ(Ti). Note that |Ci | = |Ti | = wi , and
the subsets Ci are pairwise disjoint.

We claim that the subsets Ci provide a counterexample to the SHF property, which gives us
the contradiction we need. To establish this claim, let j ∈ {1,2, . . . ,N}. It suffices to show that
the sets fj (Ci) are not disjoint, and so fj does not separate the sets C1,C2, . . . ,Ct . By our
construction of the tree T , there exists an edge ab ∈ T labelled with the symbol j . Moreover,
this edge does not lie within a part of our partition, so a ∈ Ti and b ∈ Ti′ where i �= i′. Since
φ is an isomorphism, there is an edge in Γ (F) between φ(a) ∈ Ci and φ(b) ∈ Ci′ labelled
with j , and so (by definition of the graph Γ (F)) we have that fj (φ(a)) = fj (φ(b)). Since
fj (φ(a)) ∈ fj (Ci) and fj (φ(b)) ∈ fj (Ci′), we see that fj (Ci) and fj (Ci′) are not disjoint. This
gives us the contradiction we were seeking. �
Proof of Theorem 1. Suppose that F = {f1, f2, . . . , fN :X → Y } is an SHF(N;n,m, {w1,w2,

. . . ,wt }). Let k and � be positive integers such that k� � N . We construct a hash family F ′ =
{f ′

1, f
′
2, . . . , f

′
� :X → Y k} as follows. Cover the set {1,2, . . . ,N} by � sets I1, I2, . . . , I�, each of

size k. For j ∈ {1,2, . . . , �}, define a function f ′
j :X → Y k by f ′

j (x) = (fi(x): i ∈ Ij ). It is easy

to check that F ′ is an SHF(�;n,mk, {w1,w2, . . . ,wt }), the key observation being that whenever
sets fi(Cj ) are disjoint and x ∈ {1,2, . . . , �} is defined by i ∈ Ix , we have that the sets f ′

x(Cj )

are also disjoint.
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Now let u = ∑t
i=1 wi . Construct a hash family F ′ from F as above, in the case when � = u−1

and k = �N/(u − 1)�. Since � < u, we may apply Lemma 3 to F ′ to obtain the inequality

n �
(

u

2

)(
mk − 1

) + 1 �
(

u

2

)
mk =

(
u

2

)
m�N/(u−1)�,

as required. �
3. A proof using forbidden configurations

In this section we sketch a proof of Theorem 1 using the technique of ‘forbidden configura-
tions.’ We modify the proof in Section 2 by replacing Lemma 3 by Lemma 4 below. It is clear that
the resulting proof gives rise to a better bound than the proof in Section 2: the constant γ may be
taken to be much smaller for many parameters. We only provide a sketch proof at a certain point
in our argument, since Section 4 shows how to reduce the value of γ still further; full details of
the proof we sketch are given in the technical report [12].

Lemma 4. Let F be an SHF(N;n,m, {w1,w2, . . . ,wt }). Let u = ∑t
i=1 wi . Suppose that N < u.

Then

n �
(
2(u − w1)w1 − w1

)
(m − 1) + 1.

The matrix representation of a hash family will prove to be the most useful representation
for this section. Let {f1, f2, . . . , fN } be an (N;n,m)-hash family, where fi :X → Y . Write X =
{x1, x2, . . . , xn} (so we have ordered the elements of X in some way). Then we may define an
N × n matrix A, the matrix representation of the hash family, by Ai,j = fi(xj ). Thus the rows
of A correspond to functions in the hash family, and the columns of A correspond to elements
of X. In this setting, we say that sets C1, C2 of columns cannot be separated if for all rows
(y1, y2, . . . , yn) of the matrix A, there exist j1 ∈ C1 and j2 ∈ C2 with yj1 = yj2 . In other words,
the sets C1, C2 of columns cannot be separated exactly when the corresponding subsets of X are
not separated by any of the functions fi .

To obtain an upper bound on n (in terms of N and m and the type of the separating hash
family), the general strategy involves showing A contains a submatrix which is impossible in
a separating hash family whenever n is sufficiently large. Such a submatrix is referred to as a
forbidden configuration. For example, the matrix representation of an SHF(7;n,m, {5,3}) does
not contain a submatrix isomorphic to any matrix of the form

∗ ∗ ∗ ∗ ∗ ∗ g g

∗ ∗ ∗ ∗ ∗ f f ∗
∗ ∗ ∗ ∗ e e ∗ ∗
∗ ∗ ∗ d d ∗ ∗ ∗
c ∗ ∗ c ∗ ∗ ∗ ∗
b ∗ b ∗ ∗ ∗ ∗ ∗
a a ∗ ∗ ∗ ∗ ∗ ∗

.

(Here starred entries are arbitrary and a, b, c, d, e, f, g ∈ Y . We say that matrices are isomorphic
if they are equal up to a permutation of their rows and columns.) To see why this is the case, note
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that the sets of columns {2,3,4,6,8} and {1,5,7} cannot be separated, and so the corresponding
elements of X form a counterexample to the separating hash family property.

Generalising this example, we have the following lemma.

Lemma 5. The matrix representation of an SHF(w + d − 1;n,m, {w,d}), w � d , does not
contain a submatrix isomorphic to

1 2 3 4 . . . N1 + 1 . . .

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ g g

∗ ∗ ∗ ∗ ∗ ∗ ∗ . .
.

. .
. ∗

∗ ∗ ∗ ∗ ∗ ∗ c c ∗ ∗
∗ ∗ ∗ ∗ ∗ b b ∗ ∗ ∗
a ∗ ∗ ∗ ∗ a ∗ ∗ ∗ ∗
... . .

. ∗ ∗ ∗ ∗
x ∗ ∗ x ∗ ∗ ∗ ∗ ∗ ∗
y ∗ y ∗ ∗ ∗ ∗ ∗ ∗ ∗
z z ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

where there are N0 = 2d − 2 upper rows and N1 = w − d + 1 lower rows.

Proof. Let N = N0 + N1 = w + d − 1. Note that the partition C1, C2 of the columns cannot be
separated, where

C1 = {1} ∪ {N1 + 2k: 1 � k and N1 + 2k � N},
C2 = {2, . . . ,N1} ∪ {N1 + 2k + 1: 0 � k and N1 + 2k + 1 � N}.

Thus an (N;n,m)-hash family which contains a submatrix isomorphic to the one above is not a
separating hash family of type {w,d}. �

We note that the configuration of Lemma 5 generalises the ‘staircase’ configuration used by
Stinson and Zaverucha [11] to provide bounds on separating hash families of types {w,w} and
{w − 1,w}.

The following lemma gives an upper bound on separating hash families of type {w,d}.

Lemma 6. If an SHF(w + d − 1;n,m, {w,d}) exists, then

n � 1 + (2dw − w)(m − 1).

Sketch of proof. By exchanging the roles of w and d if necessary, we may assume that w � d .
Assume that an SHF(w + d − 1;n,m, {w,d}) exists where n = (2dw − w)(m − 1) + 2, and
let A be its matrix representation. To prove the lemma, it suffices to derive a contradiction from
this assumption. Let N,N0 and N1 be defined as in Lemma 5. If we define K = N1 + N0N −
N0(N0 − 1)/2, a short calculation shows that A has 2 + K(m − 1) columns.
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By deleting columns, we create a series of submatrices of A, each of which satisfies one of
two properties, as indicated:

AN−1 ⊂ · · · ⊂ AN0+1︸ ︷︷ ︸
Property (ii)

⊂ AN0 ⊂ AN0−1 ⊂ · · · ⊂ A1︸ ︷︷ ︸
Property (i)

⊂ A0 = A.

Property (i). The elements in row i of Ai , 1 � i � N0, repeat at least N − (i − 2) times.
Property (ii). The elements appearing in row N0 + i of AN0+i , 1 � i � N1, appear at least twice.

At each stage, we remove a few columns as possible from Ai−1 to create Ai . To construct Ai

from Ai−1 for 1 � i � N0, we need to remove at most (N − (i − 1))(m− 1) columns from Ai−1,
and so Ai has at least 2 + (K − iN − i(i − 1)/2)(m − 1) columns. Similarly, to construct AN0+i

for 1 � i � N1 we need to remove at most (m − 1) columns from AN0+i−1 and so AN0+i has at
least 2 + (N1 − 1 − i)(m − 1) columns.

Now, AN−1 contains at least two columns and so we may choose a column in AN−1 as col-
umn 1 of our forbidden configuration. We choose column j of our forbidden configuration,
where 2 � j � N1, to lie in AN−j+1 and to agree with column 1 in row N + 2 − j . Property (ii)
ensures that we may choose column j to be distinct from column 1. Suppose that the columns
2,3, . . . ,N1 are distinct, so we have a submatrix of A that is isomorphic to the lower part of the
forbidden configuration in Lemma 5. We then construct the remainder of the forbidden configu-
ration in a similar fashion: Property (i) ensures there are enough repeated elements in the upper
N0 rows to guarantee the existence of a new column with the properties we require at each stage.

We have shown that A contains a forbidden configuration, provided the columns 2,3, . . . ,N1

are distinct. So we have a contradiction in this case, as required.
We may derive a contradiction in a similar way if some of the columns 2,3, . . . ,N1 are equal:

if there are t fewer distinct columns, then A is not a separating hash family of type {w − t, d}
and therefore cannot be a separating hash family of type {w,d}. �
Proof of Lemma 4. Suppose that F is an SHF(N;n,m, {w1,w2, . . . ,wt }) with N < u. By
adding functions to F if necessary, we may assume that N = u− 1. Since a separating hash fam-
ily of type {w1, . . . ,wt−1,wt } is also a separating hash family of type {w1,w2 +w3 + · · ·+wt },
we may apply Lemma 6 (in the case when w = w1 and d = w2 + w3 + · · · + wt = u − w1) to
obtain the bound we require. �

It is not difficult to show that the leading coefficient
(
u
2

)
of the bound using Lemma 3 in the

previous section is never better than the leading coefficient w1(2u − 2w1 − 1) of bound using
Lemma 4. So the methods in this section give a better bound. However, the leading coefficient
could still be of the order of u2/2 for some parameters: we will see in the next section that this
is far from best possible.

4. Improving the leading term

This section provides a third proof of Theorem 1 which gives a better coefficient for the
leading term. Indeed, if we replace Lemma 3 from Section 2 by Lemma 7 below, it is easy to see
that we obtain the result we require. So it remains to prove Lemma 7.
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Lemma 7. Let F be an SHF(N;n,m, {w1,w2, . . . ,wt }). Let u = ∑t
i=1 wi . Suppose that N < u.

Then

n � (w1w2 + u − w1 − w2)(m − 1) + 1.

Proof. Suppose, for a contradiction, that an SHF(N;n,m, {w1,w2, . . . ,wt }) F exists such that
N < u and

n � (w1w2 + u − w1 − w2)(m − 1) + 2.

By adding additional functions to F if necessary, we may assume (without loss of generality)
that N = u − 1. Let X and Y be sets of size n and m, respectively, and suppose that F =
{f1, f2, . . . , fu−1} where fi :X → Y .

The first part of our proof aims to show the existence of elements y, z ∈ X with certain prop-
erties that we need. These elements will be then used in the second part of our proof to derive the
contradiction we are seeking. For x ∈ X and i ∈ {1,2, . . . , u − 1}, define the integer μi(x) by

μi(x) = ∣∣{x′ ∈ X: fi(x
′) = fi(x)

}∣∣.
Define subsets X2,X3, . . . ,Xu−1 ⊆ X by

Xi = {
x ∈ X: μi(x) = 1

}
for 2 � i � u − w1,

Xi = {
x ∈ X: μi(x) � w2

}
for u − w1 + 1 � i � u − 1.

Note that |Xi | � m−1 when 2 � i � u−w1, and |Xi | � w2(m−1) when u−w1 +1 � i � u−1.
Define X′ = X \ (X2 ∪ X3 ∪ · · · ∪ Xu−1). Note that

|X′| � |X| −
u−1∑
i=2

|Xi |

� n − (u − w1 − 1)(m − 1) − (w1 − 1)w2(m − 1)

= (m − 1) + 2 > m,

and so we may choose distinct elements y, z ∈ X′ such that f1(y) = f1(z). Note, in particular,
that

μi(y) � 2 for 2 � i � u − w1, (1)

since y /∈ Xi . Moreover,

μi(z) � w2 + 1 for u − w1 + 1 � i � u − 1, (2)

since z /∈ Xi .
We fix the elements y, z ∈ X above. We use these elements to construct disjoint sub-

sets C1,C2, . . . ,Ct ⊆ X with |Ci | = wi that are not separated by any of the functions
f1, f2, . . . , fu−1. This produces the contradiction we are seeking. We construct the subsets by
the following algorithm, which we justify below:

1 Set C1 = {y}, C2 = {z} and C3 = C4 = · · · = Ct = ∅.

2 For i = 2,3, . . . , u − w1:
2ia Choose ki ∈ {2,3, . . . , t} such that |Cki

| < wki
.

2ib If fi does not separate C1,C2, . . . ,Ct :
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choose ai ∈ X \ (C1 ∪ C2 ∪ · · · ∪ Ct).
2ic If fi separates C1,C2, . . . ,Ct :

choose ai ∈ X \ {y} such that fi(ai) = fi(y).
2id Set Cki

← Cki
∪ {ai}.

3 For j = 1,2, . . . ,w1 − 1:
3ja If fu−w1+j does not separate C1,C2, . . . ,Ct :

choose bj ∈ X \ (C1 ∪ C2 ∪ · · · ∪ Ct).
3jb If fu−w1+j separates C1,C2, . . . ,Ct :

choose bj ∈ X \ C2 such that fu−w1+j (bj ) = fu−w1+j (z).
3jc Set C1 ← C1 ∪ {bj }.

We remark that when w1 = 1 we assume that the loop at stage 3 is not executed; similarly
when u − w1 = 1 we assume that the loop at stage 2 is not executed.

We first justify why choices always exist for the index ki at stage 2ia, the elements ai at stage
2ib or 2ic and the elements bj at stage 3ja or 3jb. This will show that the algorithm always
terminates.

It is clear that at most one element is added to one set at each iteration of the loop at stage 2
of the algorithm. Indeed, at stage 2ia we have that |C1| = 1 and

t∑
�=2

|C�| � i − 1. (3)

Our choice of k2, k3, . . . , ki−1 shows that |C�| � w� for � ∈ {2,3, . . . , t}. We have that

i � u − w1 =
t∑

�=2

w�,

and so the inequality (3) implies that |C�| < w� for some �. Therefore a choice for ki exists.
At stage 2ib of the algorithm, the inequality (3) implies that

|C1 ∪ C2 ∪ · · · ∪ Ct | �
t∑

�=1

|C�| � 1 + i − 1 � w1 + (u − w1) − 1 < u � n,

and so a choice for ai exists. There is a choice for ai at stage 2ic since μi(y) � 2, by (1).
Throughout stage 3, we find (by our choice of k2, k3, . . . , ku−w1 ) that |C�| � w� for � ∈

{2,3, . . . , t}. It is clear that

|C1| � j (4)

at stages 3ja and 3jb. In particular, there is a choice for bj at stage 3ja since

|C1 ∪ C2 ∪ · · · ∪ Ct | �
t∑

�=1

|C�| � j + w2 + w3 + · · · < u � n.

There is a choice for bj at stage 3jb, since the inequality (2) implies that μu−w1+j (y) �
w2 + 1 > |C2|.

So we find that the algorithm always terminates; moreover it is clear that on termination we
have that |C�| � w� for � ∈ {1,2, . . . , t}.
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We claim that the elements ai are ‘new’ when they are chosen, in the sense that ai /∈ C1 ∪
C2 ∪ · · · ∪ Ct . This is obvious when ai is chosen at stage 2ib. Suppose ai is chosen at stage 2ic.
We see that ai /∈ C1, since C1 = {y}. If ai ∈ C� for some � ∈ {2,3, . . . , t}, then

fi(ai) = fi(y) ∈ fi(C1) ∩ fi(C�),

contradicting our assumption that fi separates C1,C2, . . . ,C�. This establishes our claim. Es-
sentially the same argument shows that the elements bj are new when they are chosen.

The fact that the ai and bj are new when they are chosen implies that the subsets
C1,C2, . . . ,Ct are always disjoint. Moreover, the inequalities (3) and (4) are in fact equalities and
so the algorithm terminates with subsets C1,C2, . . . ,Ct such that |C�| = w� for � ∈ {1,2, . . . , t}.

Finally, we observe that none of the functions f1, f2, . . . , fu−1 separate the sets C1,C2, . . . ,Ct

we have constructed. To see this, note that

f1(y) = f1(z) ∈ f1(C1) ∩ f1(C2)

by our choice of y and z and so f1 does not separate the sets we have constructed. Let i ∈
{2,3, . . . , u − w1}. If we chose ai at stage 2ib, then fi fails to separate the sets C1,C2, . . . ,Ct

constructed at that stage, and adding more elements to the sets Ci subsequently does not change
this. If we chose ai at stage 2ic, then

fi(y) = fi(ai) ∈ fi(C1) ∩ fi(Cki
),

and so again we find that fi fails to separate the subsets C1,C2, . . . ,Ct . Now let j ∈ {1,2,

. . . ,w1 − 1} and consider the function fu−w1+j . If we chose bj at stage 3ja, then fu−w1+j fails
to separate the sets C1,C2, . . . ,Ct at this stage and so cannot separate the final sets produced by
the algorithm. If we chose bj at stage 3jb, then

fu−w1+j (bj ) = fu−w1+j (z) ∈ fu−w1+j (C1) ∩ fu−w1+j (C2),

so fu−w1+j fails to separate the sets C1,C2, . . . ,Ct .
So the algorithm operates as claimed, and the resulting contradiction establishes the

lemma. �
One might ask whether the sets Ci in Lemma 7 could be built up in a different order, leading

to a better coefficient γ . In fact this cannot be done, as the following argument indicates.
We can model the problem as follows. Define a sequence of integer vectors w[2],w[3], . . . ,

w[u] ∈ Z
t representing the sizes of the sets Ci as they are gradually built up by an algorithm

similar to that in the proof of Lemma 7. So w[u] = (w1,w2, . . . ,wt ), w[2] = ei1 + ei2 for some
i1 �= i2 (where ei is the ith unit vector) and w[k+1] = w[k] + eik for some ik ∈ {1,2, . . . , t}. Define
the cost κk of the kth step of the algorithm, where we move from w[k] to w[k+1], as the value
of the smallest non-zero component that is unchanged during this step. Define the cost of the
sequence of vectors as 1 + κ2 + κ3 + · · · + κu−1. The argument in the proof of Lemma 7 shows
that such an algorithm would lead to a version of Theorem 1 with γ equal to the cost of the
sequence of vectors w[k]. (We comment that there are a few minor technical modifications that
need to be made to the argument. Most notably, the definition of X′ needs to be modified slightly
so that the more general algorithm works, but this modification does not significantly affect its
size. Moreover, we must often restrict our choice of the elements ai, bj to lie in X′.)

We claim that the lowest cost of a sequence of vectors is w1w2 +u−w1 −w2. A sketch proof
of this is as follows. Firstly, it is not difficult to show that when t = 2 the cost of any sequence of
vectors of the right form is w1w2. Now consider the general case. The sequence consisting of the
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pair of smallest non-zero components of each w[k] starts at (1,1) and ends at (w1,w2), and so
(by the special case when t = 2) the contribution to the cost of the steps where this pair changes
is w1w2. But there are u − w1 − w2 remaining steps, all of which have cost at least 1, giving an
overall cost of at least w1w2 + u − w1 − w2. The vectors associated with the algorithm above
show this cost can be achieved, and our claim follows.

So we conclude that we cannot improve the coefficient γ further without incorporating new
ideas into the proof.

5. Comments

It would be very interesting to know whether the exponent in the bound of Theorem 1 is
tight when u − 1 does not divide N . Let integers N and wi be fixed. Is it the case that for
any positive real number ε, an infinite family of SHF(N;n,m, {w1,w2, . . . ,wt }) exists with
n � m�N/(u−1)�−ε?

Is it possible to improve the coefficient γ in Theorem 1? For work on improving this coef-
ficient in an analogous upper bound for k-IPP codes, see Alon and Stav [2]. The coefficient γ

can certainly be reduced when u − 1 does not divide N (at the expense of introducing a lower
order term) using essentially the methods in this paper. (To see how to do this, replace some of
the sets Ij defined in the proof of Theorem 1 by sets of size k − 1. Identify Y k−1 with a subset
of Y k in some fashion, so the functions f ′

j still map into the set Y k . The functions f ′
j associated

with sets Ij of size k − 1 cannot be surjective, and so the corresponding sets Xi defined in the
proof of Lemma 7 are smaller. This leads to a better bound.) It seems more difficult to improve
the coefficient γ when u − 1 divides N : the argument at the end of Section 4 shows that this
cannot be done without some new ideas.
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