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INTRODUCTION 

Let R be a ring, Let A, C be left R-modules and f: A -+ C an 
epimorphism. f is called pure if Hom(M, f ): Hom.(M, A) -+ Hom,(M, C) 
is an epimorphism for all finitely presented left R-modules M. Let B be the 
kernel off: Then by a theorem of Fieldhouse and Warfield f is pure if and 
only if B is pure in A in the sense that the natural homomorphism 
N OR B + N OR A derived from the inclusion map B + A is a 
monomorphism for all right R-modules N, and moreover, by Cohn’s 
theorem, this is equivalent to the condition that if a finite system of linear 
equations c;=, aixj = bi (i = 1,2 ,..., m) with ayE R and biE B has a 
solution x,, x2 ,..., x, in A then it has a solution in B, i.e., there exist 
y,, y, ,..., y,~ B such that J$=, aii y,= bj (i= 1, 2 ,..., m). In the present 
paper, we attempt to generalize this situation by replacing the class of 
finitely presented modules with the class of finitely generated modules to 
yield a series of some meaningful results. We call the epimorphism f finitely 
split if Hom(M, f) . is an epimorphism for all finitely generated left R- 
modules M, or what is the same thing, if for any finitely generated 
submodule C, of C there exists a homomorphism cp: CO -+ A such that f 0 cp 
is the identity map of CO. In terms of the kernel B off, this is equivalent to 
the condition that B is a direct summand of every submodule A’ of A such 
that A’ 3 B and the factor module A’/B is finitely generated-we say, in 
this case, that B is finitely split in A. We can show that this is also 
equivalent to the following condition: If a (finite or infinite) system of 
linear equations C;= 1 a,x, = bi (i E I) with au E R and bi E B has a solution 
x,, x2 ,..., x, in A then it has a solution in B. 

Let A4 be a left R-module. M is called pure-projective if every pure 
epimorphism onto M splits, while A4 is called pure-injective if M is a direct 
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FINITE SPLITNESS AND PROJECTIVITY 11.5 

summand of every pure extension module of M. It is known that M is 
pure-projective if and only if M is a direct summand of a direct sum of 
finitely presented modules, while it is a theorem of Wartield that M is pure- 
injective if and only if M is algebraically compact in the sense that, given a 
row-finite Z x J matrix [a,] over R and an element mi E M for each i E Z, the 
system of linear equations cjEJ a,xj = mi (i E I) is solvable with xj’s in A4 
whenever it is finitely solvable in M. We now call M finitely pure-projective 
if every pure epimorphism onto M is finitely split, while M is called finitely 
pure-injective if A4 is finitely split in every pure extension of M. We show 
that M is finitely pure-projective if and only if, for each finitely generated 
submodule M, of M, there exists a finitely presented module E and 
homomorphisms cp: M, -+ E and $: E -+ A4 such that $0 cp is the identity 
map of MO, while M is finitely pure-injective if and only if M satisfies the 
above condition of the algebraic compactness only for all matrices [au] of 
finite columns. 

A left R-module M is called flat if for any right R-module A and its sub- 
module B, the natural homomorphism B OR M + A @ R M derived from 
the inclusion map B + A is a monomorphism. It is known that M is flat if 
and only if every epimorphism onto M is pure. In connection with this con- 
dition, we define M to be finitely projective if every epimorphism onto A4 is 
finitely split. Thus every projective module is finitely projective, and every 
finitely projective module is flat. If R is left Noetherian then every flat left 
R-module is finitely projective. Also we can show that this is true even if R 
is a Priifer ring. So there naturally arises a problem to characterize those 
rings over which every flat module is finitely projective. In this connection, 
we consider a factor module F/G, where F is a free left R-module on a 
countable basis u,, Z.Q ,..., and G a submodule of F generated by U, - a,~*, 
u2 - u2u3,..., with a given infinite sequence a,, a*,..., in R; such a factor 
module played a crucial role in his investigation of perfect rings by H. Bass. 
It is well known that F/G is flat. We prove that the module F/G is finitely 
projective if and only if the ascending chain Z(u,) c Z(u,u, + ,) c . . . of left 
annihilators terminates for n = 1, 2,.... From this follows that if every flat 
left R-module is finitely projective then the ascending chain Z(u, ) c 
f(u,u,)c ... terminates for every infinite sequence a,, a*,..., in R. But we do 
not know as yet whether or not the converse is true. 

Gruson and Raynaud, Gartinkel, as well as Zimmermann-Huisgen 
introduced the concept of locally projective modules and developed impor- 
tant theories on this. M is called locally projective if, for any epimorphism 
f: M’ + A4 and a finitely generated submodule MO of A4, there is a 
homomorphism h: M + M’ such that fo h induces the identity map on MO. 
Thus every locally projective module is finitely projective. Zimmermann- 
Huisgen, however, shows that every flat left R-module is locally projective if 
and only if R is left perfect. In view of this, we know that finitely projective 
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module is not always locally projective, because there is certainly a left 
Noetherian ring which is not left perfect. 

Throughout this paper, R means a ring with unit element 1 and R- 
modules are all unital. If M is an R-module then, for any index set Z, M’ 
and M(‘) mean, respectively, the Z-times direct product and the Z-times 
direct sum of M. We regard each element of M’ or M(‘) as a vector with 
entries in M, and we regard it as a row vector or a column vector 
according to the context. For convenience, we denote by (x,) the row vec- 
tor and by [xi] the column vector whose ith entry is X, for each i E I. If n is 
a positive integer, we define M” to be M’ ( = M”‘), where Z= { 1, 2,..., PI}. 

1. M-PURITY AND ~-PURITY 

Let M be a left R-module. Let A, C be left R-modules and f: A -+ C an 
epimorphism. f is called M-pure if Hom(M,f): Hom,(M, A) --) 
Hom.(M, C) is an epimorphism, or in other words, for each 
homomorphism I++: M + C there exists a homomorphism cp: M + A such 
that focp = $. Let A’ be a left R-module and let there be given 
homomorphisms g: A + A’ and h: A’ + C such that hog =f: Then it is 
easily seen that f is M-pure whenever both g and h are M-pure 
epimorphism and conversely h is an M-pure epimorphism whenever f is M- 
pure. On the other hand, it is well known that f splits, i.e., the kernel off is 
a direct summand of A if and only if f is C-pure, and this is also equivalent 
to the condition that f is M-pure for all left R-modules M. 

Let Z, J be two index sets, and let .M = [aii] be a row-finite Z x .Z matrix 
over R. For each row vector (ri) E R (‘) the product (r;) p = (C,r,a,) is in 
RcJ’, and the mapping (ri) N (ri) p gives a left R-homomorphism 
p: R(” + RcJ). The cokernel of this homomorphism is denoted by Cok(p). 
For a left R-module M, we say that p is a defining matrix of M (or p 
defines 44) if Cok(p) E M, i.e., if there is an exact sequence 

R(l) # , R(-‘) 0 l M - 0, 

where 0 is an epimorphism. As is well known, to the epimorphism t3 there 
corresponds a system of generators [uj] EM-’ of M such that 8(si) = 
(si)[ui] = Csjuj for every row vector (.sj) E RcJ). The exactness of the above 
sequence implies then Csjuj = 0 if and only if (s,) E R(‘)p. 

Let M be any left R-module. Let [u,\~E .Z], for an index set J, be a 
system of generators of M. Then the mapping (s,) c-, (sj)[uj] gives an 
epimorphism R(-‘) -+ M. Let [pi I i E Z], for an index set Z, be a system of 
generators of the kernel of this epimorphism, and let p be the (row-finite) 
Zx J matrix whose ith row is pLi for each i E I. Then the mapping 
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(ri) F+ (ri) p = .Z’ripi gives an epimorphism from R(‘) onto the kernel. Thus 
we have an exact sequence 

R(I) p , R(f) , M- 0. 

and so p is a defining matrix of M. The matrix depends on the choice of 
generators [uj] and [pi], and therefore defining matrices of A4 are not 
necessarily unique. It is however clear that A4 is finitely generated or cyclic 
if and only if M has a defining matrix of finite columns or of single 
columns, respectively, while A4 is finitely presented if and only if A4 has a 
defining matrix of finite rows and columns, i.e., a finite matrix. 

Let p = [a,] be any row-finite Ix J matrix over R and V a left R- 
module. By a system of linear equations for p in V we mean a system of 
linear equations of the form Z;a,x, = ui for iE Z, where [vi] is a given vec- 
tor in V’. Let A be a left R-module and B a submodule of A. We say that B 
is p-pure in A (or A is a p-pure extension of B) if a system of linear 
equations for p in B is solvable in B whenever it is solvable in A, or in 
other words, if, given a vectors [x,] E AJ and [bi] E B’ satisfying 
~[x,] = [hi], there exists a vector [yj] E BJ such that ~[y,] = [bJ. It is 
easy to see that if A’ is a module between A and B, i.e., A 3 A’ 3 B, then B 
is p-pure in A whenever A’ is p-pure in A and B is p-pure in A’, and con- 
versely B is p-pure in A’ whenever B is p-pure in A. 

PROPOSITION 1. Let M be a left R-module and p a defining matrix of M. 
Let A, C be left R-modules andf: A + C an epimorphism with kernel B. Then 
f is M-pure if and only if B is ,a-pure in A. 

Proof: Let p be an Ix J matrix. Then there is a system of generators 
[u,] EM-’ of A4 such that (rj)[uj] =Zr,uj=O for (rj)E R(=‘) if and only if 
(rj) E R(“p. Suppose that f is M-pure. Let [xi] E AJ and [bi] E B’ satisfy 
~[x,] = [bi]. Then we have &J-(xj)] = [f(bj)] =O. Thus we know that 
Crju.j = 0 always implies Zr,f (xj) = 0, which means the existence of a 
homomorphism $: A4 + C such that $(uj) = f (xi) for all j E J. Since f is M- 
pure, there exists a homomorphism cp: M-+ A such that fo cp = Ic/. Put 
y,=x,-cp(u,) for each ~EJ. Then yj~A and f(yj)=f(xj)-f(cp(uj))= 
f(x,)-$(u,)=O, so that ~,EB. Moreover p[yj] =fi[x,]-p[~(u~)] = 
[bi] - cp(,a[uj]) = [bi] since p[ui] = 0. 

Conversely, suppose that B is p-pure in A. Let 1(/: M+ C be a 
homomorphism. Since f is an epimorphism there is an xjo A such that 
f(x,)=$(u,) for each jeJ. Let [bi] =p[x,] E A’. Then [f(b,)] = 
p[f(xj)] =~[~(uI)]=~(~[uj])=O, which implies that bjEB for all iEL 
Since B is p-pure in A, there exists yj E B for each jE J such that 
,u[ y,] = [b,]. It follows then p[xj - yi] = p[xi] - u[ yj] = 0, and this 
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implies that there is a homomorphism cp: M -+ A such that &u,) = Xj - yi. 
Then we have f(cp(u,)) =f(xj) -f(yj) =f(x,) = Il/(uj), which implies 
fi ‘p = tj since [u,] generates M. 1 

Remark. The above proof for Proposition 1 may be regarded as a 
generalization of that of Warfield [ 13, Proposition 31. 

Consider again a left R-module A and a submodule Z3 of A. Let N be a 
right R-module. B is called weakly N-pure in A if N 0 IC: N QR B --) N Q R A 
is a monomorphism, where K is the inclusion map B -+ A. On the other 
hand, let v be a column-finite Ix J matrix over R. We call B weakly v-pure 
in A if, for any column vectors [x,] E AcJ) and [bi] E B(‘) such that 
v[xj] = [ZI,], there exists a [yj] E B(=‘) such that v[y,] = [bi]. We note here 
that if v is a finite matrix, i.e., if both Z and .Z are finite then B is weakly v- 
pure in A if and only if B is v-pure in A. Now let N be given. By left-right 
analogy there corresponds a defining matrix v of N, which is a column- 
finite, say Z x J matrix. Also, we can find a system of generators ( ui) E N’ of 
N so that we have an exact sequence of right R-modules 

where the first map is given by the mapping [r,] H v[r,], for [r,] E RcJ’, 
and the second map is defined by associating each [si] E R(‘) with 
(ui)[si] = Cv,s,. For a left R-module A, we have, by tensoring over R, the 
following exact sequence 

RcJ’QR A + R(“Q. A + NOR A + 0. 

But, as is well known, the first and the second terms are naturally identified 
with AcJ) and A(‘), respectively, and thus we have the exact sequence 

AcJ)-+ A”‘-+N@jRA+O, 

thereby, as is checked easily, the first map is the left multiplication of v and 
the second map is given by the mapping [ai] H C ui@ai. 

PROPOSITION 2. Let N be a right R-module and v a defining matrix of N. 
Let A be a left R-module and B a submodule of A. Then B is weakly N-pure 
in A if and only if B is weakly v-pure in A. 

Proof. We have clearly the following commutative diagram: 

A(J)-+A(f)-r N@,A -+O 

T T TNaK 
B(J)-, @‘j-t NQR B +O, 
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where the lower exact sequence is defined in the same way as the upper 
sequence and the first and the second vertical maps mean the natural 
inclusion maps. A standard diagram chase then completes the proof. 1 

Now B is called pure in A (or A is a pure extension of B) if B is weakly 
N-pure in A for all right R-modules N. From Proposition 2 it follows that 
B is pure in A if and only if B is weakly v-pure in A for all column-finite 
matrices v over R. But this is equivalent to the condition that B is p-pure in 
A only for all finite matrices p over R. For, let v = [aii] be any column- 
finite matrix and let [xi] EA(~) and [bi] E B(‘) satisfy v[x,] = [bi], i.e., 
zjEJ aiixj = bj for all i E Z. Let J, be a finite subset of J such that xi = 0 
whenever j $ J,. Since v is column-finite, there is a finite subset I, of Z such 
that a, = 0 whenever j E J,, and i # Z,. It follows that bi = 0 whenever i .$ I, 
and we have xjEJ,, aVxj = bi for all i E I,. If we denote by v0 the I, x .Z, sub- 
matrix of v and if we assume that B is v,-pure in A, then there exists 
[y,] E BJo such that xjEJO a,,y, = bi for all i E IO. If we define yj = 0 for each 
Jo J not in Jo then we have a vector [y,] E BcJ) which clearly satisfies 
c ,EJ aiiy, = bi for all i E I. Thus B is weakly v-pure in A. 

On the other hand, an epimorphismf: A -+ C is called pure iffis M-pure 
for all finitely presented left R-modules M. According to Proposition 1, this 
is equivalent to the condition that the kernel B off is p-pure in A for all 
finite matrices p over R. Thus we have the following theorem of Cohn, 
Fieldhouse, and Warfield. 

THEOREM. Let A, C be left R-modules andf: A + C an epimorphism with 
kernel B. Then the following conditions are equivalent: 

(1) fis pure, 

(2) B is pure in A, 

(3) B is p-pure in A for all finite matrices p over R. 

Remark. The equivalence of (2) and (3) was established by Cohn 
[3, Theorem 2.41, while the equivalence of (1) and (2) was proved indepen- 
dently by Fieldhouse [4, Corollary to Theorem 7.11 and Warlield 
[13, Proposition 31. Our proof for Cohn’s theorem sketched above 
apparently does not use the fact that every module is a direct limit of 
finitely presented modules. 

2. FINITE SPLITNESS 

Let A, C be left R-modules and J A -+ C an epimorphism. We call f 
finitely split if f is M-pure for all finitely generated R-modules M, while f is 
called singly split if f is M-pure for all cyclic left R-modules M. Observing 
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the fact that every homomorphic image of finitely generated (or cyclic) 
module is also finitely generated (or cyclic), we can see that f is finitely (or 
singly) split if and only if for each finitely generated (or cyclic) 
submodule C,, of C there exists a homomorphism cp: C, + A such that fo cp 
is the identity map of C,. Clearly every finite split epimorphism is both 
pure and singly split. 

Next let B be a submodule of A. We say that A is a finite (or single) 
extension of B if the factor module A/B is finitely generated (or cyclic), i.e., 
there is a finitely generated (or cyclic) submodule A, of A such that 
A = A, + B. We shall say that B is finitely (or singly) split in A if, for every 
submodule A’ of A which is a finite (or single) extension of B, B is a direct 
summand of A’. 

THEOREM 3. Let A, C be left R-modules and f: A -+ C an epimorphism 
with kernel B. Then the following conditions are equivalent: 

(1) f is finitely (or singly) split. 

(2) B is u-pure in A for all matrices u of finite (or single) column(s) 
over R. 

(3) B is finitely (or singly) split in A. 

(4) If A, is a finitely generated (or cyclic) submodule of A then there 
is a homomorphism A, + B which fixes A, n B element-wise. 

Proof The equivalence of (1) and (2) is an immediate consequence of 
Proposition 1. As is well known, there is a one-to-one correspondence 
between submodules A’ of A containing B and submodules C, of C by 
associating C,, with its inverse image by f, and, if A’ corresponds to C,,, 
A’/Br CO and so A’ is a finite (or single) extension of B if and only if C, is 
finitely generated (or cyclic), while B is a direct summand of A’ if and only 
if the restriction off to A’ is a split epimorphism A’ -+ CO, i.e., there is a 
cp: C, -+ A such that f 0 cp is the identity map of CO. From these facts follows 
the equivalence of (1) and (3). The condition (3) is also equivalent to the 
condition that, for every finitely generated (or cyclic) submodule A0 of A, B 
is a direct summand of A, + B. But this means that there exists a 
homomorphism g: A, + B + B such that g fixes B element-wise. Therefore 
the restriction of g to A, fixes A,, n B element-wise. Suppose conversely that 
such a homomorphism h: A, -+ B exists. Then, for any element a + b with 
aE4,, bE B, the element h(a) + b depends only on a + b, because 
a+b=a’+b’ with a’EAo, b’ E B implies a - a’ = b’ - b E A, n B and 
therefore h(a) - h(a’) = h(a -a’) = b’ - b. So, by associating a + b with 
h(a) + b, we have clearly a homomorphism A, + B+ B which fixes B 
element-wise. Thus the equivalence of (3) and (4) are proved. 1 
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By Theorem 3 we know that every finitely split submodule is a pure 
submodule. As for singly split submodules, we have 

PROPOSITION 4. Every singly split submodule B of an R-module A is 
essentially closed in A. 

Proof Let A’ be such that A 2 A’ 2 B and A’ is an essential extension 
of B. Let a be any element of A’. Then Ra + B is a single extension of B and 
so B is a direct summand of Ra + B. Since Ra + B( c A’) is essential over B, 
it follows Ra + B = B, i.e., a E B. Thus B is essentially closed in A. l 

If we combine Proposition 4 with Goodearl [6, Corollary 2.15, p. 491, 
we have 

PROPOSITION 5. If A is quasi-injective R-module then every singly split 
submodule of A is a direct summand of A. 

Let P be a left-R-module. P is called pure-projective if every pure 
epimorphism (in the category of all left R-modules) is P-pure. As proved in 
[4, Theorem 7.41 or [ 13, Corollary 31, the foBowing conditions are 
equivalent: 

( 1) P is pure-projective, 

(2) every pure epimorphism onto P splits, 

(3) P is a direct summand of a direct sum of finitely presented 
modules. 

PROPOSITION 6. The following conditions are equivalent: 

(1) Every pure epimorphism (in the category of all left R-modules) is 
finitely split. 

(2) Every pure epimorphism (in the category of all left R-modules) is 
singly split. 

(3) R is left Noetherian. 

Proof: (1) + (2) is clear. Assume (2), and let L be any left ideal of R. 
Then every pure epimorphism onto the cyclic left R-module R/L splits, i.e., 
R/L is pure-projective and hence finitely presented. In view of Stenstrlim 
[ 12, Proposition 3.2, p. 1 l)], this implies that L is finitely generated. Thus 
R is left Noetherian. Conversely, assume (3). Then every finitely generated 
left R-module is finitely presented, and therefore every pure epimorphism is 
finitely split because of the definition of pure epimorphisms. u 



122 GORO AZUMAYA 

We now call P finitely (or singly) pure-projective if every pure 
epimorphism onto P is finitely (or singly) split. Clearly every pure-projec- 
tive module is finitely pure-projective, and every finitely pure-projective 
module is singly pure-projective. 

PROPOSITION 7. The following conditions on a left R-modules P are 
equivalent : 

( 1) P is finitely (or singly) pure-projective. 

(2) For each finitely generated (or cyclic) submodule PO of P there 
exist a finitely presented left-R-module E and homomorphisms cp: P, -+ E and 
II/: E + P such that $0 cp is the identity map of P,. 

(3) Given a pure epimorphism f: A + C, a homomorphism h: P --f C 
and a finitely generated (or cyclic) submodule P, of P, there exists a 
homomorphism g: P, -+ A such that f 0 g coincides with the restriction of h to 

PII. 

Proof: By [ 13, Proposition I] there is a direct sum Z @ E, of finitely 
presented modules Ei which has a pure epimorphism f onto P (see the 
statement just before [ 13, Corollary 31). Assume (1). Then f is finitely (or 
singly) split. Thus for any finitely generated (or cyclic) submodule PO of P 
there exists a homomorphism q: P, -+ C@ E, such that f 0 cp = 1, the iden- 
tity map of P,. The image cp(P,) is finitely generated and hence contained 
in a suitable finite partial sum of ,Z@ E,. If we denote this finite sum by E 
then E is finitely presented and the restriction $ off to E satisfies $0 cp = 1. 
Next assume (2). Suppose that J A + C, h: P -+ C, and P, are the same as 
given in (3). Then there are a finitely presented module E and 
homomorphisms q: P, -+ E, cc/: E + P such that $0 cp = 1. Since f is a pure 
epimorphism, f is E-pure and so there exists a homomorphism E: E + A 
such that fo&=ho$. If we put g=Eocp:P,,+A then fog=focoq= 
ho$ocp=hol istherestrictionofhtoP,. Finally, (1) is the particular case 
of (3) where C = P and h is the identity map. 1 

COROLLARY 8. Let P, P’ be left R-modules and let there be a finitely (or 
singly) split epimorphism P -+ P’. If P is finitely (or singly) pure-proj’ective 
then so is P’ too. 

Proof: Let f: P + P’ be a finitely (or singly) split epimorphism and let 
Pb be any finitely generated (or cyclic) submodule of P’. Then there is a 
homomorphism h: Pb --+ P such that f 0 h = 1. If we assume that P is finitely 
(or singly) pure-projective then by Proposition 7 there correspond to the 
finitely generated (or cyclic) submodule h(Pb) of P a finitely presented 
module E and homomorphisms cp: h( Pb) + E, $: E -+ P such that $0 q = 1. 
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Then cpoh:Pb+E and fo$:E+P’ satisfy fo@oqoh=foloh=foh=l. 
Thus P’ is finitely (or singly) pure-projective again by Proposition 7. 1 

PROPOSITION 9. Every pure submodule of a finitely (or singly) pure- 
projective module is finitely (or singly) pure-projective too. 

Proqf: Let P be a finitely (or singly) pure-projective left R-module and 
N a pure submodule of P. Let N, be a finitely generated (or cyclic) sub- 
module of N. Then by Proposition 7 there exist a finitely presented 
module E and homomorphisms cp: N, -+ E, *: E -+ P such that $0 cp = 1. 
Let ,D be a finite, say m x n matrix over R which is a defining matrix of E. 
Then there are generators e,, e2 ,..., e, of E such that (r,)[e,] =r,e, + 
r,e,+ ... + r,e, = 0 for (rj) E R” if and only if (rj) E R”p. So we have in par- 
ticular ,u[ei] = 0. Let xj = $(ej) for j= 1, 2 ,..., n. Then x,, x2 ,..., x, are in P 
and satisfy p[xj] =O. Let next v,, v~,..., v, be generators of N,. (If N, is 
cyclic we may assume I= 1.) Let for each i, cp(u,) = c,!= 1 rijej with some 
rii E R. Then we have vi = $(cp(vi)) = Cj r,jt&(ei) = cj rtixj for j= 1, 2,..., 1. 
Thus the vector [xi] E P” satisfies two systems linear equations p[xj] = 0 
and [rv][xj] = [vi]. Since N is pure in P, there must exist yl, y*,..., y, in N 
such that ~[y,] =0 and [r,][yj] = [vi]. The first equality implies the 
existence of a homomorphism q: E -+ N such that q(e,) = y, for j = 1, 2 ,..., n. 
The second equality implies then vi = cj rijyi= cj r,q(ej) = q(c, riiej) = 
q(cp(v,)) for i= 1, 2 ,..., 1. Since vl, u2 ,..., v, are generators of N,, this means 
that q ci cp = 1. Thus N is finitely (or singly) pure-projective again by 
Proposition 7. 1 

Let Q be a left R-module. Q is called pure-injective if, for any left R- 
module A and a pure submodule B of A, every homomorphism B--f Q can 
be extended to a homomorphism A --) Q. On the other hand, Q is called 
algebraically compact if, for any row-finite matrix ,u over R, a system of 
linear equations for ~1 in Q is solvable in Q whenever it is finitely solvable 
in Q, or in other words, if, for a row-finite Ix J matrix p = [au] over R and 
a vector [qi] in Q’, the system of linear equations cj aiixj = qi for iE Z has 
a solution [x.~] in Q” whenever, for each finite subset I, of Z, there exists a 
vector [x,“] in QJ such that cj aIix,” = qi for all i E I,. Also, we call a left R- 
module C compact if there is a compact Hausdorff topology on C making it 
a topological group and such that the left multiplications by elements of R 
are continuous. Warfield proved that every R-module can be embedded 
as a pure submodule in a compact R-module [13, Lemma 11, and that the 
following conditions are equivalent: (1) Q is pure-injective, (2) Q is a direct 
summand of a compact R-module, (3) Q is algebraically compact 
[ 13, Theorem 21. 

Now, as a dual of the notion of finitely (or singly) pure-projective 
modules, we define Q to be finitely (or singly) pure-injective if Q is finitely 
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(or singly) split in every pure extension of Q. Clearly, this is equivalent to 
the condition that Q is a direct summand of every finite (or single) pure 
extension of Q. On the other hand, we call Q finitely (or singly) compact if 
Q satisfies the condition of the algebraic compactness for all matrices of 
finite (or single) column(s) (instead of all row-finite matrices). 

THEOREM 10. The following conditions on a left R-module Q are 
equivalent : 

(1) Q is finitely (or singly) pure-injectiue. 

(2) Q is a finitely (or singly) split submodule of a compact R-module. 

(3) Q is finitely (or singly) compact. 

(4) For any R-module B and a finite (or single) pure extension A of B, 
every homomorphism B + Q can be extended to a homomorphism A -+ Q. 

Proof. (1) * (2) is an immediate consequence of the Warlield theorem 
that Q has a compact pure extension. 

(2) + (3): Assume that Q is a finitely (or singly) split submodule of a 
compact R-module C. Let p be a matrix of finite (or single) column(s) over 
R and suppose that there is given a system of linear equations for p in Q 
which is finitely solvable in Q. Since C is algebraically compact, the system 
is solvable in C. But Q is p-pure in C by Theorem 3. Therefore the system 
is solvable in Q. Thus Q is finitely (or singly) compact. 

(3) = (1): Assume that Q is finitely (or singly) compact. Let M be a 
finite (or single) pure extension of Q. Let p be a matrix of finite (or single) 
column(s) which defines the finitely generated (or cyclic) R-module M/Q. 
Consider a system of linear equations for p in Q which is solvable in M. 
Since Q is pure in M, it is finitely solvable in Q and therefore is solvable in 
Q. Thus we know that Q is p-pure in M. According to Proposition 1, this is 
equivalent to that natural epimorphism M --+ M/Q is M/Q-pure, and this 
means that Q is a direct summand of M. 

(4) = (1) is clear; indeed, (1) can be regarded as a special case of (4). 
(2) = (4): Assume that Q is finitely (or singly) split in a compact exten- 

sion C. Let B be an R-module and g: B + Q a homomorphism. Let A be a 
finite pure extension of B. Since C is pure-injective, g can be extended to a 
homomorphism f: A + C. If we consider f modulo B then we have an 
epimorphism A/B + (f(A) + Q)/Q and therefore (f(A) + Q)/Q is finitely 
generated (or cyclic). Since Q is finitely (or singly) split in C, Q must be a 
direct summand of f(A) + Q. This means that there is a homomorphism 
h:f(A) + Q + Q which fixes Q element-wise. Then it is clear that h of: 
A + Q is an extension of g. 1 
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COROLLARY 11. Every finitely (or singly) split submodule of a finitely 
pure-injective module is finitely pure-injective too. 

Proof Let Q be a finitely (or singly) pure-injective R-module and Q’ a 
finitely (or singly) split submodule of Q. By Theorem 10, Q is a finitely (or 
singly) split submodule of a compact R-module C. Then Q’ is also finitely 
(or singly) split in C. Therefore Q’ is finitely (or singly) pure-injective again 
by Theorem 10. 1 

3. FINITELY PROJECTIVE MODULES 

Let A4 be a left R-module. M is called flat if for any right R-module A 
and a submodule B of A the natural homomorphism K 0 M: B @‘R M --) 
A OR M is a monomorphism, where K is the inclusion map B + A. The flat- 
ness for M is equivalent to the condition that every epimorphism onto M is 
pure [12, Proposition 11.1, p. 371. We now define M to be finitely projec- 
tive or singly projective if every epimorphism onto M is finitely split or 
singly split, respectively. Clearly, M is finitely projective if and only if M is 
flat and finitely pure-projective. 

PROPOSITION 12. The following conditions on an R-module M are 
equivalent: 

(1) M is finitely (or singley) projective. 

(2) There exist a projective R-module P and a finitely (or singly) split 
epimorphism P + M. 

(3) For each finitely generated (or cyclic) submodule M, of M, there 
exist a projective R-module P and homomorphisms qp: M, + P, $1 P + M 
such that $0 cp = 1, the identity map of M,. 

(4) Given an epimorphism f: A + C, a homomorphism h: M+ C and a 
finitely generated (or cyclic) submodule MO of M, there exists a 
homomorphism g: MO + A such that f 0 g is the restriction of h to M,,. 

Proof (1) =z. (2) and (2) * (3) are clear. Assume (3), and let f, h, and 
MO be as in (4). Since P is projective, there is a homomorphism ?t: P--t A 
such that faz=ho$. If we put g=zocp:M,-+A then fog=fonocp= 
h 0 II/ 0 cp = h 0 1 is the restriction of h to MO. (1) is the particular case of 
(4). I 

COROLLARY 13. Let M, M’ be R-modules and let there be a finitely (or 
singly) split epimorphism M -+ M’. If M is finitely (or singly) projective then 
so is M’ too. 
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PROPOSITION 14. Every pure submodule of a finitely (or singly) projective 
module is finitely (or singly) projective. 

This can be proved in the similar manner as (indeed somewhat simplier 
than) in the proof of Proposition 9, or we can deduce this from 
Proposition 9 by combining with the known proposition that every pure 
submodule of a flat module is flat. 

PROPOSITION 15. Let R be a left Noetherian ring. Then every flat left R- 
module is finitely projective. 

Proof This is an immediate consequence of Proposition 6. 

PROPOSITION 16. Let R be an integral domain. Then an R-module is 
singly projective if and only if it is torsion-free. 

Proof Let M be a left R-module. Then there is a free left R-module F 
which has an epimorphism f: F + M. Suppose that M is singly projective. 
Let u be any nonzero element of M. Then there is a homomorphism 
cp: Ru -+ F such that fi cp = 1, i.e., f (q(u)) = u. It follows then q(u) # 0. 
Since R is an integral domain, F is torsion-free. Therefore, if ru = 0 for an 
r E R then rep(u) = cp(ru) = 0 and so r = 0. This shows that M is torsion-free. 
Conversely, suppose A4 is torsion-free. Let again u be a non-zero element of 
M. Then Ru is isomorphic to R and so is projective. Therefore the restric- 
tion off to the inverse image of Ru by ,f must be a split epimorphism, 
which means that there exists a homomorphism cp: Ru -+ F such that 
f 0 cp = 1. Thus f is singly split. 1 

COROLLARY 17. Let R be an integral domain. Then every flat R-module 
is singly projective. 

Proof This follows from Proposition 16 and the fact that every flat 
R-module is torsion-free, as proved in [ 12, Example 1, p. 351. 

A commutative integral domain is called a Prtifer ring if every finitely 
generated ideal is projective. If R is a Priifer ring then every torsion-free 
R-module is flat by [ll, Theorem 4.231; and thus the three concepts of 
torsion-free modules, flat modules and singly projective modules coincide. 

PROPOSITION 18. Let R be a Prufer ring. Then every flat R-module is 
finitely projective. 

Proof. Let M be a flat R-module, or equivalently, a torsion-free 
R-module. Let M, be a finitely generated submodule of M. By [ 13, 
Proposition 5; 11, Theorem 4.221, M, is projective. Let f: A -+ M be any 
epimorphism. Then its restriction to the inverse image of M, by f is a split 
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epimorphism, i.e., there exists a homomorphism cp: M, + A such that 
fo cp = 1. Thus f is finitely split. 1 

Now let R be an arbitrary ring and F a free left R-module with a coun- 
table free basis ul, z+, u3 ,.... Let a,, a*, a3 ,..., be an infinite sequence in R. 
Let u,=u,--~,u~, ~2=~2-~2~3, v3=u3-u3u4,..., and let G be the sub- 
module of F generated by v,, v2, vj ,.... These v,, v2, v3 ,..., are linearly 
independent over R and so form a free basis for G [ 1, Lemma 28.11. The 
submodule G and the factor module F/G were considered by Bass in [2], 
and we shall call them the Buss submodule of F and the left Buss factor 
module over R belonging to the sequence a,, u2, u3,.... It was proved that 
F/G is flat [2, Lemma 1.1; 1, p. 3161. 

Let x be an element of F. Then it is uniquely expressed as x = Cz i riUi 
with ri E R and ri = 0 for all but a finite number of i. For each i, we define 

Thus [x, l] =r,, [x, 21 =rlu, +r,, and generally we have 

[x, i] = [x, i- l] ai-, + ri. 

(Of course, [Ix, i] depends on the sequence a,, a,,....) 

LEMMA 19. Let x be an element of F. Then 

(i) x~Ru,+Ru~+ ... +Ru, if and only if [x,m]= 
[x,n]u;.~u,+, for ullm>n; 

(ii) XE Ro, + Rv,+ ... + Rv, if and only if [x, m] = 0 for all m > n, 
and in this case we have 

x= [x, 11 uI + [x, 21 u,+ ... + [x, n] v,. 

Proof. Let x = Cp”=, riui with riE R. Then XE Ru, + Ru, + ... + Ru, 
means that rn+,=rn+2= ... = 0, or equivalently, [x, n + l] = [x, n] a,, 
[x,n+2]=[x,n+l]u,+, ,.... Substituting the first equality in the second, 
we have [x, n + 23 = [Ix, n] anan + 1. Then substituting this equality in the 
third, we have [x, n + 33 = [x, n] u,a, + , a, + *, and so on. Suppose conver- 
sely that [x,n+l]=[x,n]u,, [x,n+2]=[x,n]u,u,+,, [x,n+3]= 
Cx, nl,, ha n+,un+2,.... Then clearly we have [x,n+2]=[x,n+l]u,+,, 
[x,n+3]= [x,n+2]u,+, ,..., i.e., rn+,=r,+,=r,+,= *.. =O. This 
proves (i). Next suppose that XE Ru, + Rv, + ... + Ro,, i.e., x = siu, + 
$202 + ... + s,u, for some si E R. Since vi= ui- uiui+, for each i, we have 
x=s,(u,-ua,u,)+s, (u,-ua,u,)+ ... +S,(U,-ua,u,+,)=s,u~ +(s,-s,u,) 
u2+ . . . + (s, - s, _ 1 a, _ I ) u, - s,u,u, + 1. So, by comparing coefficients, 
we have sI = rl = [x, 11, s2 = s,ai + rz = [x, l] a, +r,= [x, 2],..., s,= 

481/106/l-9 
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S,_,a,_,+r,=[x,n-l]a,_,+r,=[x,r], and O=x,a,+r,,+,= 
CX,nla,+r,+,= [x,n+l]. Since x~Ru,+Ru~+ ... +Ru,+,, we have 
[X,m]=Cx,n+l]a,+,~..a,~, for all m 2 n + 1 by (i). Since, however, 
[x, n + l] = 0, it follows that [x, m] = 0 for all m > n. Conversely, suppose 
that [x,m]=O for all m>n. Then rn+,=[x,n+l]-[x,n]a,= 
- Cx, nl a,, while r,=[x,m]-[x,m-l]u,+,=O if m>n+l. This 
implies that 

x=r,u,+r,u,+ ... +r,u,- [x,n] a,~,,, 

=Cx,llu,+(Cx,21-[x,l]u,)u,+~~~ 

+~C~,~1-~~,~-~1~,-,)~,-[I~,~1~,u,+, 

=Cx, ~l~~l-~~~~)+Cx,~l(u,-u,u,)+ ... +[x,n](u,-anun+,) 

= [x, 11 v, + [x, 23 u2 + . . . + [x, n] 0,. 

This proves (ii). 1 

LEMMA 20. Let x E Ru, + Ru, + ..’ +Ru, and man. Then XERV~+ 
Rv,+ ... + Rv, if and only if [x, n] a,. . . a, = 0. 

Proof From Lemma 19(i), it follows that [x, m’] = [x, n] a,. . . a,. _, 
for all m’> m( > n). On the other hand, by Lemma 19(ii), XE Rv, + 
Rv,+ “. $ Rv, if and only if [x, m’] = 0 for all m’ > m. This is equivalent 
to saying that [x, n] a, .. . a,. _ , = 0 for all m’ > m. However, this condition 
is clearly equivalent to the mere condition that [x, n] a,. . . a, = 0. i 

Let UE R. We denote by I(u) the left annihilator of a in R, i.e., the left 
ideal of R consisting of those r E R for which ru = 0. 

LEMMA 21. Let x~Ru~+Ru~+ ... +Ru,. Then XEG if and only if 
Cx, nl E Upzo 4~.~.a,+~). 

Proof This follows from Lemma 20 and the fact that G = 
Uk”Eo (Rv, + Ru,+ ... + Ru,,,). 1 

PROPOSITION 22. The following conditions are equivalent: 

(1) There exists a homomorphism Ru, + Ruz + . + Ru, -+ G which 
fixes (Ru, + Ru,+ ... + Ru,) n G element-wise. 

(2) There exists a homomorphism Ru, + G which fixes Ru, n G 
element-wise. 

(3) The ascending chain l(a,)cZ(u,u,+,)cl(u,u,+,u,+,)c ..., of 
left annihilators terminates. 
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Remark. As was virtually shown in the proof of Theorem 3, the con- 
ditions (1) and (2) of Proposition 22 are equivalent to the conditions that 
G is a direct summand of Ru, + Ru, + *. . + Ru, + G and a direct sum- 
mand of Ru, + G, respectively. 

Proof (l)= (2) is clear. To prove (2)* (3) assume (2). Let 
h: Ru, + G be a homomorphism that fixes Ru, n G element-wise. Then 
h(u,,) is in G and therefore it is in Ru, + Ro, + . . . + Ru, for some m > n. 
Take an arbitrary element r from up= 0 1( a,, . . . a, + k), and let x = ru,. Then 
h(x) = rh(u,) is in Rv, + Ru, + . . ’ + Rv,. On the other hand, we have 
[x, n] = r and so by Lemma 21, x is in G whence in Ru, n G. Thus we 
know that x = h(x) E Rv, + Rv, + ..* + Rv,. By Lemma 20 we have 
r=[x,n]El(a, . . . a,). This implies that UrX 0 Z(a, . . . a, + k) = Z(a, . .* a,), 
which means that condition (3) holds. 

Next assume (3) i.e., U,“=,I(a;..a,+,)=I(a;..a,) for some m>:. 
For each i= 1, 2 ,..., m, let 

and let w,+ , = 0. Then we have wi - uiwi+ , = ui for i = 1,2 ,..., m. Since 
#I, 4,.-r urn+ 1 are linearly independent over R, we can well-define 
a homomorphism f: Ru, + RuZ + ... + Ru,+, -+ G by f(ui) = wi (i= 1, 
2 ,..., m+ 1). Since ~l~=u~-a,u,+,, uluz ,..., u, are in Ru,+Ru,+ ... + 
RU m+, andf(ui)=f(z+)-uf(ui+,)=wi-aiwi+,=uifori=1,2 ,..., m.Thus 
f fixes Rv,+Rv,+ ... + Ru, element-wise. Let XE (Ru, + ... + Ru,) n G. 
Then by Lemma21 we have [x, n] E UrCO I(a;..u,+,)=I(a;..u,), i.e., 
[x,n]u;.~a,=O. Therefore x~Ru,+Rv,+ ... +Rv,,, by Lemma20, 
which implies that f(x) =x. Thus the restriction of f to Ru, + Ru, + 
. . . + Ru, satisfies the condition ( 1). a 

Now we have the following theorem: 

THEOREM 23. Let A4 = F/G be the left Bass factor module over R belong- 
ing to a sequence a,, a,, a3 ,..., in R. Then the following conditions are 
equivalent : 

( 1) M is fmitely projective. 

(2) M is singly projective. 

(3) The ascending chain l(a,)cl(a,u,+,)cl(u,u,+,u,+,)c ... of 
left annihilators terminates for n = 1, 2, 3,.... 

Proof (1) + (2) is clear. Assume (2). Then the natural epimorphism 
F + F/G is singly split. By Theorem 3, there exists, for each n, a 
homomorphism Ru, + G that tixes Ru, n G element-wise. But this is, 
according to Proposition 22, equivalent to the condition that the ascending 
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chain l(a,)cf(a,a,+,)c ..., terminates for each n. Thus (2) * (3) is 
proved. Next, assume (3). Let F0 be any finitely generated submodule of F. 
Then there is a sufficiently large n such that FO c Ru, + Ru, + ... + Ru,. 
By Proposition 22 there exists a homomorphism Ru, + Ru, + 
... + Ru, + G that fixes (Ru, + Ru, + ... + Ru,) n G element-wise. Then 
clearly the restriction of this homomorphism to F, gives a map FO -+ G that 
fixes F, n G element-wise. Thus the natural epimorphism F + F/G is finitely 
split by Theorem 3. Since F is projective, this implies that F/G is finitely 
projective by Proposition 12. 1 

From Theorem 23 we have immediately 

THEOREM 24. Every left Bass factor module over R is finitely projective 
(or singly projective) if and only if for every infinite sequence a,, a,, a3,... in 
R, the ascending chain &a,) c l(a,a,) c I(a,a,a,) c ... terminates. 

COROLLARY 25. If every flat left R-module is singly projective then for 
every infinite sequence a,, a2, a3,..., in R the ascending chain l(a, ) c 
l(a,a,)cf(a,a,a,)c ... terminates 

Remark 1. There arises a problem to find out a characterization of 
those rings R over which every flat left module is finitely projective. 
Propositions 15 and 18 show that left Noetherian rings and Prtifer rings 
are examples of such a type of rings. Also, left perfect rings give an obvious 
example, because every flat left module over a left perfect ring is projective 
by a theorem of Bass. In view of Theorem 24 and Corollary 25, one might 
conjecture that every flat left R-module is finitely projective if (and only if) 
the ascending chain l(a,) c I(a,a,) c f(a, a2a3) c ... terminates for every 
infinite sequence a,, a,, a3 ,..., in R. Indeed, the above three kind of rings 
clearly satisfy this condition. If this conjecture is true then it follows in par- 
ticular that every flat module over an integral domain is finitely projective. 
We also point out that if R satisfies the above condition on termination of 
ascending chains then R has no infinite number of orthogonal idempotents 
#O and R is a finite direct sum of indecomposable left ideals. Further, it 
should be mentioned that if every flat left R-module is finitely projective 
then in particular every finitely generated flat left R-module is projective, 
while it is known that commutative integral domains and semi-perfect rings 
enjoy the last condition [ 12, Example, p. 39; 8, Exercise 10, p. 1361. 

Remark 2. As a dual of the finite (or single) projectivity, we may con- 
sider a module M-finitely (or singly) injective module, so to speak- 
which is finitely (or singly) split in every extension module of M. However, 
by applying Proposition 5 to an injective extension of M, it turns out that 
such a module M is always injective. 
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Now in connection with Theorem 23 the following may be of interest. 

THEOREM 26. Let M= F/G be the ieft Bass factor module over R belong- 
ing to an infinite sequence a,, a2, a3 ,..., in R. Then the following conditions 
are equivalent: 

(1) M is projective, i.e., G is a direct summand of F. 

(2) The descending chain a,R~a,a,+,R~aa,a,.,a,+,R~ ..’ of 
principal right ideals of R terminates for n = 1, 2, 3,... . 

(3) There exists a row-finite matrix [cii] of countable rows and 
columns over R such that, for each i, j = 1, 2, 3 ,..., 

i 

cii-- 1, i=j 

as, + I,.i = 
Clj, i#j. 

Proof: Assume (1). Then the descending chain a, R 1 ala2 R 2 
a,a,a,Rx ..*, terminates by Bass [2, Lemma 1.31 or Anderson and Fuller 
[ 1, Lemma 28.2, p. 3131. Let n be any positive integer, and let F,,, G, be 
the submodule of F generated by u,, u,, ,,..., and u,,, v,+ ,,..., respectively. 
Thus F,, and G, are free left R-modules with free bases u,,, u,+ i ,..., and 
u,,, u ,) + , ,..., respectively, and G, is the Bass submodule of F,, belonging to 
the sequence a,, a,,+, ,.... Since G, is a direct summand of G, it is a direct 
summand of F. Since further G, c F,, c F, it follows that G, is a direct 
summand of F,. Therefore, by applying again [2, Lemma 1.31 to F,/G,, 
we know that the descending chain a,, R ZJ anan + i R 1 . . . , terminates. 

The equivalence of (1) and (3) is virtually established in the proof of 
[ 1, Lemma 28.21. 

In order to prove (2) j (3), assume (2). For each ia 1, let n(i) ( 2 i) be 
the minimal integer such that 

ai * . . a,,(;, R = ai. . . a,CiIa,Ci,+ 1 R = . 

and denote this right ideal by KP Thus 

Left-multiplying ai, we have 

This implies th;t n(i) < n(i + 1) and K, = aiKi+ 1. Thus we know that 
n(l)<n(2)<n(3)6 ..., and Ki=aiKi+,=aiai+,K,+,= *.. =a,a,+,.*. 

a,,K,+ I for every n > i. 

(i) Let j be an integer such that j> n( 1). Let h be the maximal integer 
such that n(h) <j, i.e., n(h) <j - 1 (since generally n(i) 2 i for every i, such 
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an h exists). Then -ah’..aj_,Eah...aj-IR=K,=a,...aj_,aiKj+,, so 
there is a c,EK~+~ such that -a,...aj~,=a,‘..aj~,ajcj. Define 
cj+ I.j= cj3 cj,,=ajc,+l (=ajcj+,,j+l) and cjj=ai..~aj-,cj,, for each 
i<j. Since c,EK,+,=~~+,K,+,, there is a CEK,,~ such that ci=aj+,c. 
Define then c, + *, , = c. Similarly, we can define c, + 3,, as an element of K, + 3 
such that cj + 2, j = aj + z cj + 3, j because of K, + 2 = a, + z K, + 3, and then define 
C ,+4,jEK,+4 bY c.j+3tj=aj+3Cj+4,,. Continuing in this way, we can define 
c,, j for every i 2 1, and it is easy to see that these ci,, satisfy the following 
equalities: 

atcit l,,i- , -c, i- 1, aici+,,j=~,,j for i#j, 

Moreover c;, = 0 if i 6 h. For, since c,+ ,,, ( = cj) was defined by 
-a,...ai--=aa,...a,cj.,,, as above, we have -aa,...ajP, =a;...a,c,+, , 
(by left-multiplying ai ... ah- ,) if i < h. On the other hand, since 
cJj=a,cj+,~,+l and cii=ai”.aiP, ,, c.. as above (because i 6 h <n(h) <j), 
we have ai.‘.ajcj+ ,,j= ai...aim,(cij- l)=cj,-ai...ajP,. Thus we have 
cij = 0. 

(ii) Let i be a positive integer. Let j be any integer such that j> n(i). 
Then of course j > n( 1) and so ci, is well defined as in (i). Let h be the 

maximal integer such that n(h) <j as defined in (i). Then i< h, and 
therefore c,~ = 0 as seen above. Thus c,, = 0 for all but a finite number of j. 

(iii) Let j<n(l). Then define c,=O or =1 or =ai...ajP, accord- 
ingly as i > j or i = j or i < j. Then it is also easy to check that these ci, 
satisfy the same equalities ajc, + ,, , = cjj - 1, a,ci + ,_ , = c,~ (i fj) as in (i). 

Thus we have defined ci, for all positive integers i,j for which the matrix 
Cc,,] is row-finite and satisfies (3). u 

Let A, C be left R-modules and f: A -+ C an epimorphism. We call f 
locally split if for each c E C there exists a homomorphism cp: C -+ A such 
that f(cp(c)) = c. Let next B a submodule of A. B is called locally split in A 
if for each b E B there exists a homomorphism h: A + B such that h(b) = b. 
We know, however, by using the method in the proof of [ll, 
Theorem 3.29, p. 613, that if f: A -+ C is a locally split epimorphism then, 
for every finitely generated submodule Co of C, there exists a 
homomorphism cp: C + A such that the restriction off0 p to Co is the iden- 
tity map of C,,, while if B is a locally split submodule of A then, for every 
finitely generated submodule B, of B, there exists a homomorphism 
h: A + B such that the restriction of h to B, is the identity map of B,. Thus 
it is clear that every locally split epimorphism is finitely split. The notion of 
locally split submodules was considered by Ramamurthi and Rangaswamy 
[lo] by the name of strongly pure submodule. Indeed, every locally split 
submodule is a pure submodule; but a locally split submodule is not 
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always a finitely split submodule. Moreover, it is to be pointed out that, 
unlike the purity or the finite splitness, the local splitness of an 
epimorphism does not necessarily imply the local splitness of its kernel, and 
conversely. 

Let A4 be a left R-module. A4 is called locally projective if every 
epimorphism onto M is locally split, while M is called locally injective if M 
is locally split in every extension of M. Clearly, every locally projective 
module is finitely projective and every locally injective module is absolutely 
pure. The concept of locally projective modules was originally introduced 
by Zimmermann-Huisgen [14], and also by Gruson and Raynaud 173 
and Gartinkel [S] by the names of flat strict Mittag-LeMer modules and 
universally torsionless modules respectively, while the concept of locally 
injective modules was introduced by Ramamurthi and Rangaswamy [lo] 
and called finitely injective modules or strongly absolutely pure (SAP) 
modules. It is shown in [ 141, that the local projectivity of M is equivalent to 
either of the following conditions: 

(1) For each finitely generated submodule M, of M, there exist a finite 
number of homomorphisms ‘pi: M + R and the same number of vi E M such 
that Ccp,(x) ui = x for all x E M,, 

(2) Given an epimorphism f: A -P C, a homomorphism h: M+ C and a 
finitely generated submodule M, of M, there exists a homomorphism 
g: M -+ A such that the restrictions off 0 g and h to M, coincide, while it is 
proved in [lo] that M is locally injective tf and only $ for any module A 
and a ji’nitely generated submodule A,, every homomorphism A0 + M can be 
extended to a homomorphism A -+ M. 

Now, refining the well known theorem of Bass [2, Theorem P; 1, 
Theorem 28.41 that every flat left R-module is projective if and only if R is 
left perfect, Zimmermann-Huisgen proved in [ 15, Proposition 33, p. 611 
that every locally projective left R-module is projective tf and only if R is left 
perfect. From this follows in particular that every finitely projective left R- 
module is projective if and only if R is left perfect. On the other hand, 
Zimmermann-Huisgen pointed out in [ 15, p. 601 that every flat left R- 
module is locally projective if and only if R is left perfect. However, this 
theorem does not remain true if we replace the local projectivity by the 
finite projectivity, because according to Propositions 15 and 18 every flat 
left R-module is finitely projective whenever R is either left Noetherian or a 
Priifer ring but these types of rings are not necessarily left perfect. 

As a dual of the above Bass’ theorem, Megibben proved in 
[9, Theorem 31 that every absolutely pure left R-module is injective tf and 
only if R is left Noetherian, and this was generalized in [lo, (3.10)(b)] so 
that every locally injective left R-module is injective tf and only tf R is left 
Noetherian. This theorem may be regarded as a dual of the first theorem of 
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Zimmermann-Huisgen. We propose to dualize her second theorem and 
particularly ask the question: If every absolutely pure left R-module is 
locally injective, is R left Noetherian? 
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Nofe added in proof: (1) The author has recently proved that if every flat left module over 
a ring R is finitely projective then the same holds for any subring of R. In particular, every flat 
module over a commutative integral domain is finitely projective, and thus Proposition I8 
turns out superfluous. This and related results will appear in a forthcoming paper. (2) It has 
been pointed out to the author that finitely projective modules and finitely pure-projective 
modules were virtually considered by Clarks (Ph.D. Thesis, Kent State University, 1976), 
Goodearl (Pncific .I. Mafh. 43, 1972) and Jones (Comm. Algebra 9, 1981). and indeed the 
above modules coincide with.f-projective modules and R-Mittag-Leffler modules, respectively. 
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