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Abstract

This paper discusses linear regression of strongly correlated data that arises, for example, in
magnetohydrodynamic equilibrium reconstructions. We have proved that, generically, the covariance matrix
of the estimated regression parameters for fixed sample size goes to zero as the correlations become unity.
That is, in this limit the estimated parameters are known with perfect accuracy. Simple examples are shown
to illustrate this effect and the nature of the exceptional cases in which the covariance of the estimate does
not go to zero.
c© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Magnetohydrodynamic (MHD) equilibrium reconstructions [1–4] play a vital role in the
analysis of the states of plasmas in magnetic confinement devices such as tokamaks. Typically,
such reconstructions are performed by least squares fitting of the nonlinear Grad–Shafranov
equation to measurements of the magnetic field at spatially distinct points on the boundary
of the device, complemented by measurements of the interior conditions of the plasma.
Dynamical fluctuations associated with plasma turbulence are modeled as stochastic noise in
the reconstructions, and these fluctuations are believed to exhibit strong spatial correlations [5],
leading to strong correlations between measured signals.
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Operationally, regression with correlated errors is understood [7,8,6]. However, the least
squares equilibrium reconstruction studies of Ref. [9] exhibited unexpected properties. As
a function of the degree of correlation (discussed further below), the variance of the fitted
parameters was observed to have a maximum. Past this peak, the covariance matrix of the
estimate converged to zero as the simulated measurements became fully correlated. The objective
of the present paper is to explore this phenomenon and to show how generic it is. While our
analysis is restricted to linear regression because the effect is most transparent there, our analysis
and results are readily extended to nonlinear regression and were indeed first observed in a
nonlinear context [9].

Specifically, consider the linear model

Yi = X t
i β + ηi , i = 1, 2, . . . , n, (1)

where the covariates and the parameters are X i , β ∈ Rm with m ≤ n. The disturbances ηi have
mean zero, variances E[η2

i ] = σ 2
i and covariances E[ηiη j ] = Σi j = σiσ j%i j . For our analysis

and discussion, it is convenient to rewrite (1) in vector form

Y = Xβ + η, (2)

where the vectors Y, η ∈ Rn , X is an n × m design matrix, E[η] = 0 and E[ηηt
] = Σ = SRS,

where the deviations are S = diag(σ1, σ2, . . . , σn) and R is the matrix of correlation coefficients
%i j . To simplify our exposition, we shall begin by assuming that the design matrix X is of rank
m and, unless otherwise stated, further assume that the covariance matrix Σ is of full rank n.

It is well known that the best linear unbiased estimator (BLUE) β̂ for β is the minimizer (with
respect to β) of the quadratic

χ2(β) = (Y − Xβ)tΣ−1(Y − Xβ). (3)

Under the stated assumptions, the BLUE β̂ is then given by the unique solution of the normal
equations

(XtΣ−1X)β̂ = XtΣ−1Y, (4)

and the covariance matrix of the estimate β̂ is given by

V = (XtΣ−1X)−1. (5)

Our main result deals with the approach to full correlation, defined as the limit

min
i, j

|Σi j |

σiσ j
= min

i, j
|%i j | −→ 1. (6)

In this limit %i j → ei e j with e j = ±1. This main result is that, if the vector of signed standard
deviations (e1σ1, . . . , enσn)t of the disturbances does not lie in the column space (the range
space) of the design matrix X, then the sum of the variances, trace(V), of the estimated regression
coefficients converges to zero as the noise becomes fully correlated.

Various authors have noted the unusual and unexpected effects of strong correlations in
simple models. In the context of the optimal fit to a line, Canner noted in 1969 that strong
positive correlations among measurements with unequal variances may lead to a regression
line that lies entirely above or below the measurements, coinciding with a weighted average
including negative weights [10]. More recently, several authors in the field of nuclear data
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analysis have also remarked on this ostensible quandary, referring to it as Peelle’s pertinent
puzzle [11–13]. Sivia, again in the context of fitting data to a line, noted that strong correlations
are beneficial with respect to the determination of the slope and detrimental with respect to the
intercept [14]. In the context of forecast pooling, Winkler also remarked upon the appearance of
negative weights [15]. Furthermore, Clemen and Winkler noted that in combining forecasts from
strongly correlated sources of equal variance, the number of independent sources is effectively
reduced [16]. Morrison and Schmittlein, applying a geometrical interpretation to the result of
Clemen and Winkler, recognized that full correlation for sources of unequal variance can lead to
vanishing variance of the estimate, but dismissed the effect as an aberration [17].

In the current work, we provide a thorough explication of the effect of strong correlations on
multivariate regression. This paper is organized as follows. Section 2 sets the stage by analyzing
several very simple models exhibiting our main result. With the aid of these models, the various
observations of previous authors, such as negative weights and vanishing variance of the estimate,
are connected and clarified. Our main result, on multivariate regression and how the relationship
between the covariance and design matrices affects the variance of the estimates, is presented in
Section 3. Section 4 deals with the issue of increasing the number of measurements in physical
problems such as MHD equilibrium reconstruction, by adding measurements at necessarily more
closely packed spatial positions. In Section 5 we deal with a generalization of the main result in
which some, but not all, measurements become fully correlated. A summary and conclusions are
presented in Section 6.

2. A simple example

This section presents simple examples which display some of the surprising effects associated
with linear regression in the presence of strong correlations.

2.1. Estimation of a constant

We wish to estimate µ from a pair of observations(
y1
y2

)
=

(
1
1

)
µ +

(
η1
η2

)
= Xµ + η, (7)

where the disturbances η = (η1, η2) have mean zero and covariance and precision matrices given
by

Σ =

(
σ 2

1 %σ1σ2

%σ1σ2 σ 2
2

)
and Σ−1

=
1

1 − %2

(
τ 2

1 −%τ1τ2

−%τ1τ2 τ 2
2

)
,

with τ1 = 1/σ1, τ2 = 1/σ2. Direct calculation shows that the weighted least squares estimate
that satisfies the normal equation (4) is

µ̂ =

(
τ 2

1 − %τ1τ2
)

y1 +
(
τ 2

2 − %τ1τ2
)

y2

τ 2
1 − 2%τ1τ2 + τ 2

2

=

(
τ 2

1 − %τ1τ2
)

y1 +
(
τ 2

2 − %τ1τ2
)

y2

(1 − %)
(
τ 2

1 + τ 2
2

)
+ % (τ1 − τ2)

2

= w1(σ1, σ2, %)y1 + w2(σ1, σ2, %)y2, (8)
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Fig. 1. Variance of the estimate V as a function of the correlation coefficient % for σ1 = 1 and seven values of σ2
(0.5, 0.75, 0.95, 1, 1.05, 1.25, 1.5). For all cases, V

(
µ̂
)

→ 0 as % → −1. For σ1 6= σ2, V
(
µ̂
)

→ 0 as % → 1. For

σ2 = σ1 = 1, 1V
(
µ̂
)

= σ 2
1 = 1 at % = 1 (large arrow).

where we have written the estimate in terms of weights w1 and w2 on the last line. The variance
of this estimate, computed from Eq. (5), is

V (µ̂) =
1 − %2

τ 2
1 − 2%τ1τ2 + τ 2

2

=
1 − %2

(1 − %)
(
τ 2

1 + τ 2
2

)
+ % (τ1 − τ2)

2 . (9)

The behavior of Eq. (9) as a function of % for σ1 = 1 and various σ2 is shown in Fig. 1,
showing clearly the limits % → ±1. In this simple example (and as displayed in Fig. 1), the
variance of the estimate goes to zero as % → ±1, with the exception of % → 1 with σ1 = σ2.
For this exceptional case, the eigenvector of Σ with the largest eigenvalue approaches (σ1, σ1),
which is in the range space of the design matrix X in Eq. (7).

Regarding the exceptional case of equal variance, σ1 = σ2, the estimate for µ for all
% ∈ [−1, 1] is the sample mean

µ̂ =
y1 + y2

2
, which has variance V (µ̂) =

1 + %

2
σ 2. (10)

The variance vanishes for % → −1 while for % → 1, it is

lim
%→1

V (µ̂) = σ 2. (11)

The interpretation of Eqs. (10), (11) is the following. For a single measurement y1 = µ + η1,
the variance of µ̂ = y1 equals the variance of y1, namely σ 2. For % → 1 and σ1 = σ2, the
second measurement y2 is equal to y1 and provides no new information, leaving V = σ 2. This is
the familiar interpretation of positive correlations, which are often assumed to imply redundancy
in measurement (e.g. the Clemen and Winkler result [16]). For ρ → −1, y1 = µ + η1 and
y2 = µ− η1, implying µ = (y1 + y2)/2 with zero error. We shall see below, however, that in the
generic case (σ1 6= σ2) positive correlations may also provide leverage with which to determine
the estimator more accurately.



2140 C.S. Jones et al. / Journal of Multivariate Analysis 99 (2008) 2136–2153

In the generic case of unequal variance, σ1 6= σ2, the possibility arises of negative weighting,
in which one of the two weights, w1 or w2, becomes negative. In particular, from Eq. (8) and
assuming without loss of generality σ1 > σ2, y1 is weighted negatively (w1 < 0) if % > σ2/σ1.
Also, from Eq. (9) we conclude that V (µ̂) has a maximum with respect to % at % = σ2/σ1. At
the maximum variance, note that the estimate (8) becomes µ̂ = y2 and Eq. (9) gives V (µ̂) = σ 2

2 ,
i.e. µ̂ becomes independent of the measurement y1 (recall σ1 > σ2). For % > σ2/σ1, V (µ̂)

decreases with respect to %. The possibility of negative weighting, leading to an estimate outside
the range of the measurements, has been noted with surprise in Refs. [10–13,15], as discussed in
the introduction. These investigations did not, however, remark on our observation that for fixed
σ1 6= σ2, the appearance of negative weighting (as % is increased) coincides with the decrease
of the variance V

(
µ̂
)
. Sivia noted the possibility of decreasing variance, but simply proffered

a caveat regarding the careless interpretation of correlations as mere loss of information [14].
Morrison and Schmittlein also observed the possibility of vanishing variance [17], but dismissed
the result as a poor choice for the covariance matrix of forecasts, leading to “very misleading and
overly optimistic results.” In situations such as MHD equilibrium reconstruction, large amounts
of data allow for the reliable determination of the covariance matrix, and physical considerations
suggest that those correlations may be strong. Thus, the limiting behavior of the variance of the
estimate as measurements become fully correlated is of significant interest.

In the limit of full correlation (% → 1), the estimator for µ in the generic case of σ1 6= σ2 is

µ̂ = (τ1 y1 − τ2 y2) /(τ1 − τ2), (12)

with negative weighting on y1 if τ1 < τ2 (σ1 > σ2). This estimate has the variance (in the same
limit)

V (µ̂) →
2 (1 − %)

(τ1 − τ2)
2 → 0. (13)

To interpret these results, consider the geometric description displayed in Fig. 2(a). For
normally distributed noise, the measurements are distributed according to a probability density
function proportional to exp(−χ2/2). The level sets of this function (contours of χ2) are
ellipses which circumscribe regions within which the measurements may be found with a given
probability. For % close to unity, the measurements are expected to be found within a thin ellipse
whose major axis has slope near σ2/σ1. For % → 1, the two eigenvalues of the covariance matrix
Σ are λ1 = σ 2

1 +σ 2
2 (trace) and λ2 = 0, and the ellipses become infinitely thin, i.e. line segments.

In this limit the estimate must be on the intersection of the line y2 − µ = (σ2/σ1) (y1 − µ) and
the axis y1 = y2, giving µ̂ = µ with zero uncertainty.

An alternative interpretation is shown in Fig. 2(b). The noise contributions η1 and η2 will
necessarily have the same sign if % → 1. If, for example, they are both positive and σ1 6= σ2,
then y1 and y2 will both be above µ (as in Canner’s example [10]), and an unbiased estimate
will be possible only with negative weighting as in Eq. (12). To be more specific, for % → 1 but
σ1 > σ2, we will have η2 = η1σ2/σ1 or

y1 = µ + σ1α, y2 = µ + σ2α, (14)

where α is a single random variable with zero mean and unit variance. The BLUE (12) chooses
the correct (negative) weighting to give the exact result µ̂ using a single realization α of the noise.



C.S. Jones et al. / Journal of Multivariate Analysis 99 (2008) 2136–2153 2141

Fig. 2. Estimating a constant in the limit of large correlations % → 1. For σ1 > σ2 and % → 1, when the ellipse at
constant χ2 collapses (in the top figure), each measurement point (y1, y2) has y1 = µ + ασ1, y2 = µ + ασ2 for some
α. Since the estimate must also be along the line y1 = y2, the estimate for % → 1 gives µ̂ = µ with zero uncertainty. In
(b), two noisy measurements of µ are made (a) at positions x = x1, x = x2 (open circles), corresponding to one value of
α. The estimate, which has zero variance, has (y1 − µ)/σ1 = (y2 − µ)/σ2, exactly determining µ̂ if σ1 6= σ2. A second
set of correlated measurements (solid circles), with a second value α̂, leads to the same estimate.

The noise term can be eliminated from Eq. (14), giving

y1

σ1
−

y2

σ2
=

(
1
σ1

−
1
σ2

)
µ, (15)

in agreement with the estimate in Eq. (12). The variance of this estimate is zero because the noise
has been eliminated. A different realization of the noise (different α) yields the same result. If,
on the other hand, σ1 = σ2, then the measurements y1 and y2 are identical and the procedure
leading to Eq. (15) cannot be followed, leaving µ subjected to the noise.

2.2. Fitting a line

The previous discussion may be easily reproduced for the case of the determination of a slope
rather than a common mean from a pair of observations y1 and y2 located at distinct points x1
and x2, where the intercept is known to be the origin. In this case, the unit design matrix of Eq.



2142 C.S. Jones et al. / Journal of Multivariate Analysis 99 (2008) 2136–2153

(7) is replaced by X = (x1, x2)
t . For fully correlated noise (% → 1), the noise may again be

eliminated as it was in Eq. (15), yielding

y1

σ1
−

y2

σ2
=

(
x1

σ1
−

x2

σ2

)
ω, (16)

where ω is the slope. Note that in this case, the slope may be exactly determined from
measurements of equal variance. In fact, µ is exactly determined for % → 1 as long as
x1/σ1 − x2/σ2 6= 0. When x1/σ1 = x2/σ2, α cannot be eliminated and ω remains subject to
noise.

Now consider the fit of both the slope and intercept of a line from three measurements in
the limit of full correlation. This example will display some of the more general aspects of the
effects of full correlation addressed in detail in the following section. In particular, consider the
determination of estimates for the intercept µ and slope ω from three observations y1, y2 and y3
at distinct points x1, x2 and x3:y1

y2
y3

 = X
(

µ

ω

)
+

η1
η2
η3

 , (17)

where the design matrix is

X =

1 x1
1 x2
1 x3

 . (18)

In the limit in which the three disturbances are fully (positively) correlated, the disturbances are
η1 = σ1α, η2 = σ2α, η3 = σ3α, where as before, α is a single random variable with zero mean
and unit variance. We may eliminate α, yielding [cf. Eqs. (15) and (16)](

y1/σ1 − y2/σ2
y1/σ1 − y3/σ3

)
=

(
1/σ1 − 1/σ2 x1/σ1 − x2/σ2
1/σ1 − 1/σ3 x1/σ1 − x3/σ3

)(
µ

ω

)
. (19)

For the case in which all variances are equal, σ1 = σ2 = σ3, the intercept µ disappears from
these equations, and the slope is precisely determined while the intercept is subject to noise. This
was the observation of Sivia [14]. Alternatively, if the variances are related to the measurement
locations via x1/σ1 = x2/σ2 = x3/σ3, then the slope is not present in Eq. (19), and only the
intercept is precisely determined. In each of these cases, the vector (σ1, σ2, σ3)

t is proportional
to a column of the design matrix (18). Indeed, if this vector, the eigenvector associated with
the largest eigenvalue of the fully correlated covariance matrix, is proportional to any linear
combination of the columns of X, then there will exist a linear combination of µ and ω which
is precisely determined and another which is subject to noise. Thus the covariance matrix of
the estimate (µ, ω) has rank one. If the vector (σ1, σ2, σ3)

t is not a linear combination of the
columns of X, as is generically the case, then both the intercept µ and slope ω are determined
exactly. Indeed, this condition is exactly the condition that the determinant of the matrix in
Eq. (19) is nonzero. These phenomena and their connection to the emergence of a noise-free
subspace are generalized in the following section.
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3. Regression in the limit of full correlation

This section generalizes the examples of Section 2 and shows under what conditions the
variance of the weighted least squares regression estimator for the linear model (2) converges
to zero in the limit of full correlation. For any covariance matrix, we define the parameter

κ = max
i, j

(
1 −

|Σi j |

σiσ j

)
= max

i, j

(
1 − |%i j |

)
.

Any covariance matrix can be written as Σ = SRS, where S = diag(σ1, σ2, . . . , σn) and R is
the matrix of correlation coefficients %i j . In the limit of κ = 0, the entries of R are all ±1 and
satisfy %ik = %i j% jk∀i, j, k, and therefore the correlation matrix is the rank one matrix R = eet

or %i j = ei e j , where e j = ±1. A simple example of such a class of covariance matrices is the
autocorrelation model. In this model, the disturbances η consist of a zero mean random vector
with covariance matrix Σ = E[ηηt

] = SRS, where the correlation matrix is

R =


1 % . . . %n−1

% 1 . . . %n−2

. . . . . .
. . . . . .

%n−1 %n−2 . . . 1

 , (20)

or %i j = %|i− j |. For this model, we find κ ≡ 1 − |%|
n−1. We are interested in the behavior

of the variance (XtΣ−1X)−1 of the BLUE β̂κ = (XtΣ−1X)−1XtΣ−1Y as κ → 0. In this
section, we emphasize the dependence of the estimated regression parameter on the parameter
κ by subscripting the estimate β̂κ . Note that in the limit κ = 0, the correlation matrix of the
autocorrelation model (20) is R = eet , where e has entries e j = 1 for % → 1, or e j = (−1) j for
% → −1.

We begin by presenting a heuristic that shows how the vanishing of the estimator variance
is related to the emergence of a noise-free subspace in the limit of large correlations. A more
rigorous proof is then presented at the end of the section.

3.1. Heuristic treatment

Fix the sample size to n > m, and let Q = [v1, v2, . . . , vn] denote the matrix of normalized
column eigenvectors of the covariance matrix Σ , corresponding to the eigenvalues λ1 ≥ λ2 ≥

· · · ≥ λn > 0. That is, we are assuming that the covariance matrix Σ remains of full rank
for κ > 0 (we discuss more general covariance matrices in Section 5). As κ −→ 0, we have
Σi j → σi eiσ j e j , so that

λ1 =

n∑
j=1

σ 2
j + o(1), λk = o(1), k ≥ 2, and v1 j = e j

σ j
√

λ1
+ o(1). (21)

Consider the transformation

Z = Qt Y = (Qt X)β + Qtη = (Qt X)β + Λ1/2ξ, (22)

where Λ =diag(λ1, . . . , λn) and ξ is a vector of uncorrelated disturbances with mean zero and
unit variance.
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In light of (21), λ j = 0, j ≥ 2 in the limit of κ = 0, so that the transformed variables Z j
( j ≥ 2) are noise-free. That is, the subset of Eq. (22) with j ≥ 2 is not subjected to noise in the
limit κ = 0:

Z̃ = X̃β. (23)

Here, we define the vector of noise-free data Z̃ = (vt
2Y, . . . , vt

nY) and the reduced design matrix

X̃ = [v2, . . . , vn]t X. Recall that n > m, so there exists at least one solution to Eq. (23). Further,
if v1 does not lie in the column space (the range space) of X, denoted R(X), then the system
of Eq. (23) has a unique solution β?. Indeed, assume for contradiction that another solution β ′

exists, and denote the difference β0 = β?
− β ′

6= 0. Then vt
j Xβ0 = 0 for 2 ≤ j ≤ n, and

therefore Xβ0 is in the one-dimensional subspace spanned by v1, i.e. v1 is in the range of X,
contrary to our original assumption.

We call the space spanned by the eigenvectors v j for j ≥ 2 the noise-free subspace. Since the
weighted least squares estimator β̂κ has the smallest variance among all linear estimators for β,
we conclude that, assuming that the BLUE exists in the limit,

trace(V(β̂κ=0)) ≤ trace(V(β?)) = 0,

suggesting that β̂κ=0 = β?.
Conversely, suppose that v1 lies in R(X). We wish to show that under this condition the

estimate β̂ cannot be determined exactly, generalizing the observations at the end of Section 2
regarding the fitting of a line. Since v1 ∈ R(X), there exists a vector of parameters, say
w1 = (W11, . . . , Wm1)

t , such that Xw1 = v1. Let us choose this as the first column of an
m × m nonsingular matrix W. We choose the remaining m − 1 columns w2, . . . , wm such that
span{Xw2, . . . , Xwm} = R(X) ∩ span{v2, . . . , vn}, ensuring that W is indeed of rank m and
nonsingular. In this way we identify the linear combination of elements of β which is subject to
noise. We obtain

Y = XWW−1β + η = (XW)γ + η,

with γ = W−1β. Then (21) and (22) imply that in the limit of κ = 0,

Z1 = vt
1Y = γ1 +

(
n∑

j=1

σ 2
j

)1/2

ξ1, (24)

Z j = vt
j Y = vt

j (XW)γ, j = 2, . . . , n. (25)

Because the first column of (XW) is v1, Eq. (25) are independent of γ1 and determine exactly
the parameters γ2, . . . , γm . The estimator of γ1, a particular linear combination of the elements
of β, is subject to the total noise of the system (i.e. the variance of the estimate γ̂1 is the sum of
the variances of the original measurements). Hence in the limit as κ −→ 0, the total variance for
the BLUE for γ is

trace(V(γ̂κ)) =

n∑
j=1

λ j =

n∑
j=1

σ 2
j > 0,

which implies that trace(V(β̂κ)) > 0. Incidentally, in this case the rank of the covariance matrix
of the estimate is necessarily unity.
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In conclusion, we note that the preceding discussion implies that the condition v1 6∈ R(X) is
equivalent to the condition that the reduced design matrix X̃ be of full rank m. Thus, the full rank
of the reduced design matrix X̃ allows for the determination of the estimate β̂ with vanishing
variance in the limit κ = 0.

3.2. Rigorous treatment
The heuristic of Section 3.1 identifies, in the limit of κ = 0, the subspace orthogonal to the

vector of signed deviations v1 = (e1σ1, . . . , enσn)t as a noise-free subspace that enables perfect
estimation of β if v1 is not in the range R(X). If v1 ∈ R(X), a single linear combination of the
parameters β1, . . . , βm is subject to the noise, and the covariance matrix of the estimate has rank
one. This argument however does not prove that the variance of the BLUE for β converges to
zero with κ −→ 0, because our argument lets κ converge to zero first before estimating β and
showing that it resulted in an estimate that had zero variance. Theorem 1 below gives a rigorous
proof of our claim.

Theorem 1. For fixed sample size n > m, suppose that the design matrix X is of rank m and that
the covariance matrix Σ is of rank n for κ > 0. If the eigenvector v1 associated with the largest
eigenvalue of the limiting covariance matrix Σ (when κ goes to zero) does not lie in the column
space of the design matrix X, then the total variance of the least squares estimate approaches
zero in the limit as κ −→ 0.

Proof. Denote by Q = [v1, . . . , vn] the matrix of column eigenvectors associated with the
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn > 0 of the covariance matrix Σ . As before, the continuity
of the eigenvectors and eigenvalues as a function of Σ implies that as κ −→ 0, the eigenvalues
and first eigenvector behave as in (21). We again consider the transformation defined in Eq. (22).
Suppose that v1 is not in the range of the design matrix X. Then

Z1 = vt
1Xβ +

√
λ1ξ1 =

√(
σ 2

1 + · · · + σ 2
n

)
ξ1 + o(1),

so that Z1 is a linear combination of the regression parameters βi for which the signal becomes
overwhelmed by the noise in the limit κ → 0. Let us then consider the estimate β̃κ for κ > 0
and disregarding Z1 [cf. Eq. (23)]

β̃κ = (X̃t Λ̃−1X̃)−1X̃t Λ̃−1 Z̃ ,

where the vector Z̃ and the reduced design matrix X̃ are defined below Eq. (23), and Λ̃ =

diag(λ2, . . . , λn). Recall that X̃ is of full rank m since v1 6∈ R(X). The covariance matrix of
β̃κ is

V(β̃κ) = (X̃t Λ̃−1X̃)−1.

The estimate β̃κ is not the BLUE β̂κ for κ > 0 since the equation for Z1 has been discarded.
However, the largest eigenvalue for the covariance matrix of the BLUE β̂κ is bounded from above
by the largest eigenvalue of the covariance matrix of the estimate β̃κ :

sup
‖a‖=1

at V(β̂κ)a ≤ sup
‖a‖=1

at V(β̃κ)a.

To see this, consider the eigenvector a0 for the largest eigenvalue of V(β̂κ), which satisfies
at

0V(β̂κ)a0 = sup‖a‖=1 at V(β̂κ)a. According to the Gauss–Markov theorem [18], at
0V(β̂κ)a0 ≤
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at
0V(β̃κ)a0. Since at

0V(β̃κ)a0 ≤ sup‖a‖=1 at V(β̃κ)a, the previous relation follows. Thus,

sup
‖a‖=1

at V(β̂κ)a ≤ sup
‖a‖=1

at (X̃t Λ̃−1X̃)−1a

≤

[
inf

‖a‖=1
at X̃t Λ̃−1X̃a

]−1

≤

inf
∀a

(
X̃a
)t

Λ̃−1
(
X̃a
)

‖X̃a‖2

‖X̃a‖
2

‖a‖2


−1

.

Noting that, for strictly positive quantities, the infimum of a product is greater than or equal to
the product of infima, we have

sup
‖a‖=1

at V(β̂κ)a ≤ λ2/ inf
‖a‖=1

‖X̃a‖
2.

In light of (21) and the full rank of X̃, the latter converges to zero with κ −→ 0. �

Remark 1. Our heuristic argument can be used to show the converse of the theorem, namely,
if the column space of the design matrix X contains the eigenvector associated with the largest
eigenvalue of the limiting covariance matrix, then the limiting variance of the BLUE β̂κ is strictly
positive. Indeed, note that the error distribution of ηκ converges in distribution to the limiting
distribution of η0. In light of Fatou’s lemma (see Ref. [19]), we have for all vectors a,

lim inf
κ−→0

at V(β̂κ)a ≥ at V(β̂0)a. (26)

We may then use the heuristic to show that the right side of (26) strictly positive.

Remark 2. In the discussion of the heuristic and the preceding proof of Theorem 1, it was
assumed that the design matrix X is of full rank m. If instead, the rank of X is s < m, then
there exist m − s linear combinations of the parameters that cannot be determined by the model,
regardless of the noise. The remaining s linear combinations are affected by the presence of fully
correlated noise (κ → 0) as in the previous discussion, but with m replaced by s.

4. Implications for sampling locations in experiments

The autocorrelation error model (20) of Section 3 provides a useful and simple framework in
which to analyze parameter estimation from a large number of closely spaced measurements. In
the context of magnetically confined plasmas, difficulty of access to the plasma typically implies
that an increase in the number of measurements will be associated with a decrease in the spacing
between measurements. As mentioned in the introduction, the noise in these devices arises in part
from plasma turbulence, which may exhibit long-range characteristics. One may then be led to
believe, in light of Section 3, that the increased correlations due to closer spacing could improve
parameter estimation. We show below that this is not the case.

This section provides a detailed analysis of the variance of the BLUE for a single regression
coefficient in the following setting: Suppose we observe the magnetic field at n + 1 locations in
the interval [0, 1]. For the purpose of our discussion, we take these points to be equidistant, that
is xn,i = i/n, i = 0, . . . , n, (spacing 1x = 1/n). At each location xn,i , we observe
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Yn,i = µ + ηn,i , i = 0, 1, . . . , n, (27)

where the disturbances have mean zero, variance E[η2
n,i ] = σ 2(xn,i ) = τ−2(xn,i ) and (strictly

positive) correlation

%i j = τ(xn,i )τ (xn, j )E[ηn,iηn, j ] = exp
(
−|xn,i − xn, j |/δ

)
= exp

(
−

|i − j |

δn

)
≡ %|i− j |. (28)

This is the autocorrelation model, Eq. (20) of Section 3, with % ≡ exp(−(δn)−1). The parameter
δ is interpreted as the correlation length, with δ −→ 0 and δ −→ ∞ corresponding to the
uncorrelated and fully correlated error models, respectively. Note that δn = δ/1x is the ratio of
the correlation length to the spacing between measurements. We shall further assume that τ , a
measure of the signal-to-noise ratio, is a smooth function of the sampling location.

In Section 3, we studied the limit of the variance V(n, δ) ≡ V (µ̂) as % → 1 (i.e. as the
correlation length δ approached infinity). In this section, we fix δ and study the behavior of
the estimated mean µ̂ and its variance as the sample size n goes to infinity. In this setting,
as we increase the number of sampling locations within the unit interval, the correlation
between neighboring measurements increases. This is the framework referred to as infill
asymptotics [20,21], and the results of this analysis can provide guidelines for the usefulness of
acquiring additional data by increasing the number of measurements done for MHD equilibrium
reconstructions, or other estimation problems where acquiring more data necessitates packing
the measurements more closely in space or time.

Theorem 2. The inverse variance of the estimated mean for the autocorrelated model is, for
δn � 1 and n � 1,

V−1(n, δ) =

[
δ

2

∫ 1

0
τ ′(s)2ds +

1
2δ

∫ 1

0
τ(s)2ds

](
1 + O((δn)−2)

)

+
1
2
(τ (0)2

+ τ(1)2) + δO(n−2) + δ−1 O(n−2). (29)

Remark. This expression for the variance of the estimate provides insight into the estimated
mean. In the limit of very large correlations (δ → ∞). The variance of the estimated mean
approaches zero if

∫
τ ′(s)2ds 6= 0, i.e. if the signal-to-noise ratio varies over the measurement

region. On the other hand, if
∫

τ ′(s)2ds = 0, the variance converges to σ 2(0) for δ large. Indeed,
vanishing of the integral of τ ′(s)2 implies that τ(s) = τ(0), in which case the variance converges
with many measurements to

lim
n−→∞

V(n, δ) =
2δ

2δ + 1
σ 2(0)

δ→∞
−−−→ σ 2(0).

Proof. Let us denote τi ≡ τ(xn,i ), suppressing the n-dependence. The inverse of the covariance
matrix of the autocorrelation model is

Σ−1
= S−1R−1S−1,
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with R as in Eq. (20),

R−1
=

1

1 − %2


1 −% 0 · · · 0

−% 1 + %2
−% · · · 0

0 −% 1 + %2
· · · 0

...
...

...
. . .

...

0 0 0 · · · 1

 ,

and S the diagonal matrix with entries Si i = σi = τ−1
i . Using X = (1, 1, . . . , 1)t and Eq. (5),

we find that the inverse of the variance V(n, δ) of the estimated mean is

V−1(n, δ) =

n∑
i, j=0

(R−1)i jτiτ j

=
1

1 − %2

[
n∑

i=0

τ 2
i + %2

n−1∑
i=1

τ 2
i − 2%

n−1∑
i=0

τiτi+1

]

=
1

1 − %2

[
(1 − %)2

n∑
i=0

τ 2
i + %

n−1∑
i=0

(τi+1 − τi )
2

+ %(1 − %)(τ (0)2
+ τ(1)2)

]
. (30)

Since xn,i = i/n, we can use the trapezoidal rule for numerical integration to approximate the
sums (see Ref. [22])

1
n

n∑
i=0

τ 2
i =

∫ 1

0
τ(s)2ds +

1
2n

(
τ(0)2

+ τ(1)2
)

+ O(n−2)

and, using the relation (τi+1 − τi ) = (1/n)τ ′

i + (1/2n2)τ ′′

i + O(n−3),

n
n−1∑
i=0

(τi+1 − τi )
2

=
1
n

n∑
i=0

(τ ′

i )
2
−

1
n
τ ′(1)2

+
1

n2

n∑
i=0

τ ′

i τ
′′

i + O(n−2)

=

∫ 1

0
τ ′(s)2ds −

1
2n

(
τ ′(1)2

− τ ′(0)2
)

+
1

2n

∫ 1

0

d
ds

(
τ ′(s)2

)
+ O(n−2)

=

∫ 1

0
τ ′(s)2ds + O(n−2).

Noting that % = exp(−(δn)−1), it follows that

V−1(n, δ) =
1
δ

f
(
(δn)−1

)(∫ 1

0
τ(s)2ds + O(n−2)

)
+

1
2
(τ (0)2

+ τ(1)2)

+ δg
(
(δn)−1

)(∫ 1

0
τ ′(s)2ds + O(n−2)

)
,
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where f (x) =
(
1 − e−x

)
/x
(
1 + e−x

)
and g(x) = xe−x/

(
1 − e−2x

)
. For δn � 1, these

functions both behave as

lim
δn→∞

f
(
(δn)−1

)
=

1
2

+ O
(
(δn)−2

)
lim

δn→∞
g
(
(δn)−1

)
=

1
2

+ O
(
(δn)−2

)
which produces the desired result, Eq. (29). �

Note that the usual result for uncorrelated errors (δ = 0) may be recovered from (30) by
simply setting % = 0. In this case, the inverse variance is simply the sum of n positive terms,
implying the familiar relationship V ∼ n−1 for n uncorrelated measurements. For a large number
n of highly correlated measurements (δn � 1), we may ignore the higher order terms in Eq. (29)
of Theorem 2, and the variance of the estimate converges to

V =
2δ∫ 1

0 τ(s)2ds + δ
(
τ(0)2 + τ(1)2

)
+ δ2

∫ 1
0 τ ′(s)2ds

. (31)

Examples with δ > 0 and linear inverse variance τ(s) = 1 + αs, with α = 1 are shown in
Fig. 3, with the results for finite n summed numerically and the limit n → ∞ from Eq. (31). The
value of V converges rapidly as n → ∞ except near δ = 0, where V ∼ n−1. The form of Eq.
(31), including the behavior V(n, δ) ∼ 1/δ for large δ, is evident. The maximum of V(n, δ) with
respect to δ occurs at

δ2
=

∫ 1
0 τ(s)2ds∫ 1
0 τ ′(s)2ds

.

That is, V decreases if the correlation length δ is larger than the typical scale for change of τ(x).
In Fig. 4 we show V(n, δ) as a function of n for α = 1 and three values of δ. These results,

similar to those of Ref. [9], show that V(n, δ) converges to a positive value as n → ∞, unless
δ = 0. There is an initial decrease, when n . 1/δ; to the right of this region V(n, δ) is nearly
constant.

In Fig. 5 we show results for a constant inverse variance τ(s) = 1 (i.e. α = 0) both
numerically for finite n and the asymptotic result [Eq. (31)] for n → ∞. Again, the results
converge rapidly with n except near δ = 0, with V → τ−2

= 1 as δ → ∞.
Notice that these results show that V(n, δ) approaches a limiting curve as n → ∞. Except

for small δ, the convergence is quite rapid due to the absence of corrections of order n−1, as
mentioned above. The results for α = 1 show the generic situation of V(n, δ) → 0 as δ → ∞;
those with α = 0 show the special situation in which V(n, δ) approaches a positive constant in
that limit. As long as δ > 0, the variance of the estimate V(n, δ) becomes constant with respect
to n for n & 1/δ and has a finite limit as n → ∞, showing that there is no advantage to be gained
by increasing the number of measurements at points xn,i past n ∼ 1/δ.

5. Strong correlations among some measurements

In Sections 2 through 4, we have studied in depth the case in which the rank of the covariance
matrix Σ becomes unity for κ = 0. To generalize, we suppose the rank becomes r ′ in
some limit, with 1 ≤ r ′ < n. This can occur, for example, if two distinct and uncorrelated
types of measurements are made. (This situation was present in the plasma reconstruction
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Fig. 3. Variance V as a function of δ for τ(1) = 1 and α = 1. The cases for n = 2, 7 are summed numerically and the
case V limit for n → ∞ is from the analytic limit (31) in Theorem 2.

Fig. 4. Variance of the estimate V as a function of n for δ = 0, 0.2, 0.5, 1, with α = 1.
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Fig. 5. Variance of the estimate V as a function of δ for τ(1) = 1, α = 0 and (a) n = 2, 7, summed numerically, and (b)
the limiting value V limit for n → ∞ from the analytic limit (31) in Theorem 2.

studies of Ref. [9], where magnetic field measurements external to the plasma and pressure
measurements internal to the plasma were used.) For example, suppose one type of measurement,
for i = 1, . . . , r ′

− 1 has a correlation matrix of the form R(1)
= %

|i− j |
1 and a second type, for

i = r ′, . . . , n has R(2)
= %

|i− j |
2 . We then have Σ = SRS, with

R =

[
R(1) 0

0 R(2)

]
.

Then for %2 = 1, but |%1| < 1, the rank of R, and therefore the rank of Σ , equals r ′.
In this case, the heuristic procedure described in Section 3 leads, in the limit %2 → 1, to a

linear system of equations subjected to noise

Z j = vt
j Xβ + λ

1/2
j ξ j j = 1, . . . , r ′,

and a noise-free subspace

Z j = vt
j Xβ j = r ′

+ 1, . . . , n.
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If n−r ′
≥ m, the second set of equations determines β̂ exactly and the variance of the estimate is

zero. If, on the other hand, n − r ′ < m, the second set of equations has a null space of dimension
m − n + r ′. That is, there are n − r ′ linearly independent linear combinations of the βi that
are determined exactly. In other words, the covariance matrix of the estimate has rank n − r ′,
i.e. n − r ′ zero eigenvalues and m − n + r ′ nonzero eigenvalues.

Note that the previous arguments allow for the relaxation of the assumption in Theorem 1 of
Section 3.2 that the covariance matrix Σ remains of full rank n for κ > 0. A proof of the most
general case includes the possibility of multiple rank changes n → r ′

→ r ′′
→ · · · → 1 as κ

decreases. At each rank change the discussion above applies and additional linear combinations
of the parameters are determined until, in the limit, all are determined.

6. Summary and discussion

In its fundamental form, the main result of this paper, given in Section 3, is the following:
in the limit of full correlation κ → 0 [see Eq. (6)], the covariance matrix V of the estimate
β̂ = (β̂1, . . . , β̂m) generically vanishes. That is, its trace, the total variance of V, vanishes.
The exceptions to this rule occur when the vector of signed deviations (e1σ1, . . . , enσn)t of
the measurements is in the range space of the design matrix X. We explained the decrease and
eventual vanishing of trace(V) by means of simple examples in Section 2, and also showed
the relationship between this phenomenon and negative weighting, in which the estimate is a
weighted average of the measurements, with some weights negative.

This result is so surprising that it suggests a “free lunch” possibility. The idea that stronger
correlations can be obtained simply by packing in closer measurements has been studied in
Section 4. It is found that the covariance of the estimate does indeed decrease as the number
n of measurements increases, but this decrease flattens when δ & 1x , where δ is the correlation
length scale and 1x is the spacing between measurements. The interpretation of this result is that
for the variance to decrease with increasing number of measurements, the measurement spacing
must not be much smaller than the correlation length. Further, from (31) we have concluded that
the variance decreases with correlation length δ if δ is greater than the typical length scale for
variations in the signal-to-noise ratio.

We have addressed more general covariance structures in Section 5. We considered a
generalization of the condition that, as κ → 0, the rank of the covariance matrix Σ goes from
n to unity. This generalization deals with cases in which this rank decreases from n to r ′ as
κ decreases, i.e. cases in which some measurements, but not all, become fully correlated. In
this case, the result is unchanged if r ′

≥ m; if r ′ < m, however, the estimate is not completely
determined in the limit of large correlations, but a linearly independent set of n−r ′ combinations
are determined exactly.
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