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We study the scalar perturbation in the background of the charged Kaluza–Klein black holes with
squashed horizons. We find that the position of infinite discontinuities of the heat capacities can
be reflected in quasinormal spectrum. This shows the possible non-trivial relation between the
thermodynamical and dynamical properties of black holes.
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Quasinormal mode (QNM) of black holes has been an intriguing subject of discussions for the last three decades [1–3]. It is believed that
QNM is a characteristic sound of black holes which could lead to the direct identification of the black hole existence through gravitational
wave observations to be realized in the near future [1,2]. In addition to its potential astrophysical interest, theoretically QNM was believed
as a tool to learn more about black hole and was even argued as a testing ground for fundamental physics. It was found that the QNMs
of anti-de Sitter (AdS) black holes have direct interpretation in terms of the dual conformal field theory (CFT) [3–9]. This could serve as a
support of the AdS/CFT correspondence. Attempts of using QNMs to investigate the dS/CFT correspondence have also been proposed [10].
Recently it was argued that QNMs might reflect the possible connection between the classical vibrations of a black hole spacetime and
various quantum aspects by relating the real part of the QNM frequencies to the Barbero–Immirzi (BI) parameter, which was introduced
by hand in order that loop quantum gravity reproduces correctly the black hole entropy [11,12]. But the direct connection has not been
found in AdS black hole background [13].

It is of great interest to investigate whether QNM can reflect more physics of black holes. Recently some indications have been found
that black hole phase transitions can show up in the QNM spectrum [14–16]. This is interesting since it might be the first phenomenon
telling us the existence of the phase transition in black hole physics. In order to examine whether the QNM is an effective probe of phase
transitions, we need to investigate more general black hole configurations with more general field perturbations. Jing et al. [17] computed
the QNM of Reissner–Nordstrom (RN) black hole and claimed that they found the second order phase transition point predicted by Davies
[18] where the heat capacity appears singular. However in [19], it was argued that the result in [17] might probably be a numerical
coincidence and the conjectured correspondence between QNM and Davis’s phase transition does not straightforwardly generalize to
Kerr or Schwarzschild AdS metrics. Whereas calculations in [19] cannot rule out the relation between dynamical and thermodynamical
properties of black holes but suggest that such a relation is non-trivial.

In the study of black hole phase transition, there have been a lot of debate on Davies’ phase transition point. Around Davies’ point, the
black holes’ event horizons do not lose their regularities and internal states of black holes do not change significantly. It was considered
more reasonable that the phase transition of black hole occurs when a nonextremal black hole approaches its extremal limit, since all
second moments of non-equilibrium fluctuations diverge there characterizing the second order phase transition [20]. Moreover extremal
black holes are very different from nonextreme holes. Extremal holes just have superradiation but without Hawking radiation since its
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Hawking temperature vanishes. The extremal black holes’ geometric structures are also different from their nonextremal counterparts,
since the singularity will be naked beyond the extremal limit. Davies’ points for the divergence of the heat capacity were later proved in
fact as turning points which are related to the changes of thermodynamical stability, especially in the canonical ensemble [21]. Whether
the thermodynamical stability can be reflected from the dynamical stability such as the QNM spectra has been under heated discussions
recently (for a review see [22]). For a black brane solution, it was argued that the thermodynamical stability is often related to dynamical
stability [23]. But whether this correspondence is profound in all spacetimes is still not clear.

In this work we are going to study the QNM in the background of charged Kaluza–Klein (KK) black hole with squashed horizons
[24] and investigate whether the QNM spectra can reflect the Davies’ points of thermodynamical stability in this background. In [25], the
thermodynamic properties of the KK black hole are discussed and compared to its undeformed five-dimensional RN black hole counterpart.
The Davies’ thermodynamical stability point was found where the heat capacity diverges when the horizon of the black hole crosses the
critical value. We will examine the scalar perturbation in this background and see whether the thermodynamic stability can be reflected
in the QNM spectrum.

The five-dimensional charged KK black hole with squashed horizons is described by [24]

ds2 = − f (r)dt2 + k2(r)

f (r)
dr2 + r2

4
k(r)dΩ2 + r2

4
(dψ + cos θ dφ)2, (1)

where dΩ2 = dθ2 + sin2 θ dφ2 is the metric of the unit sphere and

f (r) = (r2 − r2+)(r2 − r2−)

r4
, k(r) = (r2∞ − r2+)(r2∞ − r2−)

(r2∞ − r2)2
. (2)

Here 0 < θ < π , 0 < φ < 2π and 0 < ψ < 4π are Euler angles. The gauge potential is given by

A = ±
√

3

2

(
r+r−

r2
− r+r−

r2∞

)
dt. (3)

As in the RN black hole, the coordinate singularities r = r+ and r = r− correspond to the outer and inner horizons of the black hole,
respectively. r∞ is the spatial infinity. In the parameter space 0 < r− � r+ < r∞ , r is restricted within the range 0 < r < r∞ . The shape of
black hole horizon is deformed by the parameter k(r+).

In the metric (1), the intrinsic singularity is just the one at r = 0. This can be seen by introducing a new radial coordinate ρ as

ρ = ρ0
r2

r2∞ − r2
, (4)

with

ρ2
0 = k0

4
r2∞, k0 = k(r = 0) = (r2∞ − r2+)(r2∞ − r2−)

r4∞
. (5)

At the spatial infinity r → r∞,ρ → ∞. Thus in the new coordinate, ρ varies from 0 to ∞ when r changes from 0 to r∞ . The metric (1)
can be rewritten as

ds2 = −F (ρ)dτ 2 + K 2(ρ)

F (ρ)
dρ2 + ρ2 K 2(ρ)dΩ2 + r2∞

4K 2(ρ)
(dψ + cos θ dφ)2, (6)

with

F (ρ) =
(

1 − ρ+
ρ

)(
1 − ρ−

ρ

)
, K 2(ρ) = 1 + ρ0

ρ
. (7)

Here we have defined the proper time τ = 2ρ0t/r∞ for the observer at infinity. The mass and charge for this squashed KK black hole are
defined by

M = 3πr∞
4G

(ρ+ + ρ−), Q =
√

3πr∞
G

√
ρ+ρ−, (8)

where ρ± = ρ0r2±/(r2∞ − r2±) are the outer and inner horizons of the black hole in the new coordinate.
The Hawking temperature and entropy of the black hole can be expressed as [25]

T H = ρ+ − ρ−
4πρ2+

√
ρ+

ρ+ + ρ0
= r2+ − r2−

2πr3+
r2∞

r2∞ − r2−

√
r2∞ − r2+
r2∞ − r2−

, (9)

S = 4π2(ρ+)
3
2 (ρ0 + ρ−)

1
2 (ρ0 + ρ−) = π2r3+

2

r2∞ − r2−
r2∞ − r2+

. (10)

Several limits of this charged squashed KK black hole were discussed in [24,25]. When r∞ → ∞, the squashing function k in (2) tends
to be unity so that the metric (1) reduces to that of five-dimensional RN black hole. The entropy and the Hawking temperature also reduce
to those of five-dimensional RN cases. When r− goes to zero, we have the metric for the neutral black hole with squashed horizon. If
we have r− = r+ , we have deformed five-dimensional extremal RN black hole with one degenerate horizon whose Hawking temperature
vanishes. For the case r+, r− → r∞ , with ρ± finite, it is convenient to see from (6) that because ρ0 → 0, K 2(ρ) → 1, the metric describes
the four-dimensional RN black hole with a twisted S1 bundle, where the size of the S1 fiber takes the constant value

√
ρ+ρ− = r∞/2 [24].

Its temperature reduces to that of a four-dimensional black hole in this limit.
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Table 1
Numerical data compared with H. Ishihara’s work, with ρ0 = 0.5, ρ+ = 1

L λ WKB (6th order) Frobrnius Leaver

10 0 3.5194 − 0.15956i 3.510564 − 0.159674i 3.5105636 − 0.1596744i
10 1/2 3.5336 − 0.15821i 3.529225 − 0.158317i 3.5292246 − 0.1583174i
10 1 3.5898 − 0.15413i 3.585417 − 0.154231i 3.5854166 − 0.1542309i
10 3/2 3.6842 − 0.14729i 3.679778 − 0.147368i 3.6797783 − 0.1473680i
10 2 3.8178 − 0.13759i 3.813421 − 0.137647i 3.8134213 − 0.1376469i
10 5/2 3.9924 − 0.12493i 3.988012 − 0.124944i 3.9880116 − 0.1249440i
10 3 4.2103 − 0.10912i 4.205922 − 0.109076i 4.2059218 − 0.1090755i
10 7/2 4.4747 − 0.08988i 4.470523 − 0.089745i 4.4705233 − 0.0897455i

Fig. 1. The left two panels are trajectories in the complex ω plane of scalar QNMs around squashed KK black holes, for n = 0, n = 1, with L = 0 and ρ0 = 0. The others are
real parts (Re(ω)) and imaginary parts (Im(ω)) versus parameter a = 1 − b.

Fig. 2. The left two panels are trajectories in the complex ω plane of scalar QNMs around squashed KK black holes, for n = 0, n = 1, with L = 0 and ρ0 = 1. The others are
real parts (Re(ω)) and imaginary parts (Im(ω)) versus parameter a = 1 − b.
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Table 2
The comparison of values of critical points for QNMs (aQ ) and the singular point of the heat capacity (aD ), when λ = 0

(λ, L,n,ρ0) �a = |aQ − aD | �a
aQ

(0, 0, 1, 0) 0.022 4.21%
(0, 0, 1, 1) 0.016 3.85%
(0, 0, 1, 2) 0.018 3.85%
(0, 1, 4, 0) 0.007 0.953%
(0, 1, 4, 1) 0.0082 2.091%
(0, 1, 4, 2) 0.0041 1.105%

Fig. 3. The left two panels are trajectories in the complex ω plane of scalar QNMs around squashed KK black holes, for n = 0, n = 1, with L = 0 and ρ0 = 2. The others are
real parts (Re(ω)) and imaginary parts (Im(ω)) versus parameter a = 1 − b.

Fig. 4. The left two panels are trajectories in the complex ω plane of scalar QNMs around squashed KK black holes, for n = 3, n = 4, with L = 1 and ρ0 = 0. The others are
real parts (Re(ω)) and imaginary parts (Im(ω)) versus parameter a = 1 − b.

The heat capacity of the black hole for the fixed Q is given by [25]

C Q = T

(
∂ S

∂T

)
Q

= π2r3+
2

r2∞ − r2−
r2∞ − r2+

(r2+ − r2−)(3r4∞ − r2+r2− − r2∞(r2+ + r2−))

r4∞(5r2− − r2+) − r2−(2r2∞ − r2+)(3r2+ + r2−)
. (11)

Since 3r4∞ − r2+r2− − r2∞(r2+ + r2−) > 0, the sign of the heat capacity C Q is determined by the term r4∞(5r2− − r2+) − r2−(2r2∞ − r2+)(3r2+ + r2−)

in the denominator. It was found that the Davies’ point exists at rcrit [25] and one has C Q > 0 for r+ < rcrit while C Q < 0 for r+ > rcrit
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Fig. 5. The left two panels are trajectories in the complex ω plane of scalar QNMs around squashed KK black holes, for n = 3, n = 4, with L = 1 and ρ0 = 1. The others are
real parts (Re(ω)) and imaginary parts (Im(ω)) versus parameter a = 1 − b.

Fig. 6. The left two panels are trajectories in the complex ω plane of scalar QNMs around squashed KK black holes, for n = 3, n = 4, with L = 1 and ρ0 = 2. The others are
real parts (Re(ω)) and imaginary parts (Im(ω)) versus parameter a = 1 − b.

and C Q diverges when r+ crosses this critical value rcrit. In the new coordinate, the Davies’ point of the divergence of heat capacity C Q

can be obtained from

ρ0(ρ+ − 5ρ−) + (ρ+ − 3ρ−)(ρ+ + ρ−) = 0. (12)

If we take b = ρ+ − ρ− , Eq. (12) can be rewritten as

b = (ρ+ + ρ−)(ρ+ + ρ− + 2ρ0)

2(ρ+ + ρ−) + 3ρ0
. (13)

In the limit ρ0 → 0, we have b = (ρ+ + ρ−)/2 and ρ+ = 3ρ− , which is the Davies’ point of thermal stability in the four-dimensional
RN black hole. When ρ0 → ∞, i.e., r∞ → ∞, we obtain b = 2/3(ρ+ + ρ−) and ρ+ = 5ρ− , which is consistent with the Davies’ point in
five-dimensional RN black hole.

In the following we are going to investigate whether the Davies’ points on thermal stability can be reflected in QNM. We will concen-
trate on the massless scalar perturbation around the charged KK black hole with squashed horizons. The wave equation for the massless
scalar field Φ(τ ,ρ, θ,φ,ψ) in the background (6) obeys

1√−g
∂μ

(√−g gμν∂ν

)
Φ(τ ,ρ, θ,φ,ψ) = 0. (14)
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Fig. 7. The left four panels are trajectories in the complex ω plane of scalar QNMs around squashed KK black holes, for n = 3, n = 4, with L = 1, λ = 0.5, ρ0 = 2 and 5. The
others are real parts (Re(ω)) and imaginary parts (Im(ω)) versus parameter a.

Taking the ansatz Φ(τ ,ρ, θ,φ,ψ) = e−iωτ R(ρ)eimφ+iλψ S(θ), where S(θ) is the so-called spheroidal harmonics, we can obtain the equation

1

sin θ

d

dθ

[
sin θ

d

dθ

]
S(θ) −

[
(m − λ cos θ)2

sin2 θ
− Elmλ

]
S(θ) = 0, (15)

for the angular part. The eigenvalue of this angular equation (15) is Elmλ = L(L + 1) − λ2. The radial equation reads

F (ρ)

ρ2 K 2(ρ)

d

dρ

[
ρ2 F (ρ)

dR(ρ)

dρ

]
+ [

ω2 − V (ρ)
]

R(ρ) = 0, (16)

with

V (ρ) = F (ρ)

(
L(L + 1) − λ2

ρ2 K 2(ρ)
+ 4λ2 K 2(ρ)

r2∞

)
. (17)

The second term in the effective potential came from the fifth dimension of the spacetime. It plays a role of the mass of the field in the
radial equation. In general, due to the presence of this term, it is difficult to calculate the QNM through continued fraction method.

Boundary conditions on the wave function R(ρ) at the outer horizon and the spatial infinity can be expressed as

R(ρ) ∼

⎧⎪⎨
⎪⎩

(ρ − ρ+)
iρ

3/2
+

√
ρ0+ρ+ w

ρ−−ρ+ , ρ → ρ+,

i(ρ0+2(ρ−+ρ+))w2

2χ − i(2ρ0+ρ−+ρ+)λ2

2(ρ0+ρ−)(ρ0+ρ+)χ −1 iχρ

(18)
ρ e , ρ → ∞.
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Fig. 8. The left four panels are trajectories in the complex ω plane of scalar QNMs around squashed KK black holes, for n = 3, n = 4, with L = 1, λ = 1, ρ0 = 2 and 5. The
others are real parts (Re(ω)) and imaginary parts (Im(ω)) versus parameter a.

Table 3
The comparison of values of critical points for QNMs (aQ ) and the singular point of the heat capacity (aD ), when λ = 0.5 and λ = 1

(λ, L,n,ρ0) �a = |aQ − aD | �a
aQ

(0.5, 1, 4, 2) 0.0035 0.942%
(0.5, 1, 4, 5) 0.0237 6.29%
(1, 1, 4, 2) 0.0001 0.027%
(1, 1, 4, 5) 0.0330 8.56%

A solution of Eq. (16) that satisfies the above boundary condition can be written as

R(ρ) = ei(ρ−ρ−)χ (ρ − ρ−)
iρ

3/2
+

√
ρ0+ρ−ω

ρ+−ρ− + i[ρ0+2(ρ−+ρ+)]ω2

2χ − i(2ρ0+ρ−+ρ+)λ2

2(ρ0+ρ−)(ρ0+ρ+)χ (ρ − ρ+)
iρ

3/2
+

√
ρ0+ρ+ω

ρ−−ρ+
∞∑

m=0

am

(
ρ − ρ+
ρ − ρ−

)m

, (19)

where χ2 = ω2 − λ2

(ρ0+ρ−)(ρ0+ρ+)
. The sequence of expansion coefficient am: m = 1,2,3, . . . is determined by the recurrence relation

starting from a0 = 1

α0a1 + β0a0 = 0, αmam+1 + βmam + γmam−1 = 0, m = 1,2, . . . . (20)

The recurrence coefficients αm , βm , γm are given by

αm = m2 + (C0 + 1)m + C0, βm = −2m2 + (C1 + 2)m + C3, γm = m2 + (C2 − 3)m + C4 − C2 + 2, (21)
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where Cm are

C0 = 2i
√

ρ0 + ρ+ωρ
3/2
+

ρ− − ρ+
+ 1, (22)

C1 = −4i
√

ρ0 + ρ+ωρ
3/2
+

ρ− − ρ+
+ i[(ρ0 + ρ−)(ρ2

0 + 5ρ+ρ0 + 4ρ2+)ω2 + (−2ρ0 + ρ− − 3ρ+)λ2]
(ρ0 + ρ−)(ρ0 + ρ+)χ

− 4, (23)

C2 = 3 − i[ρ0 + 2(ρ− + ρ+)]ω2

χ
+ 2iρ3/2

+
√

ρ0 + ρ+ω

ρ− − ρ+
+ i(2ρ0 + ρ− + ρ+)λ2

(ρ0 + ρ−)(ρ0 + ρ+)χ
, (24)

C3 = 1

2(ρ0 + ρ−)(ρ− − ρ+)(ρ0 + ρ+)χ

{
λ2[2(ρ0 + ρ+)χ(ρ− − ρ+)2 + i(−2ρ0 + ρ− − 3ρ+)(ρ− − ρ+)

+ 2ρ
3/2
+

√
ρ0 + ρ+(2ρ0 − ρ− + 3ρ+)ω

] − (ρ0 + ρ−)(ρ0 + ρ+)
[(

2ρ2+(3ρ0 + 4ρ+)χ − i(ρ− − ρ+)(ρ0 + 4ρ+)
)
ω2 (25)

+ 2ρ
3/2
+

√
ρ0 + ρ+

(
(ρ0 + 4ρ+)ω2 + 2iχ

)
ω + 2

(
L2 + L + 1

)
(ρ− − ρ+)χ

]}
,

C4 = (ρ0 + ρ−)ω2ρ3−
(ρ+ − ρ−)2

+ 1

4

{
2iρ3/2

+
√

ρ0 + ρ+ω

ρ− − ρ+
− i[ρ0 + 2(ρ− + ρ+)]ω2

χ
+ i(2ρ0 + ρ− + ρ+)λ2

(ρ0 + ρ−)(ρ0 + ρ+)χ
+ 2

}2

. (26)

If the boundary condition (18) is satisfied and the series in (20) converge for the given L, the frequency ω is a root of the continued
fraction equation[

βm − αm−1γm

βm−1−
αm−2γm−1

βm−2− · · · α0γ0

β0

]
=

[
αmγm+1

βm+1−
αm+1γm+2

βm+2−
αm+2γm+3

βm+3− · · ·
]

(m = 1,2, . . .). (27)

This means that we can calculate the QNM frequencies of the charged KK black hole with squashed horizons by solving the above
continued fraction equation (27). This equation is impossible to be solved analytically. We can only rely on the numerical calculation to
obtain the QNM frequencies.

Taking the limit Q → 0, we have compared our numerical results by using Leaver’s method with that obtained in [27] by other
methods. The comparison is shown in Table 1, which shows good agreement and in addition we see that Leaver’s method we adopted
gives more precise result.

In Figs. 1–3 we display the QNM frequencies of scalar perturbation around the squashed KK black holes with charge for L = 0, λ = 0,
with overtone numbers n = 0,1 and ρ0 = 0,1,2, respectively. We plot both the real part and the imaginary part of QNM frequencies in
functions of a = 1 − b. Black hole horizons are related to a by ρ+ = 1 − a/2,ρ− = a/2. We observe that over the critical overtone number
(nc = 1 for L = 0 in the scalar perturbation), both the real part and the imaginary part of QNM frequencies will behave oscillatory when
a crosses a critical value aQ and meanwhile the complex ω plan will exhibit the spiral-like shape. For ρ0 = 0, which is the limiting case
of the four-dimensional RN black hole with a twisted S1 bundle, we observed that the real part of the QNM frequency arrives at its first
maximum of its oscillation approximately at the same position as the Davies’ point aD = 1/2. The difference between the critical point
from the QNM aQ from that of the Davies’ point is very small, |aQ −aD | = 0.022. For ρ0 not equaling to zero, the Davies’ thermal stability
point aD can be calculated through (12) and from the behavior of QNM frequencies we can read the critical value aQ when the oscillation
of the real and imaginary parts of frequencies start. The results are shown in Table 2. It is interesting to find that critical points got from
QNM agree very well to those of Davies’ points.

In Figs. 4–6, we show results for L = 1 and λ = 0, with overtone numbers n = 3,4 and ρ0 = 0,1,2, respectively. The Davies’ points are
the same for each selected values of ρ0 no matter the change of L,n. As was observed in [17], with the increase of L, we will observe the
spiral-like shape of the complex ω plan and oscillatory real and imaginary frequencies of QNM over higher critical overtone number nc ,
namely nc = 4 when L = 1 for scalar perturbation. The oscillations of the QNM frequencies start when a over the critical value aQ , which
is again very much in agreement with Davies’ critical point aD . The results of their differences are shown in Table 2. Choosing very big
value of ρ0, we observed that the critical point of a from QNM will go towards 1/3 which is the Davies point for the five-dimensional RN
black hole for ρ0 → ∞.

In the following we report our results for taking λ �= 0. Numerical calculation for the case λ �= 0 is much more time consuming than
the case with λ = 0. In Fig. 7, we show results for L = 1, n = 3, 4 with ρ0 = 2, 5, respectively by choosing λ = 0.5. In Fig. 8 we show
results for the same choice of L, n but with λ = 1. From these figures, it is obvious that the spiral-like shape still appears at the critical
overtone number nc , namely nc = 4 for L = 1 with different ρ0 and nonzero λ in the scalar perturbation. The critical moment to exhibit
the spiral behavior in QNM again agrees well with the Davies thermodynamical point which is shown in Table 3.

In summary we have studied the QNM of scalar perturbation in the background of the charged KK black hole with squashed horizons.
We observed that over some critical value of the black hole parameter, both the real part and the imaginary part of the QNMs will
experience oscillations and the complex ω plan will exhibit the spiral-like shape. Interestingly this critical value agrees well to the Davies’
point on the thermal stability of black holes obtained from the singular position of the heat capacity. Our limiting case returns to the RN
black hole, where the relation was observed in [17]. The correspondence of the critical point observed in QNM to the position of infinite
discontinuities of the heat capacities indicates that QNM may shed the light on the turning point of the thermal stability. It is of interest
to generalize this discussion to other backgrounds and for different fields’ perturbations.

For a black brane solution it was conjectured that black holes which lack local thermodynamical stability often also lack stability
against small perturbations [23]. This conjecture might only hold for black holes with translation symmetry, such as black string. In our
background spacetime we observed that on both sides of the turning point of the thermodynamical stability, the imaginary frequencies
of the QNM are negative, which tells us that the scalar perturbation is always stable even at the critical point. Recently the metric
perturbations were discussed [26,27] and it was indicated that dynamically the squashed KK black hole is stable, this is consistent with
our result. This result shows that in the background we are studying it has dynamical stability even when thermodynamical instability
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appears. This is quite interesting, which suggests that the relation between the dynamical and thermodynamical stabilities of black holes
is non-trivial and further investigations are called for.

Acknowledgements

We thanks J.L. Jing and Q.Y. Pan for helpful discussions. This work was partially supported by NNSF of China, Shanghai Education
Commission and Shanghai Science and Technology Commission. S.B. Chen’s work was partially supported by the China Postdoctoral Science
Foundation under Grant No. 20070410685, the Scientific Research Fund of Hunan Provincial Education Department Grant No. 07B043
and the National Basic Research Program of China under Grant No. 2003CB716300. B. Wang would like to acknowledge the associate
programme in ICTP where the work was completed.

References

[1] H.P. Nollert, Class. Quantum Grav. 16 (1999) R159.
[2] K.D. Kokkotas, B.G. Schmidt, Living Rev. Rel. 2 (1999) 2.
[3] B. Wang, Braz. J. Phys. 35 (2005) 1029.
[4] G.T. Horowitz, V.E. Hubeny, Phys. Rev. D 62 (2000) 024027.
[5] B. Wang, C.Y. Lin, E. Abdalla, Phys. Lett. B 481 (2000) 79;

B. Wang, C. Molina, E. Abdalla, Phys. Rev. D 63 (2001) 084001;
J.M. Zhu, B. Wang, E. Abdalla, Phys. Rev. D 63 (2001) 124004.

[6] V. Cardoso, J.P.S. Lemos, Phys. Rev. D 63 (2001) 124015;
V. Cardoso, J.P.S. Lemos, Phys. Rev. D 64 (2001) 084017;
E. Berti, K.D. Kokkotas, Phys. Rev. D 67 (2003) 064020;
V. Cardoso, J.P.S. Lemos, Class. Quantum Grav. 18 (2001) 5257;
E. Winstanley, Phys. Rev. D 64 (2001) 104010;
J. Crisstomo, S. Lepe, J. Saavedra, Class. Quantum Grav. 21 (2004) 2801;
S. Lepe, F. Mendez, J. Saavedra, L. Vergara, Class. Quantum Grav. 20 (2003) 2417.

[7] D. Birmingham, I. Sachs, S.N. Solodukhin, Phys. Rev. Lett. 88 (2002) 151301;
D. Birmingham, Phys. Rev. D 64 (2001) 064024.

[8] B. Wang, E. Abdalla, R.B. Mann, Phys. Rev. D 65 (2002) 084006;
J.S.F. Chan, R.B. Mann, Phys. Rev. D 59 (1999) 064025.

[9] S. Musiri, G. Siopsis, Phys. Lett. B 576 (2003) 309;
R. Aros, C. Martinez, R. Troncoso, J. Zanelli, Phys. Rev. D 67 (2003) 044014;
A. Nunez, A.O. Starinets, Phys. Rev. D 67 (2003) 124013.

[10] E. Abdalla, B. Wang, A. Lima-Santos, W.G. Qiu, Phys. Lett. B 538 (2002) 435;
E. Abdalla, K.H. Castello-Branco, A. Lima-Santos, Phys. Rev. D 66 (2002) 104018.

[11] S. Hod, Phys. Rev. Lett. 81 (1998) 4293;
A. Corichi, Phys. Rev. D 67 (2003) 087502;
L. Motl, gr-qc/0212096;
L. Motl, A. Neitzke, hep-th/0301173;
A. Maassen van den Brink, gr-qc/0303095;
J. Baez, gr-qc/0303027;
O. Dreyer, Phys. Rev. Lett. 90 (2003) 08130;
G. Kunstatter, Phys. Rev. Lett. 90 (2003) 161301;
N. Andersson, C.J. Howls, gr-qc/0307020;
V. Cardoso, J. Natario, R. Schiappa, hep-th/0403132.

[12] V. Cardoso, J.P.S. Lemos, Phys. Rev. D 67 (2003) 084020;
K.H.C. Castello-Branco, E. Abdalla, gr-qc/0309090.

[13] B. Wang, C.Y. Lin, C. Molina, Phys. Rev. D 70 (2004) 064025.
[14] G. Koutsoumbas, S. Musiri, E. Papantonopoulos, G. Siopsis, JHEP 0610 (2006) 006;

G. Koutsoumbas, E. Papantonopoulos, G. Siopsis, arXiv: 0801.4921.
[15] J. Shen, B. Wang, C.Y. Lin, R.G. Cai, R.K. Su, JHEP 0707 (2007) 037;

X.P. Rao, B. Wang, G.H. Yang, Phys. Lett. B 649 (2007) 472.
[16] Y.S. Myung, arXiv: 0801.2434.
[17] J. Jing, Q. Pan, Phys. Lett. B 660 (2008) 13.
[18] P.C.W. Davies, Proc. R. Soc. London A 353 (1977) 499;

P.C.W. Davies, Class. Quantum Grav. 6 (1989) 1909.
[19] E. Berti, V. Cardoso, arXiv: 0802.1889.
[20] D. Pavon, J.M. Rube, Phys. Rev. D 37 (1988) 2052;

D. Pavon, Phys. Rev. D 43 (1991) 2495;
R.G. Cai, R.K. Su, P.K.N. Yu, Phys. Rev. D 48 (1993) 3473;
R.G. Cai, R.K. Su, P.K.N. Yu, Phys. Rev. D 52 (1995) 6186;
B. Wang, J.M. Zhu, Mod. Phys. Lett. A 10 (1995) 1269.

[21] O. Kaburaki, I. Okamoto, J. Katz, Phys. Rev. D 47 (1993) 2234;
J. Katz, I. Okamoto, O. Kaburaki, Class. Quantum Grav. 10 (1993) 1323.

[22] T. Harmark, V. Niarchos, N.A. Obers, Class. Quantum Grav. 24 (2007) R1.
[23] S.S. Gubser, I. Mitra, hep-th/0009126;

S.S. Gubser, I. Mitra, JHEP 0108 (2001) 018;
H.S. Reall, Phys. Rev. D 64 (2001) 044005.

[24] H. Ishihara, K. Matsuno, hep-th/0510094.
[25] R.G. Cai, L.M. Cao, N. Ohta, Phys. Lett. B 639 (2006) 354.
[26] M. Kimura, K. Murata, H. Ishihara, J. Soda, arXiv: 0712.4202.
[27] H. Ishihara, M. Kimura, R.A. Konoplya, K. Murata, J. Soda, arXiv: 0802.0655 [nucl-th].


	Quasinormal modes in the background of charged Kaluza-Klein black hole  with squashed horizons
	Acknowledgements
	References


