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Abstract

In this paper we prove the existence of a renormalized solution for a class of non coercive nonlinear
equations whose prototype is:

—Apu+bx)|Vul* =p in 2,
u=0 onos2,

wheres2 is a bounded open subset®¥ , N > 2, Ap isthe so callegh-Laplace operator, & p < N,
1 is a Radon measure with bounded variationsn0 < A < p — 1 andb belongs to the Lorentz
spaceL™N-1(92).
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Résumé

Dans cet article nous démontrons l'existence d'une solution renormalisée pour une classe
d’équations non linéaires non coercives dont le prototype est :

—Apu+bx)|Vul* = dans2,
u=20 suros2,
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ol £2 est un ouvert borné d&V, N > 2, Ap estlep-Laplacien, 1< p < N, u est une mesure de

Radon bornée, & A < p — 1 etb appartient a 'espace de Lorert?’-1(£2).
2003 Published by Editions scientifiques et médicales Elsevier SAS.
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1. Introduction

In this paper we consider a class of problems whose prototype is
—Apu~|—b(x)|Vu|)‘=;L in 2, (1.1)
u=0 onos, '

wheres2 is a bounded open subset®t, N > 2, A, is the so callegp-Laplace operator,
1< p < N, pis a Radon measure with bounded variation®@n0< 12 < p — 1 and
the coefficientb belongs to the Lorentz spade"-1(£2). We are interested in proving an
existence result.

This problem has two main features: on the one hand, the right-hand side is a measure
(and not an element of the dual spaWél’P’(Q)); on the other hand, the operator is in
general not coercive when the normeoin LV-1(£2) is not small. Those features produce
specific difficulties.

Let us begin with the problems induced by the fact that the right-hand side is a measure.
For the moment we assurhe= 0, i.e., that there is no nonlinear terx)|Vu|*.

In the linear case (wherp = 2), Stampacchia defined in [34] a notion of solution
of (1.1) by duality, for which he proved existence and uniqueness; he proved in particular
that this solution belongs tW&’q(Q) for everyg < N/(N — 1) and satisfies (1.1) in the
distributional sense. Stampacchia’s duality arguments have been extended to the nonlinear
case wherp = 2 ([30]), but not to the casp # 2.

The nonlinear case was firstly studied in [8,9] (and then in [14], where a term
b(x)|VulP~1 is considered). In these papers the existence of a solution which satisfies
the equation in the distributional sense is proven when2 — 1/N; this assumption op
ensures that the solution beIongsW/gl’q(Q) for everyg < N(p —1)/(N — 1) (note that
N(p-1/(N—-1)>1whenp >2-1/N).

There are however two difficulties when one considers this type of solution for (1.1).
On the first hand, whep is close to 1, i.e.p <2 —1/N, simple examples show that the
solution of (1.1) does not in general belong to the sgdéé(!)) (take the Dirac mass at
the center of a balf2). On the other hand, a classical counterexample ([33], see also [32])
shows that such a solution is, in general, not unique.

To overcome these difficulties two equivalent notions of solutions have been introduced,
the notion of entropy solution in [1,10] and the notion of renormalized solution in [26,29,
30], in the case where the measprbelongs taL.1(£2) orto L1(£2) + w-LP' (2);inthese
papers the existence and uniqueness of such solutions are proven. In [13] these notions of
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solution have been extended to the case of a general measure with bounded variation, and
an existence result is proven and (partial) uniqueness results obtained for “comparable”
solutions (see further results about uniqueness in [22]).

Let us finally explain the restriction4 p < N on p. Whenp > N, Sobolevembedding
theorem and a duality argument imply that the space of measures with bounded variation
on £ is a subspace oV ~1-7'(£2), which reconduces the problem to a classical one, and
the counterpart of the results of the present paper can therefore be found in [3,4,15,17] for
p > N.Whenp = N, existence and uniqueness results of a solution in the distributional
sense have been proven in [18,19,21] in the éase). We do not consider in the present
paper the casg = N which would lead to further technicalities.

Let us now pass to the problems induced by the nonlinear t&syiVu|*. When
belongs to the dual spadé—17'(£2), and wher. = p — 1, the use of the test functian
in (1.1) leads to

-1
f IVul? <l -1 @ el o o) + 1Ly iy [IVul [ L) el 1 @y (1:2)
2

with 1/p* =1/p — 1/N, which using Sobolev embedding produces an a priori estimate
when||b| v (g is sufficiently small. Whenib || ~ ) is large, Bottaro and Marina devel-
oped in [11] a technique which allowed them to prove an a priori estimate and an existence
and uniqueness result in the linear case. This existence result was generalized to the non-
linear case in [15]. Similar results were obtained by symmetrization techniques in [2—4,16,
17].

In the present paper, we face both difficulties (right-hand side measuré kmngde).
Our goal is to prove the existence of a renormalized solution for a class of problems
whose prototype is (1.1) (see Theorem 2.1, which is proven in Section 3). More precisely,
we prove the existence of a renormalized solution of (1.1) whehi0< p — 1, when
b e LN-1(£2) and wheru is a general measure with bounded variation.

The idea is to consider first the case whighé; v.1 ) is small; in this case the operator
is coercive. Hence, using the truncatifir(u) as a test function in (1.1), we easily obtain
that||VTk(u)||pr(m)N < Mk for everyk > 0, whereM = ||ullm, () + ||b|Vu|P*1||L1(_Q).
We then use the following result of [1] (that we slightly generalize in Appendix A):
when the truncationgj (v) of a functionv belong toW&"’(Q) and satisfy the inequality
IIVTk(v)IIfL,,(Q))N < Mk for all k > 0, thenv satisfies|||Vv|P*1||LNf,OQ(Q) < CoM.
Therefore, one has:

[1Vul? ™Y o ) < CoM = Colllilliy @) + [01Vul” ] 10)]
< Colllllay ) + 161 v [ IVl Ly )]

and when||b||  ~.1(g) is small, we obtain an a priori estimate, which allows one to prove
the existence result.

In the case whergb|| v, is not small, we use the technique of Bottaro—Marina,
which in some sense allows one to reduce the problem to a finite sequence of problems
with |5l v.15y Small and to prove again the existence of a renormalized solution.



M.F. Betta et al. / J. Math. Pures Appl. 82 (2003) 90-124 93

In conclusion, in the present paper we prove the existence of a renormalized solution
whenu is a Radon measure with bounded variation and when the lower-order term has
a growth likeb(x) |Vu|*, with 0< A < p — 1 and a coefficienb which belongs to the
Lorentz spacd.V-1(£2). This seems to be close to the optimal result that one can hope in
such a framework.

The present paper has been announced in [5].

In a forthcoming paper [6], we prove uniqueness results for a class of problems whose
prototype is a nondegenerated variation of (1.1), in the case where the right-hand side
belongs taL1(£2) + w1 () and where belongs to some Lebesgue spdcés?). Let
us note the following surprising and unsatisfactory fact: while we prove in the present
paper that there exists at least a renormalized solution of (1.1) fgra0< p — 1,
we prove in [6] that the renormalized solution of this problem (or more exactly of its
nondegenerated variation), if it exists, is unique wheq D < A*(N, p), where in some
casesp*(N, p) > p — 1, while in other cases* (N, p) < p — 1. Therefore, the intervals
in A for which we prove either existence or uniqueness do not coincide in general. The same
phenomenon appears in the case where one deals with usual weak solutions for right-hand
sides inWw 17’ (£2): we prove uniqueness results in this more classical framework in [7].

2. Definitions and main result

In this section, we recall the definition of a renormalized solution for nonlinear elliptic
problems with right-hand side a measure (cf. [13]), and we state our existence result. We
begin with a few preliminaries about the decomposition of measures (which can be found
in [13]) and about Lorentz spaces (see, e.g., [23,27,31]).

In the whole of this paper? is a bounded open subsetf’, N > 2, andp is a real
number, 1< p < N, with p’ defined by ¥p + 1/p’ = 1.

2.1. Decomposition of measures

We start recalling the definition gf-capacity. Thep-capacity cap(X., £2) of a compact
setK C £2 with respect ta2 is:

cap, (K, £2) =inf{ f IVol?’: 9 e CP(£2), 9 > XK},
2
whereyk is the characteristic function d&f (we will use the convention that itif= 4o00).
If U C 2 is an open set, then we denote
cap, (U, 2) =sup{cag,(K, £2): K compact K C U},
while the p-capacity of any subset C 2 is defined as:

cap,(B, 2) = inf{capp(U,.Q): U open BCU}.
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We denote byM, (£2) the space of all Radon measures@rnwith bounded variation
and byC,?(Q) the space of all bounded, continuous functionsanThus |, ¢ du is well
defined fory € CIS’(.Q) andpu € My(£2). Moreovery™ and ™~ are the positive and the
negative parts of the measuyrerespectively.

Definition 2.1. A sequencéu,,} of measures i1, (£2) converges in the narrow topology
to a measurg in M (£2) if

lim /wdun=/<pdu,
n——+00
2 2

for everygp € C2(£2).

We defineMp(£2) as the set of all the measurgsin M, (£2) which are absolutely
continuous with respect to thecapacity, i.e., which satisfy (B) = 0 for every Borel set
B C £ such that cap(B, 2) = 0. We defineM; (£2) as the set of all the measurgsin
My, ($2) which are singular with respect to thyecapacity, i.e., which are concentrated in a
setE C £2 such that cap(E, 2) = 0.

An important property of the measuresif), (£2) is the following [20, Lemma 2.1]:

Proposition 2.1. For every measure i, (§2) there exists an unique pair of measures
(mo, ws), With o € Mo(£2) and g € M ($2), such thatu = o + ws.

The measureg andu; will be called the absolutely continuous part and the singular
part of u with respect to thep-capacity. Actually, for what concernsp, one has the
following decomposition result [10, Theorem 2.1]:

Proposition 2.2.Let ug be a measure i, (£2). Thenug belongs taMp(£2) if and only if
it belongs toL1(£2) + W=L7'(£2). Thus ifuo belongs taMo(£2), there existsf in L1(£2)
andg in (L”' (£2))N such that

po= f —div(g),

in the sense of distributions. Moreover, every functioa W&”’(Q) is measurable with
respect toug and belongs td.*°(£2, o) if v further belongs ta.>°(£2), and one has

/vdm):/fv—i—/ng, vUeWc}”’(Q)mL“’(m.
2 22 22

As a consequence of the previous results and the Hahn decomposition theorem we get:
Proposition 2.3.Every measurg in M;(£2) can be decomposed as follaws

w=po+ ps = f —div(g) + uf —puy,
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where is a measure ino(£2), hence can be written ag — div(g), with f € L1(2)
andg € (L” (£2))", and whereu and . (the positive and the negative parts;af) are
two nonnegative measures M, (£2), which are concentrated in two disjoint subséts
and E~ of zerop-capacity.

2.2. Afew properties of Lorentz spaces

In the present paper, we will use only the following properties of the Lorentz spaces,
which are intermediate spaces between the Lebesgue spaces, in the sense that, for every
1<s <r <oo,0nehas

L") L (2)=L"(£2) c L") c L>Y(). (2.1)

For 1< r < oo, the Lorentz space”*°(£2) is the space of Lebesgue measurable functions
such that

I fllLroe ) = suc;))t[meaétx € |f)|> t}]l/r < +00, (2.2)
>

endowed with the norm defined by (2.2). Forl < oo, the Lorentz spacg?-1(£2) is the
space of Lebesgue measurable functions such that:

[£2]
dr
1l ety = / f*(r)tl/‘fT < 400, (2.3)
0

endowed with the norm defined by (2.3). Hefé denotes the decreasing rearrangement
of f, i.e., the decreasing function defined by

f*@)=inf{s >0: meagx € 2: |f(0)| > s} <1}, r€][0,182]].
For references about rearrangements see, for example, [12,24].

The spacd.”>(£2) is the dual space af”"-1(£2), where ¥r + 1/’ = 1, and one has
the generalized Holder inequality

VfeL (), Vge L 1),

‘/ fg‘ SN fliree@) gl gy (2.4)
2

2.3. Definition of a renormalized solution and existence result

Fork > 0, denote byT; : R — R the usual truncation at levé| that is

_ s Is| <k,
Ti(s) = {ksign(s), Is| > k.
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Consider a measurable functions2 — R which is finite almost everywhere and satisfies
Ti(u) € Wg"’(Q) for everyk > 0. Then there exists (see, e.g., [1], Lemma 2.1) an unique
measurable function: 2 — R" such that

VTi(w) =vxqu<ky almosteverywherei®, vk > 0. (2.5)

We define the gradienVu of u as this functionv, and denoteVu = v. Note that

this definition is different of the definition of the distributional gradient. However, if
veE (L&,C(Q))N, thenu € le’cl(sz) andv is the distributional gradient af. In contrast
there are examples of functions# LﬁJC(Q) (and thus such that the gradient:ofn the
distributional sense is not defined) for which the gradieéntis defined in the previous
sense (see Remarks 2.10 and 2.11, Lemma 2.12 and Example 2.16 of [13]).

In the present paper, we consider a nonlinear elliptic problem which can formally be

written as

{—div(a(x,u,Vu))—l—H(x,u,Vu)—i—G(x,u) —u in £, (2.6)
u=0 on 4. '

Here the function: : 2 x R x RY — RV is a Carathéodory function satisfying:

a(x,s,£) > algl?, a>0, (2.7)
lax,s,6)| <c[1E1P L +1s1P 2+ ao(x)], ao(x) € LP (), ¢ >0, (2.8)
(a(x,s,é)—a(x,s, n),é—n)>0, E#n, (2.9)

for almost everyx € £2 and for everys € R, £ e R, n € RY. Moreover the functions
H:2 xR xRN - RandG: 2 x R— R are Carathéodory functions satisfying:

! |H(x,s5,8)] <bo(x)IE]P L+ ba(x), (2.10)

boe LN1(2), b1eLlY(f),
G(x,s)s >0, (2.12)

|Guay<mamv+mux 2.12)
bye LX),  b3eLY(£),
for almost every: € £2 and for every € R andé € RY, where
N(p-1 N(p-D1 1 1
O<r<L, Z:L— and —+—=1. (2.13)
N-—p N—p r z Z
Finally, i« is a measure i, (§2) that is decomposed in
p=f—div(g) +uf —ug, (2.14)

according to Proposition 2.3.
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Remark 2.1.A special case where the functibg satisfieshg € LV-1(£2) (as requested in
hypothesis (2.10)) is the case whéges L9(£2) for someg > N.

Definition 2.2.We say that: is a renormalized solution of (2.6) if it satisfies the following
conditions:

u measurable o2, almost everywhere finiteTy (1) € Wé”’(Q), Vk > 0; (2.15)

luP~t e LN/N=p)1o (). (2.16)

the gradienVu introduced in (2.5), satisfies:

|VulP~Le LN (@), (2.17)
. 1
lim = / a(x,u,Vu)Vmp:/goduj, (2.18)
n—+oon :
n<u<2n 2
. 1 _
lim — / a(x,u,Vu)Vu(pzfq)d,uS (2.19)
n—+oo n
—2n<u<—n 2

for everyg € C2(£2); and finally

/a(x,u,Vu)-Vuh/(u)v—i—/a(x,u,Vu)~Vvh(u)+/H(x,u,Vu)h(u)v
2 2 2

+/G(x,u)h(u)v=/fh(u)v—i—/gVuh/(u)v—i—/ngh(u) (2.20)
2 2

2 2

for everyv e WL (£2) N L>(£2) and for everyh ¢ W-°°(R) with compact support iiR,
which are such that(u)v € Wol’p(Q).

Sinceh(u)v € Wol’p(Q) and since supjh) C [—2n, 21] (for a suitable: > 0 depending
on k), we can rewrite (2.20) as follows:

/a(x, T2, (u), VTzn(u)) VT, () h () —l—/a(x, T2, (1), VTzn(u)) -Vvh(u)
2 2

+ / H(x, Ton(u), VTzn(u))h(u)v + / G(x, Tzn(u))h(u)v

2 2

=/fh(u)v—i—/gVTzn(u)h/(u)v+/ngh(u). (2.21)
2

2 2
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Let us observe that every integral in (2.21) is well defined in view of (2.7)—(2.14) since
Te(w) € Wy'P ().

Remark 2.2. Conditions (2.16) and (2.17), and the growth conditions (2.10) and (2.12)
on H andG imply that for every renormalized solution

G(x,u) e L*(£2) and H(x,u, Vu) e LX(£2). (2.22)

Remark 2.3.We point out that we do not assume that the renormalized solutimiongs
to some Lebesgue spadé (£2) with » > 1. Indeed, it can happen that¢ L%C(Q) as
showed in Example 2.16 of [13] wheii = G = 0.

Remark 2.4.If u is a renormalized solution of (2.6), theris also a distributional solution
in the sense that satisfies:

/a(x,u,Vu)~V¢+/H(x,u,Vu)¢+/G(x,u)¢
2

2 2

_ / ¢du, forallg e C(2). (2.23)
2

Indeed ifu is a renormalized solution of (2.6), we know that measurable and almost
everywhere finite inf2, and thatT (u) € Wol’p(.Q) for everyk > 0, which allows one to
defineVu in the sense of (2.5). We also know tHat|?~1 then belongs ta.V"->(£2)
and|u|?~1 e LN/N=p).20(Q2) so thatja(x, u, Vu)| belongs toL Y >°(£2) by the growth
condition (2.8). Taking € C§°($2) andh, defined by:

Oa |S|>2n'
2 _

i (s) = ”n's', n < sl <2n, (2.24)
1, Is| < n,

and lettingn tend to infinity, we obtain (2.23).

Moreover, every renormalized solutian of (2.6) belongs toW&’q(Q) for every
g <N'(p—1) whenp >2—1/N: indeed,p > 2 — 1/N impliesN'(p — 1) > 1, and
therefore the gradier¥u defined by (2.5), which satisfies (2.17), belongg 8 (£2))V
for everyg < N'(p — 1), and is the distributional gradient of(see Remark 2.10 of [13]).

Remark 2.5.As in [13], Remark 2.20, we observe that a meaguke M;(£2) is not the
most general possible right-hand side which can be considered in (2.6). Indeed one can
consider the case of the nonlinear elliptic problem

{ —div(a(x, u, Vu)) + Hx,u,Vu)+ G(x,u)=pu —div(F) in g2,
u=0 onas2,
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with F e (L? (£2))", where the right-hand side now belongsig($2) + W17/ (£2).

In that case, Theorem 2.1 below continues to hold with the same proof (see Remark 2.20
of [13]) whenever Definition 2.2 above is modified in the following way. On the one hand
the requirements (2.18) and (2.19) have to be replaced by the following ones: there exists
sequences, ) and(s -, 7)), with

n-’'n n’tn

tr sT—> 400 asn— +00, so<t , s — +00 asn — +00,

+
s}’l < n> n n n n

such that

lim a(x,u, Vu)Vup = du’,
o F o f ( )WVug /(p I
s <u<tf 2
. 1 _
im —— a(x,u, Vu)Vup = | ¢du;,
n——+00 ty — Sy
—ty SU<—sy 2

for everyg € C,?(Q). On the other hang; has to be replaced by + F in the right-hand
sides of (2.20) and (2.21).

The main result of the present paper is the following existence result:

Theorem 2.1.Under assumption$2.7)—(2.14) there exists at least one renormalized
solutionu of (2.6).

3. Proof of Theorem 2.1

In order to prove Theorem 2.1, we begin by approximating the data. The main point is
to obtain an a priori estimate OVu, P~ Lin LN'*O"(.Q), which will provide an estimate in
L1(£2) of the termH,, (x, u,, Vu,). When the datayg is sufficiently small, this is done by
using the functiorfy (u,) as a test function, together with a generalization of Lemma 4.2
of [1] (see Lemma A.1 below), which allows one to estimate the norfivef,|”~ in the
Lorentz spaceLN”“(Q) by means of the norm ¥ T (u,,) in (L?(£2))V. In the general
case wherég is not small, we use the Bottaro—Marina technique. In the last part of the sec-
tion, we prove that the termd,, (x, u,,, Vu,) andG, (x, u,) converge strongly i),
which allows us to reconduce the proof to the stability result proved in [13] wkers, &)
does not depend an and in [28] in the general case.

3.1. Approximation of the data

By Proposition 2.3 the bounded Radon meagucan be decomposed as
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p=f—div(g) +uf —uy,
where f € LY(£2), g € (LP (£2))N and wi andu; (the positive and the negative parts
of us) are two nonnegative measuresi,(£2) which are concentrated in two disjoint
subsets£™ and E~ of zero p-capacity.
As in [13], we approximate the measyreby a sequencg,, defined as:
fn = fn —div(g) + A& — 1A%,

where

fu is a sequence of functions ¥ (22) that converges tg in L(£2) weakly, (3.1)

1% is a sequence of nonnegative functiond.i(£2) that converges tp (3.2)
in the narrow topology of measures '
and
1S is a sequence of nonnegative functiond.i(£2) that converges to (3.3)
in the narrow topology of measures '
Note thatu, belongs tow —17'(£2).
We set:
Hn(-xasﬂé)zTn(H(xasaE))v (34)
Gn(x,5) =T, (G(x,5)). (3.5)
Observe that
|H(x,5,8)| <|H(x,5,8)] < bo(x)[E]P T+ ba(x), (3.6)
|Hn(-xas7%‘)| gna (3'7)
Gu(x,s)s >0, (3.8)
|Gn(x,9)| <|G(x,5)| < ba(x)|s|" + ba(x), (3.9)
|Gn(x,s)| <n. (3.10)
Letu, € Wol’p(.(z) be a weak solution of the following problem:
{ —div(a(x, un, Vi) + Hy(x, ttn, Vitg) + Gn (¥, tn) = - in £2, (3.11)
u, =0 on 942,
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un € Wyl (),

/a(x, Un, Vun)'vv+/Hn(xs Up, Vun)v'i‘/Gn(xv Up)V
J (3.12)

2 2
=ffnv+/gw+/)\,?v—/)\,?v, Vo e Wyl ().
2 2 2

2

The existence of a solutian, of (3.12) is a classical result (see, e.g., [25]). Moreover, such
a solution is also a renormalized solution of (3.11).

3.2. A priori estimate ofVu,|?~1in LV (£2)
This is the main step of the proof of Theorem 2.1.

Theorem 3.1.Under the hypotheses of Theor@m, every solution:,, of (3.12)satisfies

1Vl P~ o 2y < 5 (3.13)
|||un|p71||LN/(N—p),00(_Q) <C, (314)

wherec is a positive constant which depends onlyons2|, N, &, l|boll .v.1(0), 1611l 1),
Il Lo @y SUR N full L1cgys SURIAT (£2) + 257 (£2)1, and on the rearrangemenf of bo
(see RemarB.1at the end of SectioB).

Proof of Theorem 3.1.

The simple case wherdjbo|| . ~.1.g) is small enough.
Using Tx (1), k > 0, as a test function in (3.12), we obtain:

/a(xa Un, V”n)VTk(”n)“‘/Hn(xa Un, V”n)Tk(un)"‘/Gn(xa un) i (uy)
2

2 2

=ffnTk(un)+/gvrk(un)+/kj?rk(un)—/A,?Tk(un). (3.15)
2 2 2 2

We now evaluate the various integrals in (3.15). From the ellipticity condition (2.7) we
have:

/a(x,un,Vun)VTk(un): /a(x,un,Vun)-Vun>oe / [V, |P
2 {lutn | <k} {lun | <k}

= oe/|VTk(un)|p. (3.16)

2
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On the other hand, by the growth assumption (2.10Hgror more exactly (3.6), and by
the generalized Holder inequality (2.4) in the Lorentz spaces, we get:

‘/ Hy(x,up, Vug) Ti(un)
2

<kf|H<x,un,wn)| <kUbo<x>|wn|Pl+fb1<x)}
22 2 2

<k[lboll vace) [1Vual? M e ) + 101l L2 ]- (3.17)

Using (2.11) or, more exactly (3.8), it results

fGn (-xa un)Tk(”n) P 0. (318)
2
Finally, we have
[ 51t <K (3.19)
2
<2 p 1 v 3.20
gVTk(”n) X ; HVT/((MH)H(Lp(Q))N + m"gl|(Lp/(.Q))N’ ( . )
2
‘ [t <k [ 22 =n2@), (3.21)
2
Vx,?Tk(un) < kA (£2). (3.22)
2

Observe that by (3.1)—(3.3) and the Definition 2.1 of the convergence of measures in the
narrow topology,

supll full 1y + SUAAT (£2) + A5 (£2)) < +oo0. (3.23)

Therefore, from (3.15), using (3.16)—(3.23), we get:

2 [ IVTen|” < k[lbol |1V, 772 + (11l
p/ k\Un X 0 LNel(_Q) n LN’,oo(_Q) 1 Ll(Q)
2
+ 1 fall iy + A5 (2) + 47 (2)]

+ (3.24)

—— gl e
p/(xl/(p—l) (Lr' ()N
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Let us define:

P -
M= ;[llbollLNvl(rz) [19unl? = v )

+ 161l 12y + SUPI full 12y + SUP(AL (£2) + A5 (£2)) ],
n n

o (3.25)
M = —[l1b1llL1 (@) +SUPILfull 1) + SURAY (2) + 47 ()],
n n
— T en?
L=l @y
We explicitly observe that/, M* andL are finite.
Inequality (3.24) becomes
/|VTk(un)|p <Mk+L, Vk>D0. (3.26)
Q
By Lemma A.1 of Appendix A, we get:
-1 YN'=1/p' 7 1/p
[1Vunl? ™ e ) S CNV, [ M + |21 —HPLYPY,
whereC (N, p) depends only oWV andp. In view of (3.25), this means
1 P 1
H |Vun |P— HLN’,OO(_Q) < C(N, P)E ”bO“LNvl(.Q) || |Vun|[’_ ||LN/~°O(Q)
+C(N, p[M* + |2|YN =V LY,
If llboll Lv.1(sz) is small enough, and more exactly, if
p/
C(N. p)llboll vy < 1. (3.27)

we immediately obtain:

C(N, p)[M* + |2|YN' =Y L1/

|||Vun|p_l||LN’,00(_Q) X ;
1= C(N, p (' J@)llboll v,

ie., (3.13).

The general case: presentation of the method.

If lbolln.1(gy Is small enough, i.e., satisfies (3.27), the desired result is proved. In the
general case where (3.27) does not hold, we use the technique introduced by Bottaro and
Marina (see [11]) for the study of the linear problem with right-hand side in the dual space
(this technique was generalized in [15] to the nonlinear problem with right-hand side in
the dual space). We adapt here this technique to the problem with right-hand side measure
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and to a coefficienbg in a Lorentz space. The idea is in some sense to deconbgdisea
finite sum of terms, each of which satisfies (3.27).

We will estimate|Vu,|?~1in LY (£2) by decomposingVu,|”~1 in a sum of terms
of the type

|Vun|p71X{m,-+1<\un|<m,~}y

where the constants; will be conveniently chosen. The values of the constantsvill
actually depend on, but their number will not: the indek will vary between 0 and,
with 7 bounded by'* independent of.

Actually the proof becomes a little bit more complicated because we need the measure
of the set{x € 2: m < |u,(x)| < m;} to be continuous with respect to the parameter
(for m; given). This lead us to define the sé&t in the following way. As|$2] is finite, the
set of the constants such that|{x € £2: |u,(x)| = c}| > 0 is at most countable. L&t

be the (countable) union of all those sets. Its complemerfary §2 \ Z¢ is therefore the
union of the sets such thHtc € £2: |u, (x)| = c}| = 0. Since for every,

Vu,=0 a.e. On{x € 2: |un(x)| = c},
and sinceZ;, is at most a countable union, we obtain that
Vu,=0 a.e.onz;. (3.28)
In the sequel of the proof, we will consider the measure of the set
|Zu 0 {mit1 < lun| < mi}]

for m; andm; 1 conveniently chosen. Since the constargsch that the sefsu, (x)| = ¢}
have a strictly positive measure have been eliminated by considégingresults that for
m; fixed and O< m < m; the function

m— |Zn n {m < |uy| < m,}| is continuous (3.29)

The general case: first step.
Define form > 0 the “remainder’s,, of the truncatior;,, that is

Sm(S)ZS_Tm(S)a VSGR,
or, in other terms,

0, Is| <m,

S (5) = { (Is| — m) sign(s), |s| > m. (3.30)

Using in (3.12) the test functiofy (S, (u,)) with m to be specified later, we obtain:
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/a(xa up, Vuy) - VI (Sm (un)) + / Hy (x, up, VMn)Tk(Sm (un))
2

2

+ / G (X, tun) Ti (S (un))

2

Z/fnTk(Sm(un))“"/gVTk(Sm(un))
2

2

[ 22T u) =~ [ 397150 tw). (3.31)

2 2

As in the first step we have:

/a(xa up, Vuy)VTy (Sm (”n)) = / a(x, un, Vup)Vuy

2 (m< Jun |<m+k)
>oe/|VTk(Sm(un)) g (3.32)
/G s un) T (S (n)) = (3.33)
2
/fnTk S (n)) <kl full L1y (3.34)
2

o 1
f gV T (S (un)) < » IV T (Sm @) | (v + annm 2y (3:35)
2

‘/Aj‘frk(sm(un))‘ <& (9), (3.36)
2
‘/A?Tk(Sm(un))‘ <kAS(£2). (3.37)

Let us now estimate

‘/ Hy (x, un, VMn)Tk(Sm(’/ln))‘-
2

Using S, (s) = 0 for |s| < m, the growth assumption (3.6), the property (3.28Ynf
and the generalized Holder inequality (2.4) in the Lorentz spaces, we have:
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‘/Hn(xa Un, V”n)Tk(Sm(un))‘ <k / |Hn(xa Un, VMn)|
2

{lun|>m}
p—1 _ p—1
<k bo|Vu,|P "t + | b1| =k bo|VSu(un)|""+ | b1
{lun|>m} 2 ZpyNf{|un|>m} 2
<k[lBoll .2z, un =y 11V S @) P o + 10201 L3020 )- (3.38)

Combining (3.31)—(3.38) we have, for &l 0,
IV T (Sm @) || (2w < Mak + L,
whereM1 is defined by

/
M= E 15018z, oy [ 9S0 @) [P e ) + M7,

and whereV/* and L are defined by (3.25). By Lemma A.1, we get:

198 )| ey < COV. pI[ M + 12 VN4 L37]

LN’,OO(_Q)
p/ p—1
= C(N, p)MIboll vz, n(juy 1>m)) IV S ) [” | o )
+CN, p[M* + YNV LY, (3.39)

Since the decreasing rearrangementg@tnd of its restrictiorbg|z,ng 10 Z, N E
satisfy

(bol z,nE)*(1) < (bo)* (1), 1€[0,1Z, NE[], (3.40)
for any measurable sét, we have:

[ZnN{n |>m}]

dr
||b0||LN,1(z,,m{|u,,\>m}) = (bO|Z,,m{\un|>m})*(t)fl/N7
0
| Zn N {|up|>m}] d
t
< / (bo)* (/N = (3.41)
0
In the case where
, |Zn| & 1
P P
C(N, p)—llboll vz, = C(N, p) f (bo)*(t)tl/N7 <3 (3.42)

0
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we choosen = mj = 0. If (3.42) does not hold, we can choose=m1 > 0 such that

[ZnN{|un|>ma}|

d 1
C(N,p>% f (bo)*(r)tl/N7=§;
0

indeed, the functiom: — |Z, N {|u,| > m}| is continuous (see (3.29)), decreasing, and
tends to 0 whem: tends toco. Note thatm 1 actually depends om.
Moreover, if we defing by

5
' d 1
C(N, p)% /(bo)*(t)ll/NTt =% (3.43)
0

(observe that does not depend ot), we have
| Zw 0 {lunl > ma}|=8. (3.44)
With this choice ofn = m1, we obtain from (3.39) that
1Y Sy ) |” ™| ey < 2CN. p)[M* 4 |2 YN 1P LYP] (3.45)

The general case: second step.
Define for 0< m < m1 the functionsS,, ,,, :R — R by

mi—m, §>mq,

s —m, m< s <my,
Sm.my () = 0, —m < s < m, (3.46)
s+m, _m].gSg_mi

m—mi, S§<-—mj.

We observe that settingo = +o0, the functions,, defined by (3.30) is nothing but the
function S,, .., whose definition is similar to (3.46).

Using in (3.12) the test functiof (S, m, (1,)) With m to be specified later, we obtain:

/a(xa up, Vi) - VTk(Sm,ml(”n)) + / Hy (x, un, VMn)Tk(Sm,ml(’/ln))
2 2

+/Gn(xa ”n)Tk(Sm,ml(”n))fonTk(Sm,ml(”n))+/gVTk(Sm,m1(un))
2

2

2
+/)\§?Tk(sm,ml(un)) _/A?Tk(sm,ml(un))- (347)
2 22
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As in the previous step, we have:

/a(xa un, V) - VTk(Sm,ml(un)) P (X/|VTk(Sm,m1(un)) p’ (348)
2 2
/ Gn(x, ”n)Tk(Sm,ml(”n)) >0, (349)
2
[ 5B ) <Kol (3.50)
2
/gVTk(Sm,ml(”n))
2
e OO, | pa— —" (351)
X p k m,mj n (LP(Q))N p/Oll/(pil) g (LP,(_Q))N’ .
‘ / A,?Tk(sm,ml(un))‘ < kg (£2), (3.52)
[ Snmatin)| < 3D (353)

Moreover, usings;, ., (s) = 0 for |s| < m and the growth assumption (3.6), we have:

‘/ Hy(x,upn, Vuy) Ty (Sm,ml(un))‘
22

<k[ f bo|wn|"—1+/b1}
2

{lup|>m}
gk[ / bo|Vun|P~t + / b0|Vu,,|”_1+/b1:|. (3.54)
{m<lun|<ma) {lun >m1) 2

Let us estimate each term of the right-hand side of (3.54). Using the property (3.28)
of Z, and the generalized Holder inequality (2.4) in the Lorentz spaces, we have:

bolVu, P71

{m<|uy|<my}
p—1
= / bo|V Spmy ()|
ZpN{m<|up|<my}

< Nboll vz, im<tuy<my | |VS’"*’"1(””)|p_1HLN/'°O(.Q)' (3:55)
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Similarly, for the second term of the right-hand side of (3.54) we have:

_ -1
f bo| Vi, P71 = fbo|vsm1<un>|”

{lun|Zma} 2

< boll ey | [V Sms @) "~ e 2y

Therefore, we have:
‘/ Hy (x, up, Vun) Ty (Sm,ml(un))
Q

< k[||b0||LN*1(Znﬂ{m<\un |<m1}) “ |VSmﬁm1(”")|p_1||LN’v°0(Q)

1160l vt ) | |7 Smy ) [P ey + 182202 ]- (3.56)
Combining (3.47)—(3.56) we have, for &lt> 0
IV T (Smmy )| (2w < Mok + L,

whereM> is defined by:

/

p
Mz = —1boll vz, <luy | <mp) ||V Sy ()

"
o

”LN’»OO(Q)

/
+ 2 ool s 95 )" gy + M

and whereM* and L are defined by (3.25).
By Lemma A.1 we get:

H |VSm,m1(un)|p_l||LN’,00(_Q) < C(N, p)[MZ + |Q|1/N/*l/p/Ll/p’]

/

P 1
= CWN. p)llboll Ly 2z, npm <lun <m1)) 11V Smmy )|

”LN’»OO(.Q)

/
+C(N., p) [% 160l 5.2y ||V S @) [P~ v

+ M* + |9|1/N'1/P'L1/P’] (3.57)
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Using (3.40), we have, similarly to (3.41)

| ZnN{m<|un|<ma}|

dr
x N A/N
1201l V.1 (Z, " <ty | <my)) = (bol z,vm<tun <mry) " (D)1 -
0

[ZnO{m<|un|<my}|

(bo)* ()Y N% (3.58)

N

In the case where

| Zn N {O<uy | <my} q 1
t
cv. p f (bo)* (N = < 2, (3.59)
o t 2
0

we choosen = my = 0. If (3.59) does not hold, we can choose=m > 0 such that
| ZnN{mo<|up|<ma}| d 1

t
C(N, p)% f (bo)*(r)tl/N7 =:;

2
0

indeed the functiom — |Z, N {m < |u,| < m1}| is continuous (see (3.29)), decreasing,
and tends to 0 whem tends tan1 and to|Z,, N {0 < |u,| < m1}| whenm tends to 0. Note
thatm, actually depends om and that

|Z,, N {mz < |uy| < m1}| =34, (3.60)

wheres is defined by (3.43).
With this choice ofn = m2, we obtain from (3.57) that

[V Smz.ma ) |p_l||LN’v°0(s2)
/
<2, p>[§nbouw(m|||vsml<un>|"1||LN/.OO(Q)

+ M+ |:2|1/N’—1/P’L1/P’] (3.61)

The general case: third step.
Define for 0< m < m» the functionsS,, .., :R — R by

mo—m, §>mo,

s—m, m< s <mp,
Sm.mp () =1 0, —m < s <m, (3.62)
S+m7 _ng‘S‘g_mi

m—my, §<-—my.
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Using in (3.12) the test functiofk (S, m, (4,)) With m to be specified later, we obtain:

/a(xa up, V) - VTk(Sm,mz (un)) + / Hy (x, up, VMn)Tk(Sm,mz (un))
2 2

+ / G (. ) T (S (1))

2

= / T Ti(Smoma (un)) + f 8V T (Sm,my (un))
2

2

+/A5?Tk(sm,m2(u,,)) —/A,?Tk(sm,mz(un)). (3.63)

2 2

As before we estimate the various terms; in particular we have (as in (3.54)—(3.56)):

‘/ Hy(x,upn, Vuy) Ty (Sm,mz(un))‘
2

<k[ / bol Vun|P ™ + / bo| Vi, P~

{m<|uy|<mpo} {mo<|up|<myq}
+ / bol Vit P + / bl}
{lup|=mq} 2

< k[0Boll Lz, <y <y 1S o )| v

180l ) [ 9 Smmy )| v
+ ||b0||LN,1(Q) || |VSm1(I/ln) |p_l||LN’,00(_Q) + ”bl“Ll(Q)]

We deduce (as in (3.57)) that
(A |p71HLN'»°°(.Q)
<C(N, p)% 16011 %12, <t <z | [ 7 S @) | 2
+C(N. p) [% 160l .22y ||V Smums @) |” ™| vy

/
+ % boll Ly 1) [ |V Sy () |p71HLN'=°°(.Q)

+ M* + |9|1/N'1/P'L1/P’] (3.64)
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Using (3.40), we have, arguing as in (3.41) and (3.58)

[ZnN{m<|un|<m2}|

dr
b0l 3.1z, Ao <y | <z < (bo)" ()N =,

In the case where

, |ZnN{O<un|<ma}| q 1
t
cvpl [ eoror <3 (3.65)
o t 2
0

we choosen = m3 = 0. If (3.65) does not hold, we can choose= m3 > 0 such that

|ZyN{m3<|up|<ma}| q 1
t
c(N, pL f (bo)* (/N ===
o t 2
0

Note thatnz actually depends om and that
|Znﬂ{m3< |t | <m2}| =3, (3.66)

wheres is defined by (3.43).
With this choice ofn = m3, we obtain from (3.64) that

” |VSm3,m2(”n)|pil|| LN'.00(2)

/
<2C(N, p) [% 160l v ) |V Strams @) [P~ oy

/
+ 2ol v [V " v
+ M* + |9|1/N’1/P’L1/P’] (3.67)

The general case: end of the proof.
We repeat this procedure until the time it stops, i.e., when we arrive to seme
(which depends on) for which we have

|an{0<|un|<m1—l}| d 1

I8
cv, & f oy N e < L
o t 2

then we choose

my =D0. (3.68)
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Let us now estimaté. We have
121> 1Zal = |Zu O {lunl > ma}| +|Zy 0 {ma2 < Juy| < ma}|
+ |Z,, N {m3 < |uy| < m2}| +--+ |Z,, N {m1_1 < |uy| < m1_2}|
and, in view of (3.44), (3.60) and (3.66), we know that
|Zn N {|un| >m1}| = |Zn N {mz < |uy| <m1}| =...
= |Zu N {mi—1 < lunl <m_2}| =3,

wheres is defined by (3.43), and does not dependiomherefore(l — 1) < |£2|, and

2
I<I* with I* =1+ [%} (3.69)

where[s] denotes the integer part of defined by(s] = inf{n € N: s <n}.
Observe thaf is estimated by the numbéf which does not depend on and which
depends oy through the definition of.

We define
mo = 400, Smy,mg = Smy»
Xi=| |VS’"iﬁmz'—1(”n)|p_1HLN’v°O(.Q) forl<i<lI,
a=2C(N, P)%/ lIboll v (g2, (3.70)

b=2C(N, p)[M* +|2|YN=Yr L1r],
whereM* andL are given by (3.25), and we observe that
X1=| |VSm1’mo(”")|p71||LN’~°°(Q) =| |VSm1(”")|p71HLN’~°°(Q)'

We have proved (see (3.45), (3.61), (3.67) and (3.69)) that

X1 <b, Xo<aX1+b, X3<aXp+aX1+b,
X;<aXj_1+---+aX1+b, I<I.

It can be proved by induction that

X;i<@+1% fori<i<I. (3.71)
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Sincem; = 0 (see (3.68)), we have

1 1

_ _ -1
|Vun|p 1= Z |Vun|p lX{m,-<\u,,\<m,-,1} = Z|Vsm,~,mi,1(un)|p s
i=1 i=1

and, therefore, using (3.70) and (3.71)

1
Hlvun|p_lHLN’,oo(_Q) < ZH|VSmismi—1(u")|p_l||LN/*°°(.Q) < ZXI

1
i=1 i=

1
! . @+l -1 b :

<bY (a+D = b<7) <—(@+1" -1),

i—1 a a

i.e., the desired result (3.13).

Let us finally prove the result (3.14). From (3.26) (note that the hypothesis (3.27) that
llboll;.v.1(£2) is small has not been used at this stage), we deduce that

/|VTk(u,,)|p <Mk+L, Vk>0,

Q
where the constant® and L defined by (3.25) are now bounded independently: on
view of (3.13) and (3.23). The result (3.14) then follows from Lemma A ..
3.3. Passing to the limit in the approximated problem

Using the growth condition (3.6) o7, Theorem 3.1 and the generalized Holder
inequality (2.4), we get:

| Hy Cx, . Vi) HLl(-Q)

=f|Hn(x,un,wn)| </bo(x)|wn|"—1+fb1(x)
2

2 2

< Nboll w1y | IVual? " v ooy + b1l 1) < C. (3.72)

On the other hand, we deduce from (3.14) and from the definition (2. 13)hait

[ l2an 1"

Loy < C- (3.73)

1 In (3.72) and in the rest of this sectio@, denotes a generic constant, which does not dependimrt can
vary from line to line.
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Using the growth condition (3.9) o6, (3.73) and the generalized Hoélder inequal-
ity (2.4), we get:

|Goe. i) |3y = [1GaCeo) < [ bolual +ba(a)
2 2

< b2l e agg [nl || oo ) + 1031 L1(2) < C.

Therefore, the solution,, of (3.11) satisfies:

—div Jup, V =@, —div inD'(£2),
(a Sjcp Un un)) n (8) (£2) (374)
un € Wy (82),
whered, = f, — Hy(x, un, Vuy) — Go(x, un) + 42 — 13 is bounded in.1(£2).
Using Tk (u,,) as a test function in (3.74), easily yields that for sabi@nd L
/|VTk(un)|p < Mk+L, (3.75)
2

for everyk > 0 and every..

Sinceu,, which is a weak solution of (3.74), is also a renormalized solution of (3.74),

Theorem 3.2 of [13] (wher(x, s, &) does not depend at), or the result of [28] (in the
general case), implies that for a subsequence (which we still denatevioy have:

U, —> U almost everywhere in2,
Vi, — Vu almost everywhere in2, (3.76)

VTi(ua) = Vi) in (LP(2))" weakly,
for every fixedk € N, whereu is a function which is measurable &h, almost everywhere

finite, and such thaty (u) € W&’p([)) for everyk € N, with a gradienvu as introduced
in (2.5); moreover by Fatou lemma, we deduce from (3.75) that

/|VTk(u)|” <Mk+L.
2

Lemma A.1 then implies thak|?~1e LN/(N=r).2° () and|Vu|P~te LN/ N=1.00(2),
From (3.76) and the definition (3.4) &f,, we deduce that

H,(x,u,, Vu,) — H(x,u, Vu) almost everywhere itR. (3.77)

From a computation similar to (3.72), we obtain that for every measurable cse2
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/|Hn(X, Un, VMn)| < ||b0||LN»1(E) H|Vun|p HLN/,OO(E) + ||b1||L1(E)
E

< lbollpvacgye + bl gy
and, therefore, that
H, (x,u,, Vu,) Is equi-integrable
since, using as in (3.40) the fact thab|g)* (r) < (bo)*(¢), we have

|E| |E|
dr dr
1boll Lv.1(g) = / (bol£)" (0N — < f (bo)* (/N ==, (3.78)
0 0

which is small whenE| is small. This implies, together with (3.77), that
H,(x,un, Vun) — H(x,u, Vu) in LY(£2) strongly.
Similarly it is easy to prove that
Gn(x,un) — G(x,u) in LY(£2) strongly
In view of this results, the solutiom, of (3.11) satisfies:

: —div(aCe, un, Vun)) = fo = ¥y — div(g) + 47 =47 InD'(2), (3.79)

un € Wol (),
whereu,, satisfies (3.76) and
W, = Hy, (x, tn, Vitn) + Gu(x, ttn) — H(x,u, Vu) + G(x,u) in LX) strongly,
whereg e (L”' (22))N and wheref,, A% andA® satisfy (3.1), (3.2) and (3.3).
Sinceu,, which is a weak solution of (3.79), is also a renormalized solution of (3.79),

the stability result of [13] (Theorem 3.4) (wherix, s, §) does not depend ar) or of [28]
(in the general case) asserts thas a renormalized solution of

{—div(a(x, u,Vu)) + H(x,u, Vu) + G(x,u) = f —div(g) + uf —puy  in 2,
u=0 onas,

which proves Theorem 2.1.00
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Remark 3.1. The above proof shows that the renormalized solutiasf (2.6), which is
obtained as the limit of the subsequengesatisfies the bounds

” |Vu|p71||LN/,OQ(Q) <c,

Hel? 7] v o ) < 4
f|vrk(u)|” < Mk+L.

2

Moreover, it can be shown, by using in (2.6) the test functions Ty () andh = hy,
with &, defined by (2.24), that every renormalized solution of (2.6) satisfies the same
bounds. In these bounds, the constantas said in the statement of Theorem 3.1 and in
its proof, depend only op, |2, N, e, llboll v.1qy, b1l 22y I lz3cays 181l L (@yns
wi(£2), ny (£2), and on the rearrangemet of bo.

Let us emphasize that these bounds do not depends offio@py.1 (), but also orbg:
this is due to (3.69), i.e < I* =1+ [|£2]|/8], wheres, which is defined by (3.43),
depends o and not only onboll L v.1g)-

Appendix A. A generalization of a result of [1]

In this Appendix we generalize a result of [1].

Lemma A.1. Assume that2 is an open subset dR" with finite measure and that
1< p < N. Letu be a measurable function satisfyifig(u) W&"’(Q), for every positive
k, and such that

/|vrk(u)|”<Mk+L, Vk > 0, (A.1)
2

where M and L are given constants. The|”~1 belongs toL?"/7:®°(§2), |Vu|P~1
belongs taL" ->°(£2) and

[t sy < CV. [ M + 1217 LHP'), (A2)

[1V217 7] oy < CON, p)[M 412 VN 1P L1, (A-3)

whereC(N, p) is a constant depending only @ and p and wherel/p*=1/p — 1/N.

Remark A.1. This lemma is a generalized version of Lemmas 4.1 and 4.2 of [1], in which
L = 0. Estimates (A.3) and (A.2) are optimal in the following sense.
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WhenL =0,
1161772 1o 2y S CN, p)M (A.4)
and

[1Vul? 7 ooy < CN, PIM (A5)

are the best estimates that one can obtain from (A.1). Indeed consider the function

1 1
= |x|N=p)/(p=D — RN=-p)/(p=D)"

when 2 is the ball of radiusk centered in 0. Then (A.1) is satisfied, as well as (A.4)
and (A.5), whileju|?~1 does not belong ta.?"/?+5-1(2) for anys > 0, and|Vu|?~1 does
not belong taL¥'+3:1(2) for anys > 0.

On the other hand, whei =0, (A.1) is equivalent to

/ VulP <L, (A6)
2

i.e.,u bounded inWé”’(Q). From Sobolev inequality there exists a const&t, which
depends only o andp, such that for every open s&tc RY andv e Wol’p(.(z), one has:

||U||€p*(ﬂ) gSN,p”VUHZP(_Q)‘ (A7)

Therefore, we deduce from (A.6) that

1all} e 2y < SW.p Vit < Snp L7777
which implies
kP meag|ul > k} < Sy,,L7"/?,

for everyk > 0, or equivalently

h?" PV meag|ulPt > h} < Sy, ,LP P,
foreveryh > 0, i.e.,

-1 p/p* p/P*y p1-p/
hmeag|u|”~* > h} <SSy L7,

for everyh > 0. Therefore, for every positiviey arbitrarily fixed, we have:
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H |u |p71HLP*/p~°O(.Q)

= suph meag|u|?~! > h}p/p*
h>0

= sup hmea§t|u|1’*1>h}”/”*+ suphmea§t|u|1’*1>h}p/”*
0<h<ho h>ho

<hol21P/P + S/ Lhg " (A.8)

Takinghg = LP~D/7 /122|(»=D/P* 'which corresponds to take the two terms of the right-
hand side of (A.8) of the same order, we obtain

11?7 Lt o) < CN, pIS2IYP LY,

i.e., (A.2) whenM = 0. This derivation is close to be optimal.
For what concerns (A.3), i# = 0 we deduce from (A.6), i.e|Vu| € LP(£2), that for
everyu >0

u? meas{x € 2: |Vu| > [,L} <L,
i.e.,|Vu| € LP-*°(£2), or equivalently
/L(meas{x € |VulP~t> M})l/pl < LY,
i.e.,|VulP~1 e LP">(£), which implies

/L(meas{x € |VulP~t> M})l/N/

< u(meagx € 21 |VulP > ) |2 YN

<YV YR (A.9)

i.e., (A.3) whenM = 0. Again, this derivation is close to be optimal.

Estimates (A.2) and (A.3) are in some sense combinations of the two results obtained
for M = 0 andL = 0. Observe that the dependence of (A.2) and (A.3) with respekt to
andM exhibits two different homogeneities (linear#, of orderLY/?" in L).

Proof of Lemma A.1.

Proof of (A.2). Using Sobolev inequality (A.7) we have, for evéry- O
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kP"meagx € 2: Jul > k} < /|Tk(u)|p* <Swp | YT | )
2

< Sn.p(Mk 4 L)P"/P, (A.10)

or equivalently, for every: > 0,

W' 10D meagx € 2: [ulPL > h) < Sy, (MAYPD 4 L)P/P

meagx € 2: |u|”"t > h} < Sy, (Mh™ + LhP)"I?,
i.e., foreveryh > 0
h(meagx € 2: |u|”~* > h})p/”* < S]’\’/ﬁ (M + Lh*7").

Therefore, we have:

” |” |p_1HLP*/17v°0(Q)

= suph meag|ul? ! > h}”/p*

h>0

= sup pmeaglul’ > h}p/” + suphmeagul’ > h}p/”
O<h<hg h>hg

<hol21P/7" + SY/T (M + Lh*'),
which, takinghg = L(?~D/7 /|2|(»=D/P"  proves (A.2).
Proof of (A.3). First step.From (A.1) we deduce that for eveky> 0 and every > 0
AP meagx € 2: |Vu| > 1 and|u| < k}

< / |Vu|"=f|VTk(u)|”<Mk+L,
{lu|<k} 2

i.e., for everyu > 0 and every > 0
b/ (=1 meas{x €2 |VulPt> pandju| < k} <Mk+ L. (A.12)

From (A.11) and (A.10) we obtain that for every- 0 and every > 0,
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meas{x €2 |VulP 1> ,u} < mea:{x € 2: |VulP™t > pand|u| <k}
+meas{x €2 |VulP > pandju| > k}

Mk + Mk + L)P"/»
< 7 +SN,p( 7*) .
up kP

Second step.We now writek = a + b with a > 0, b > 0. From the inequality
(x 4 )P /P L 2P /P (xP*/P 4 yP*/P) we get:

meagx € 2: |VulP ™1 > 1}
Ma Mb L

upP upP /,L_p
+ SN’pzp*/p (a+b)P/P=P pPtIP 4 SN,,,ZP*/” (a+b)y P LP/P

for everyu > 0, a > 0 andb > 0. Since(a + b)? /P~P" < aP’/P=P" = q=P"/?' (indeed
p*/p— p*=—p*/p’ <0),and sincéa +b)"P" <b~P" , we obtain

M * * * 7
meadx € 2: |Vul? 1 > 1) < p‘f + Sy 20 /PP P g P
w
+ — + Sy, p2P Ipppi/Pp=rt 4
P wP

M * * /
< C(N, p)[<7a L MPPgr /p>
"

M . AL
+(—,b+LP /Pbp>+ }
up up

(A.12)

for some constan@' (N, p).

Third step. For the rest of the present proof, we will denote ®yN, p) a constant
which only depends oV andp, but can vary from line to line.
After choosing

a = MY N1 (N=p)/(p=DN-D)

7

(L YD
M

(those are the values which minimize with respeet &amdb the right-hand side of (A.12)),
inequality (A.12) yields

/

MN/ MLl/p p*/(p*+1) L
jp '

meagx € 2: |[VulP1> <C(N,p)[—,+ +
4 } MN /,LP
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Since

!k / *
g (g _ 1)177,
N'(p*+1) N’ p(p*+1)

we get

/L(meas{x € |VulP~t> M})l/N/

< p*/(N'(p*+1)
\C(va)l:M+M Mp//N/_l

But it results

* *

P P _q
N'(p*+1 p(p*+1

Therefore, Young inequality yields

n(meagx € £2: |Vu|P~1 > /L})l/N/

[7* [7* Ll/N’

LYUN )p*/(p(p*+l))

Ll/N/

Mp’/N’—l

Ll/N’

S C(N, p)[M+
Ll/N/
< -
X C(N7 p)(M + ILLp//N/_1>7
for everyu > 0.

Fourth step. From (A.13) andp < N, we deduce that

supp(meagx € £2: [VulP~t > M})l/N/

u>0

< sup p(meagx e 2: |Vu|”_1>u})1/N,

O<u<po

+ sup u(meagx € 2: |VulP~t > /,L})l/N,

w>Ho

< polYN + sup C(N, p) (M +
W> o

= wol YN + C(N, p)yM + C(N, p)
0

<. 1M o+ LN w7 N 4 m].

M
NG AD  ppr DN

Ll/N/
Mp’/N’—l
/N’

LTV

WP N1

)

|

(A.13)

(A.14)
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By choosing

( L 1/p
Ho=\ T+
IQI)

(this is the value which minimizes the right-hand side of (A.14) with respegigiowve
obtain

supi(meagx € 2: |VulP ™! > /L})l/N/ S C(N, p)[M + | QYN =P L],
u>0

which is the desired result.00
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