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Abstract

Global existence of a solution to the nonlinear balance equations of charge transport in se
ductors based on the maximum entropy principle [Contin. Mech. Thermodyn. 11 (1999) 307
Contin. Mech. Thermodyn. 12 (2000) 31–51] is proven for a typical 1D problem under certa
strictions on the doping profile and the initial data.
 2004 Elsevier Inc. All rights reserved.

0. Introduction

0.1. In the hierarchy of macroscopic models of charge transport in semicondu
beyondthe drift-diffusion equations[21,32,39] andthe energy-transport models[1,17,30],
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one findsthe hydrodynamical modelswhich are obtained from an infinite set of mome
equations of theBoltzmann transport equationby a suitable truncation procedure.

As is well known, a closure assumption is required in order to come from the mo
equations system to a closed system of evolution equations. In [6,35], the balance
tions for density, momentum, energy, and energy flux of electrons have been cons
for silicon and, by using the maximum entropy principle (MEP) for the closure, exp
constitutive relations for the stress tensor, the flux of energy flux tensor, and prod
terms have been obtained both in the parabolic and the Kane dispersion relation a
imations for the energy conduction bands (for a complete review see [5,7]). The
fits into extended thermodynamics[22,34] and Levermore’s theory of moments [25] a
does not contain any fitting parameters. General mathematical properties of the cons
equations have been studied in [36] where it has been shown that the evolution eq
form a hyperbolic system in the physically relevant region of the fields space. Applica
of the model have been presented in [36] for 1D problems and in [37] for a 2D simu
of a silicon MESFET.

0.2. In the present paper we consider a typical 1D problem, representingthen+ − n −
n+ ballistic diode, that has been intensively investigated by employing different nume
methods and models [4,8,15,18,19,36,38]. Roughly speaking, physically, the situa
given by a semiconductor divided into three parts: two regions of high doping (thn+
regions) with a region of low doping (then region) in between.

The dynamics of charge carriers depends on the applied potential (the bias voltage).
When the applied voltage is negligible the system is expected to tend tothe global thermo-
dynamical equilibriumwhere the charge is at rest with the same temperature of the cr

In papers [13,14] it has been proved that for the model under consideration the e
rium solution is asymptotically stable in the parabolic band case under certain rest
on the doping profile. However these papers contain only a brief discussion of the qu
on global existence for the 1D problem mentioned above. In the present paper we d
this question in detail. Note also that similar problems for various hydrodynamical m
are considered in [2,3,26–29,31].

The plan of the paper is the following. The basic equations are presented in Se
where they are reformulated in a more suitable way for the subsequent analysis g
Section 2. Global existence is discussed in Section 2.

1. Preliminaries. Basic equations and formulations of the problem

1.1. In papers [6,35–37], asystem of moment equationswell-reasoned from the phys
ical point of view was proposed and used to describe the charge transport proc
concrete semiconductor devices. These equations have the form ofconservation laws. The
system was obtained from the Boltzmann transport equation using a suitable trun
procedure (see [6,35]). Note that the variety of truncation procedures in mathematica

elling of charge transport causes the existence of a great number of mathematical models.
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Following [13,14], in a dimensionless form and for the 1D case the quasilinear sy
of the above equations mentioned above reads (the reduction to the dimensionless
described in detail in [13,14])



Rt + Jx = 0,

Jt + (2
3RE

)
x

= RQ + c11J + c12I,

(RE)t + Ix = JQ + cP,

It + (10
9 RE2

)
x

= 5
3REQ + c21J + c22I,

(1.1)

εϕxx = R − ρ. (1.2)

HereR is the electron density,J = Ru, I = Rq, u is the electron velocity,q is the energy
flux, E is the electron energy,P = R(2

3E − 1), Q = ϕx , ϕ is the electric potential,ρ =
ρ(x) is the doping density. The coefficientsc11, . . . , c22, c of the system (1.1) are smoo
functions of energyE. The precise (but rather cumbersome) expressions for these fun
in the parabolic band case are reported in [13,14]. The constantε > 0 appearing in the
Poisson equation (1.2) is a dimensionless dielectric constant. It is also described in
for various values of physical parameters.

For system (1.1) we take the following boundary conditions atx = 0,1 (for t > 0) cor-
responding to the ballistic diode problem that is well known in physics of semicondu
(see [15,18,19] and Fig. 1):{

R(t,0) = R(t,1) = 1,

E(t,0) = E(t,1) = 3
2.

(1.3)

We pose also the initial data fort = 0, 0< x < 1:


R(0, x) = R0(x),

J (0, x) = J0(x),

E(0, x) = E0(x),

I (0, x) = I0(x),

(1.4)

whereR0(x),E0(x) > 0. For the Poisson equation (1.2) we take the following bound
conditions atx = 0,1 (t > 0):

ϕ(t,0) = 0, ϕ(t,1) = b, (1.5)

whereb > 0 represents the bias voltage across the diode. System (1.1), (1.2) is cons
in the domaint > 0, 0< x < 1.

1.2. Considering Eq. (1.2) as an ordinary differential equation (with parametert) for
the unknown functionϕ(t, x) with the boundary conditions (1.5), one obtains (see [15

ϕ = ϕ(t, x) = bx + β

1∫
0

G(x, s)
(
R(t, s) − ρ(s)

)
ds, β = 1

ε
, (1.6)

whereG(x, s) is the Green function:{
s(x − 1), if 0 < s � x,
G(x, s) =
x(s − 1), if x < s < 1.
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Fig. 1. Schematic representation of ann+ − n − n+ ballistic diode.

Differentiating (1.6) with respect tox, one has the following expression forQ = ϕx :

Q = Q(t, x)

= b + β

x∫
0

(
R(t, s) − ρ(s)

)
ds − β

1∫
0

(1− s)
(
R(t, s) − ρ(s)

)
ds. (1.7)

Note that the initial dataR0(x) andϕ(0, x) = ϕ0(x) are related by (1.6).
As for the doping density functionρ(x), we will assume in the sequel that it has t

typical profile (see, for example, [15]) depicted in Fig. 1.

1.3. System (1.1) is written in the divergent form. Consider also the nondivergent
of this system:

Ṽ t + BṼ x = F (Q, Ṽ ). (1.8)

Here

Ṽ =



R

J

RE

I


 , B =




0 1 0 0
0 0 2

3 0
0 0 0 1

−10
9 E2 0 20

9 E 0


 ,

F =




0
RQ + c11J + c12I

JQ + cP
5
3REQ + c21J + c22I


 ,

to findQ one uses expression (1.7). Calculating the eigenvaluesλ of the matrixB, one hasλ1,2 = ±(10+2
√

10
9 E

)1/2
,( √ ) (1.9)
λ3,4 = ± 10−2 10

9 E
1/2

.
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If a natural physical condition

E > 0

holds, then system (1.8) ist-hyperbolic (strictly hyperbolic) (see [20]). Note that, as
follows from (1.9), the number of boundary conditions (see conditions (1.3)) for ea
the boundariesx = 0,1 corresponds exactly to the number of outgoing characteristic
these boundaries.

Write system (1.1) as

Ṽ t + W x = F (Q, Ṽ ),

where

W =



J
2
3RE

I
10
9 RE2


 .

Making the change of unknowns

V =



R

J

P

Θ


 =




1 0 0 0
0 1 0 0

−1 0 2
3 0

0 −5
2 0 1


 Ṽ ,

we obtain one more form of the original system (1.1):

V t + Λx = F (Q,V ). (1.10)

Here

Λ =




J

R + P
2
3(J + Θ)

5
2P(1+ σ)


 , F =




0
RQ + µ11J + µ12Θ

2
3(JQ + cP )

5
2(PQ + µ21J + µ22Θ)


 , σ = P

R
,

µ11 = c11 + 5

2
c12, µ12 = c12,

µ21 = 2

5
c21 − c11 + 5

2
µ22, µ22 = 2

5
c22 − c12.

The boundary conditions (1.3) for this system read as{
R(t,0) = R(t,1) = 1,

P (t,0) = P(t,1) = 0.
(1.11)

To construct initial data for (1.10) one uses conditions (1.4):


P(0, x) = P0(x) = R0(x)
(2

3E0(x) − 1
)
,

Θ(0, x) = Θ0(x) = I0(x) − 5
2J0(x),

R(0, x) = R0(x),

J (0, x) = J0(x).

(1.12)
The componentQ in (1.10) is determined by (1.7).
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1.4. We give an equivalent formulation of the initial boundary value problem (1.1
(1.12). Write the Poisson equation (1.2) in the form

εQx = R − ρ. (1.13)

With regard to the first equation in system (1.10), differentiating (1.13) with respect
yields

(εQt + J )x = 0,

or

εQt = J∗(t) − J,

whereJ∗(t) is yet an unknown function. Since

1∫
0

Q(t, s) ds = b, (1.14)

then

ε

1∫
0

Qt(t, s) ds = ε
d

dt

( 1∫
0

Q(t, s) ds

)
= 0= J∗(t) −

1∫
0

J (t, s) ds.

Thus,

J∗(t) =
1∫

0

J (t, s) ds.

Therefore, we have the following relation forQ:

εQt = l[J ] =
1∫

0

J (t, s) ds − J (t, x). (1.15)

The initial valueQ(0, x) = Q0(x) for the functionQ(t, x) is found from expression (1.7
Thus, instead of the initial boundary value problem (1.10)–(1.12) we can consider

lem (1.10), (1.15), (1.11), (1.12) coupled with the initial dataQ0(x) for Q(t, x) and the
two obvious relations{

εQ′
0(x) = R0(x) − ρ(x),∫ 1

0 Q0(s) ds = b.
(1.16)

It is clear that, by virtue of (1.16), Eq. (1.13) and relation (1.14) are satisfied for allt > 0.
At last, the potentialϕ = ϕ(t, x) is determined from the relation

ϕ = ϕ(t, x) =
x∫

0

Q(t, s) ds (1.17)
when the solution to the newly formulated problem is found.
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1.5. It follows from elementary physical considerations that problem (1.10)–(1.12
b = 0 has the stationarysolution of global thermodynamical equilibrium



J (t, x) ≡ Ĵ = 0,

P (t, x) ≡ P̂ = 0,

Θ(t, x) ≡ Θ̂ = 0,

R(t, x) = R̂(x) = eϕ̂(x),

ϕ(t, x) = ϕ̂(x),

(1.18)

whereϕ̂(x) satisfies the Poisson equation

εϕ̂′′ = eϕ̂ − ρ (1.19)

with the boundary conditions

ϕ̂(0) = ϕ̂(1) = 0. (1.20)

Note thatε is sufficiently small for real semiconductor devices (see [13–15]).
The boundary value problem (1.19), (1.20) is studied in detail in [12]. The follow

theorem was proved there.

Theorem 1.1. Suppose the doping densityρ = ρ(x) ∈ C2[0,1], 0 < δ � ρ(x) � 1, and the
function(ρ(x) − 1) is finite(see Fig.1). Then there is a numberε0 > 0 such that for allε,
0 < ε � ε0, there exists a unique solution to the boundary value problem(1.19), (1.20) in
the form

ϕ̂(x) = lnρ(x) + O(ε1/2). (1.21)

HereC2[0,1] is the space of smooth functions with the norm

‖ρ‖C2[0,1] = max
x∈[0,1]

∣∣ρ(x)
∣∣ + max

x∈[0,1]
∣∣ρ′(x)

∣∣ + max
x∈[0,1]

∣∣ρ′′(x)
∣∣.

Note that the numberε0 depends onδ. Unfortunately, the dielectric constantε satisfy
the inequality 0< ε � ε0 if δ is close to 1. One of the reasons of this fact is coarsene
the numberε0 estimation in the theorem.

The proof of this theorem is constructive in the sense that it gives an exact form
second addend in (1.21). At last, note that if

ρ(x) ≡ 1,

then problem (1.19), (1.20) has the unique solution

ϕ̂(x) ≡ 1.

1.6. Basing again on the physical considerations, one expects thatin the caseb = 0
the solution to the initial boundary value problem(1.10)–(1.12) tends to the global equi
librium state(1.18) as t → ∞ for any initial data. The main result of this paper is t
demonstration of this fact under some restrictions on the doping density and the
data.To do this we prove first the global existence theorem. The key point of this pro
the construction of a global a priori estimate. Besides, the proof is based on the local
time) existence theorem for strictly hyperbolic systems in two independent variable

rather arbitrary boundary conditions (see paper [24]).
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1.7. In the next section the technique of construction of global a priori estima
described (see also papers [13,14]). To do this we need another formulation of the
boundary value problem (1.10)–(1.12) in the caseb = 0. We introduce a new independe
variableH = H(t, x) such that{

J = Ht,

R = −Hx.
(1.22)

Then the first equation in system (1.10) holds automatically. Accounting for (1
Eq. (1.15) can be rewritten as(

εQ − l[H ])
t
= 0

that is

εQ(t, s) = l[H ] + A0(x).

To determine the arbitrary functionA0(x) we use relation (1.13),

A′
0(x) = −ρ(x),

or

A0(x) = C −
x∫

0

ρ(s) ds.

HereC is yet an arbitrary constant. But, by taking into account (1.14), one has

C =
1∫

0

(1− s)ρ(s) ds

and

A0(x) = −
x∫

0

ρ(s) ds +
1∫

0

(1− s)ρ(s) ds.

Consequently,

Q(t, x) = β
(
l[H ] + A0(x)

)
.

It is convenient to introduce one more auxiliary functionU = U(t, x) by the rule (see
also (1.18))

H(t, x) = U(t, x) −
x∫

0

R̂(s) ds. (1.23)

By means of (1.7), (1.22) we have the expression forQ:
Q(t, x) = βl[U ] + Q̂(x), (1.24)
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Q̂(x) = ϕ̂′(x) = β

x∫
0

(
R̂(s) − ρ(s)

)
ds − β

1∫
0

(1− s)
(
R̂(s) − ρ(s)

)
ds.

In new terms relations (1.22) take the form{
J = Ut,

R̂ − R = Ux = L.
(1.25)

Using (1.24), (1.25), one rewrites the second equation in (1.10) as

Jt − Lx + Px − µ11J − µ12Θ + QL − λ = 0, (1.26)

whereλ = R̂βl[U ]. Differentiating (1.26) with respect tox yields

Lt t − Lxx + Pxx + τ1Lt + τ2Pt + χ1L + χ2P

+ Q̂(Lx − µ12J − λ) + F0 = 0. (1.27)

Here

τ1 = µ12 − µ11, τ2 = 3

2
µ12,

χ1 = R̂β + ϕ̂′′, χ2 = −cµ12,

F0 = λ

R̂
Lx − βL2 − µ12

λ

R̂
J − f1f2,

f1 = µ′
11J + µ′

12Θ, f2 = 1

R

(
Px + σ(Lx − R̂′)

)
,

µ′
11 = d

dσ
µ11 = 3

2

d

dE
µ11, µ′

12 = d

dσ
µ12 = 3

2

d

dE
µ12.

Differentiating cross-wise the two last equations in (1.10), we eliminateΘ from the
left-hand parts and come to the relation

ãPtt − b̃Pxx + Lxx + τ3Lt + τ4Pt + χ3L + χ4P

+ Q̂

â

(
−2Lx + 7

2
Px + âd̂J − µ12Θ

)
+ G0 = 0, (1.28)

where

G0 = 1

â

(
−5Rf 2

2 + 5

2
R̂′′σ 2 − F0 − g0

)
,

g0 = λ

R̂
(λ − QL − Q̂L + µ11J + µ22Θ − Px + Lx) + βl[U ]J + c′σ(Pt + σLt )

−5

2

(
λ

R̂
Px − βPL + µ22

λ

R̂
J + (µ′

21J + µ′
22Θ)f2

)
,

1
(

5
)

1
(

15
)

τ3 =
â 2

(µ21 − µ22) − τ1 , τ4 = −
â

c +
4

µ22 + τ2 ,
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n:
χ3 = −χ1

â
+ Q̂2

â
, χ4 = c

â

(
5

2
µ22 + µ12

)
+ 5ϕ̂′′

2â
,

d̂ = 1

â

(
5

2
µ22 + τ1

)
, c′ = d

dσ
c = 3

2

d

dE
c,

µ′
21 = d

dσ
µ21 = 3

2

d

dE
µ21, µ′

22 = d

dσ
µ22 = 3

2

d

dE
µ22,

ã = 3

2â
, â = 1− 5

2
σ 2, b̃ = 7/2+ 5σ

â
.

Note that we use the third equation in (1.10) to excludeΘx while deriving (1.27), (1.28).
Combining (1.27), (1.28), we obtain the system

ALt t − BLxx + T Lt + XL + Q̂(YLx + ZN − λM) + Λ0 = 0. (1.29)

Here

L =
(

L
P

)
, N =

(
J

Θ

)
, M =

(
ã

b̃
1

)
,

A =
(

b̃
ã

1
1 ã

)
, B =

(
b̃−1
ã

0

0 b̃ − 1

)
,

T =
(

T1 T2
T3 T4

)
=

(
T1 T0
T0 T4

)
+

(
0 T̃0

−T̃0 0

)
= ST + CT,

X =
(

X1 X2
X3 X4

)
=

(
X1 X0
X0 X4

)
+

(
0 X̃0

−X̃0 0

)
= SX + CX,

Y =
(

Y1 Y2
Y3 Y4

)
, Z =

(
Z1 Z2
Z3 Z4

)
, Λ0 =

(
b̃F0+G0

ã
F0 + G0

)
,

T1 = b̃τ1 + τ3

ã
, T2 = b̃τ2 + τ4

ã
, T3 = τ1 + τ3, T4 = τ2 + τ4,

T0 = T2 + T3

2
, T̃0 = T2 − T3

2
,

X1 = b̃χ1 + χ3

ã
, X2 = b̃χ2 + χ4

ã
, X3 = χ1 + χ3, X4 = χ2 + χ4,

X0 = X2 + X3

2
, X̃0 = X2 − X3

2
,

Y1 = b̃â − 2

ãâ
, Y2 = 7

2ãâ
, Y3 = â − 2

â
, Y4 = 7

2â
,

Z1 = d̂ − b̃µ12

ã
, Z2 = −µ12

âã
, Z3 = d̂ − µ12, Z4 = −µ12

ã
.

Finally, from (1.26) and the last equation in (1.10) we obtain the following equatio

N t =
(

1 −1
0 −5

2

)
Lx + Q̂diag

(
−1,

5

2

)
L

+
(

µ11 µ12
)

N + λ

(
1
)

+
( − λ

R̂
L( )

)
. (1.30)
5

2µ21
5
2µ22 0 5

2
Pλ

R̂
− (Rσ 2)x
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The boundary conditions (1.11) in terms ofL read as

L(t,0) = L(t,1) = 0. (1.31)

1.8. At the end of this section we observe also the following. Since we discus
existence of a global and sufficiently smooth solution (classical solution) to the i
boundary value problem (1.10)–(1.12), the initial data are supposed to satisfycompati-
bility conditions. In other words, following conditions should hold for the initial data a
their derivatives at the points(0,0) and(0,1) on the(t, x)-plane:



P0(0) = P0(1) = 0,

R0(0) = R0(1) = 1,

J ′
0(0) = J ′

0(1) = 0,

Θ ′
0(0) = J0(0)Q0(0),

Θ ′
0(1) = J0(1)Q0(1),

(1.32)

whereQ0(0), Q0(1) are determined by formula (1.7).

1.9. We made quite a few efforts to construct system (1.29) since a trivial exte
(simply by differentiating) of original system (1.10) is not enough to obtain a prior
timate (see the next section). The purpose of change of variables (1.23) is clea
homogeneous boundary conditions (see (1.31)) are obtained by means of this chan

2. Construction of a global a priori estimate. Global existence theorem

2.1. As was mentioned in the previous section, the global existence theorem f
initial boundary value problem (1.10)–(1.12) follows from the global a priori estimate
the local existence theorem for this problem (see also papers [10,11,16]). Below
describe the technique of obtaining such estimate (see [14] for details).

Differentiating (1.29) with respect tot and taking into account (1.30), we obtain

ADt t − BDxx + T Dt + XD

+ Q̂
(
YDx + ẐLx + Q̂Z̃L + ΩN − R̂βl[J ]M + λM̂

) + K̂ = 0. (2.1)

Here

D = Lt ,

Ẑ = Z

(
1 −1
0 −5

2

)
=

(
Z1 −Z1 − 5

2Z2

Z3 −Z3 − 5
2Z4

)
,

Z̃ = Z diag

(
−1,

5

2

)
=

(−Z1
5
2Z2

−Z3
5
2Z4

)
,

Ω = Z

(
µ11 µ12
5
2µ21

5
2µ22

)
=

(
Z1µ11 + Z2

5
2µ21 Z1µ12 + Z2

5
2µ22

Z3µ11 + Z4
5
2µ21 Z3µ12 + Z4

5
2µ22

)
,

ˆ
(

0
) (

Z1
)

M = Z
1

=
Z3

,
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hbor-
K̂ = K + Q̂Z

( − λ

R̂
L

5
2

(
Pλ

R̂
− (Rσ 2)x

)
)

,

K = AtDt − BtLxx + TtD + XtL + Q̂(YtLx + ZtN − λMt ) + (Λ0)t .

Using system (1.29), we estimateLxx :

Lxx = B−1(ALt t + T D + XL + Q̂(YLx + ZN − λM) + Λ0
)
. (1.29′)

We suppose that a smooth solution to problem (1.10)–(1.12) lies in a small neig
hood of the global thermodynamical equilibrium state (1.18). Then the inequalities

ã > 0, b̃ > 0,

b̃ − 1= 5

2â
(1+ σ)2 > 0

are satisfied. Therefore, the matricesA,B > 0. So, there exists the matrixB−1 appearing
in (1.29′).

2.2. Below we will need the following obvious relations (we recall thatA, B are sym-
metric matrices)

2(Dt ,ADt t ) = (Dt ,ADt )t − (Dt ,AtDt ),

2(Dt ,BDxx) = 2(Dt ,BDx)x − (Dx,BDx)t − 2(Dt ,BxDx) + (Dx,BtDx),

(D,ADt t ) = (D,ADt )t − (Dt ,ADt ) − (D,AtDt ),

(D,BDxx) = (D,BDx)x − (Dx,BDx) − (D,BxDx)

and so on.
Multiplying (2.1) by 2Dt , one obtains{

(Dt ,ADt ) + (Dx,BDx) + (D, SXD)
}
t
− 2(Dt ,BDx)x

+ 2
{
(Dt , ST Dt ) + (Dt ,CXD) + Q̂2(Dt , Z̃L)

+ Q̂
(
(Dt , YDx) + (Dt , ẐLx) + (Dt ,ΩN ) − R̂βl[J ](Dt ,M) + λ(Dt ,M̂)

)}
+ 2(Dt , K̂) − (Dt ,AtDt ) − (

D, (SX)tD
)

+ 2(Dt ,BxDx) − (Dx,BtDx) = 0. (2.2)

Multiplying the same system by 2D, we come to the expression{
2(D,ADt ) + (D, ST D) + Q̂2(L, SZ̃L)

}
t
− 2(D,BDx)x

+ 2
{−(Dt ,ADt ) + (Dx,BDx) + (D, SXD) + (D,CT Dt )

+ Q̂
(
(D, YDx) + (D, ẐLx) + Q̂(D,CZ̃L) + (D,ΩN )

− R̂βl[J ](D,M) + λ(D,M̂)
)} + 2(D, K̂) − (

D, (ST )tD
)

( )
− 2(D,AtDt ) + 2(D,BxDx) − Q̂2 L, (SZ̃)tL = 0. (2.3)
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Analogously, multiplying (1.29) first by 2D and then by 2L, one gets{
(D,AD) + (Lx,BLx) + (L, SXL)

}
t
− 2(D,BLx)x

+ 2
{
(D, ST D) + (D,CXL) + Q̂

(
(D, YLx) + (D,ZN ) − λ(D,M)

)}
+ 2(D,Λ0)− (D,AtD)− (

L, (SX)tL
)+2(D,BxLx)− (Lx,BtLx) = 0, (2.4){

2(L,AD) + (L, ST L)
}
t
− 2(L,BLx)x

+ 2
{−(D,AD) + (Lx,BLx) + (L, SXL) + (L,CT D)

+ Q̂
(
(L, YLx) + (L,ZN ) − λ(L,M)

)}
+ 2(L,Λ0) − (

L, (ST )tL
) − 2(L,AtD) + 2(L,BxLx) = 0. (2.5)

At last, multiplying (1.26) by 2J , the third equation in (1.10) by 2P , and the fourth equa
tion in (1.10) by 2Θ , and summing up the obtained expressions yields{

J 2 + L2 + 2

5
Θ2 + 3

2
P 2

}
t

− 2(JL − JP − PΘ)x

+ 2
{−µ11J

2 − µ̃12JΘ − µ22Θ
2 − cP 2 − λJ + Q̂(JL − JP − PΘ)

}
+ 2

λ

R̂
(JL − JP − PΘ) + 2Θ(σPx + Pf2) = 0, (2.6)

whereµ̃12 = µ12 + µ21.

2.3. Now, taking into account the boundary conditions (1.31), we integrate (2.2)–
with respect tox from 0 to 1, multiply them by positive arbitrary constantsα1, α2, α3,
α4, α5, sum up the result, and finally come to

d

dt
Φ(0) + Φ(1) = Π. (2.7)

Here

Φ(0) = Φ(0)(t)

=
1∫

0

{
(Lp,A0Lp) + α1(Dx,BDx) + α3(Lx,BLx) + α5

(
J 2 + 2

5
Θ2

)}
dx,

Lp =

 Lt t

Lt

L


 , A0 =


 α1A α2A 0

α2A R α4A

0 α4A R1


 ,

R = α1SX + α3A + α2ST ,

2
(

3
)

R1 = α2Q̂ SZ̃ + α3SX + α4ST + α5A1, A1 = diag 1,
2

,
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)
e
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s

t

the
ness
Φ(1) = Φ(1)(t) = 2

1∫
0

{
(Lp,A1Lp) + α2(Dx,BDx) + α4(Lx,BLx)

+ α5(−µ11J
2 − µ̃12JΘ − µ22Θ

2 − λJ )
}
dx,

A1 =
(

α1ST − α2A α1CX 0
α2CT α2SX + α3ST − α4A α3CX

0 α4CT α4SX + α5diag(0,−c)

)
.

The expression forΦ(1) is given here only for the caseρ ≡ 1 (i.e., ϕ̂ ≡ 0, see Section 1
because of its unhandiness in the general case. The termΠ is not given here by the sam
reason but it can be easily written down (see formulas (2.2)–(2.6)).

We will suppose in the sequel that the initial boundary value problem (1.10)–(1.12
a smooth (classical) local solution on some interval[0, t∗], wheret∗ is a sufficiently small
positive number. We introduce the constant

M∗ = max
{

max
t∈[0,t∗]

∥∥L(t)
∥∥

C[0,1], max
t∈[0,t∗]

∥∥Lx(t)
∥∥

C[0,1], max
t∈[0,t∗]

∥∥Lt (t)
∥∥

C[0,1]
}
.

We assume that the constantM∗ is sufficiently small and local solution slightly differ
from the equilibrium state (1.18) (at least this concerns the functionsR(t, x) andP(t, x)).
Likewise, suppose that the doping densityρ(x) is slightly differs from 1. Therefore, i
is enough to show that the integrand appearing in the expression forΦ(0) is a positive
definite quadratic form only at the equilibrium state. Indeed, since the constantsM∗ and
maxx∈[0,1] |ρ(x)−1| = 1−δ are small, this property remains valid in a neighborhood of
equilibrium state for doping densities slightly differing from 1. The positive definite
of the quadratic forms being the integrands for the integralsΦ(0) andΦ(2) (see below) is
shown in [14].

We rewrite (2.7) as
d

dt
Φ(0) + Φ(2) � |Π |, (2.8)

where

Φ(2) = Φ(2)(t) = 2

1∫
0

{
(Lp,A1Lp) + α2(Dx,BDx) + α4(Lx,BLx)

+ α5

(
−µ11J

2 − µ̃12JΘ − µ22Θ
2 − βε̂

2
J 2 − β

4ε̂
L2

x

)}
dx,

ε̂ > 0 is a constant.

Relation (2.8) is obtained as follows. First, we estimate the integralΦ(1) (recall that we
supposeρ(x) ≡ 1):

Φ(1) � 2

1∫
0

{
(Lp,A1Lp) + α2(Dx,BDx) + α4(Lx,BLx)

+ α5(−µ11J
2 − µ̃12JΘ − µ22Θ

2)
}
dx − 2α5

∣∣∣∣
1∫
R̂βl[U ]J dx

∣∣∣∣.
∣
0

∣
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right-

n-

d

It follows from

l[U ] =
1∫

0

U(t, s) ds − U(t, x) =
1∫

0

( s∫
x

Uz(t, z) dz

)
ds =

1∫
0

( s∫
x

L(t, z) dz

)
ds

that

∣∣l[U ]∣∣ �
1∫

0

∣∣L(t, s)
∣∣ds �

( 1∫
0

L2(t, s) ds

)1/2

.

So, we have

∣∣∣∣∣2
1∫

0

R̂βl[U ]J dx

∣∣∣∣∣ � 2β

1∫
0

∣∣l[U ]∣∣|J |dx � β

(
ε̂

1∫
0

J 2 dx + 1

2ε̂

1∫
0

L2
x dx

)
. (2.9)

The Cauchy inequality witĥε > 0 as well as the Poincare inequality (see [33])

1∫
0

L2 ds � 1

2

1∫
0

L2
x dx

were used while deriving (2.9). From (2.9) we deduce the inequality

Φ(1) � Φ(2)

that yields (2.8).
Since the quadratic forms being the integrands for the integralsΦ(0) andΦ(2) are posi-

tive definite, we have

Φ(2) � M1Φ
(0), (2.10)

whereM1 > 0 is some constant (which is finally determined through the constantM∗).
Using well-known Sobolev embedding theorems (see [23,33,40]), we estimate the

hand side in (2.8) as follows:

|Π | � M2(Φ
(0))

3/2
. (2.11)

HereM2 > 0 is a constant finally determined throughM∗. The embedding theorems me
tioned above are formulated as follows:

∥∥L(t)
∥∥

C1[0,1] � Mb

∥∥L(t)
∥∥

W2
2 (0,1)

� MbM3
(
Φ(0)(t)

)1/2
,∥∥N (t)

∥∥
C1[0,1] � Mb

∥∥N (t)
∥∥

W2
2 (0,1)

� MbM4
(
Φ(0)(t)

)1/2
.

Here Mb is the embedding constant (see [40]),M3,M4 > 0 are constants determine

by M∗, W2

2 (0,1) is the Sobolev space (see [23]).
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2.4. Using now the known technique based on Sobolev embedding theorems
(2.8), (2.10), (2.11) we derive the inequality

d

dt
Φ(0) + M1Φ

(0) � M2(Φ
(0))

3/2
. (2.12)

The function

f (Φ(0)) = −M1Φ
(0) + M2(Φ

(0))
3/2

is negative if

0< Φ(0) <

(
M1

M2

)2

.

So, (2.12) yields the following a priori estimate (that is yet local)

Φ(0)(t) � e−νtΦ(0)(0), 0< t � t∗, (2.13)

whereν is a constant, 0< ν < M1. This proves the following local existence theorem
the initial boundary value problem (1.10)–(1.12).

Theorem 2.1. Suppose the initial dataV (0, x) = V 0(x) belong toW2
2 (0,1). Suppose also

the compatibility conditions(1.32) are satisfied. Then there is a numbert∗ > 0 such that in
the domain0< t � t∗, 0< x < 1 there exists a unique solutionV (t, x) of problem(1.10)–
(1.12) belonging toC1([0, t∗] × [0,1]). Moreover, in view of the a priori estimate(2.13),

V (t, x) ∈ W2
2 (0,1), 0< t � t∗.

We note once again that one can use the results of paper [24] (see also paper [9]) t
the existence of a classical solution to problem (1.10)–(1.12) locally in time.

2.5. Let us now discuss how the a priori estimate (2.13) can be used to extend th
solution of problem (1.10)–(1.12) to the whole time interval. Actually, if the initial d
V 0(x) satisfy

0< Φ(0)(0) <

(
M1

M2

)2

, (2.14)

then it follows from (2.13) that

Φ(0)(t∗) � Φ(0)(0).

Since∥∥L(t∗)
∥∥

C1[0,1] � MbM3
(
Φ(0)(t∗)

)1/2
,∥∥Lt (t∗)

∥∥
C[0,1] � M5

(
Φ(0)(t∗)

)1/2
,

whereM5 > 0 is a constant determined throughM∗, then we can select the initial data (i.
Φ(0)(0)) such thatV (t∗) lies in the same small neighborhood of the equilibrium state (1

(characterized by the same constantM∗). Hence, we can takeV (t∗) as initial data to con-
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struct a classical solution to problem (1.10)–(1.12) fort∗ < t � 2t∗ so that estimate (2.13
is fulfilled:

Φ(0)(t) � e−ν(t−t∗)Φ(0)(t∗) � e−νtΦ(0)(0).

Thus, estimate (2.13) is global. This implies the global existence theorem for a cla
solution to the initial boundary value problem (1.10)–(1.12).

Theorem 2.2. Suppose the conditions of Theorem2.1 are fulfilled. Suppose also the initia
data satisfy(2.14). Then for anyt , 0 < t � t1 < ∞ (t1 is arbitrary), there exists a uniqu
smooth solution to problem(1.10)–(1.12):

N (t, x) ∈ W2
2 (0,1),

L(t, x) ∈ W2
2 (0,1) ∩ W̊1

2(0,1),

R(t, x) = R̂(x) − L(t, x) ∈ W2
2 (0,1),

ϕ(t, x) ∈ W4
2 (0,1) ∩ W̊1

2(0,1);
and the estimate

Φ(0)(t) � e−νtΦ(0)(0)

holds for this solution.

2.6. Let us prove that

ϕ(t, x) ∈ W4
2 (0,1) ∩ W̊1

2(0,1).

Indeed, in view of (1.24), (1.17), one obtains

ϕ(t, x) = β

x∫
0

l[U ]dζ + ϕ̂(x) = β

x∫
0

1∫
0

s∫
ζ

L(t, z) dz ds dζ + ϕ̂(x). (2.15)

Consequently,

Q = ϕx(t, x) = β

1∫
0

s∫
x

L(t, z) dz ds + Q̂,

ϕxx(t, x) = −βL + ϕ̂′′,
ϕxxx(t, x) = −βLx + ϕ̂′′′,
ϕxxxx(t, x) = −βLxx + ϕ̂(IV).

This yields the above property ofϕ.

2.7. Since, by virtue of Theorem 2.2,

L(t, x),N (t, x) ∈ W2
2 (0,1), t ∈ (0,∞),

thenΦ(0)(t) → 0 ast → ∞, i.e.,L(t, x),N (t, x) → 0 ast → ∞ in theW2
2 (0,1)-norm. At

the same time,R(t, x) = (R̂(x) − L(t, x)) → R̂ ast → ∞ in W2
2 (0,1). In view of (2.15),
ϕ(t, x) → ϕ̂(x) ast → ∞ in theW4
2 (0,1)-norm. So, we come to the following theorem.
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Theorem 2.3. If the initial data for problem(1.10)–(1.12) slightly differ from the equilib-
rium state(1.18) and the doping densityρ(x) slightly differs from1, then this equilibrium
state is asymptotically stable(by Lyapunov).

3. Conclusions

The construction of a global a priori estimate is proposed in this paper as a ba
prove the global existence theorem (see also [14]). This estimate is such that the co
of smallness of the constant maxx∈[0,1] |ρ(x) − 1| = 1 − δ can be apparently eliminate
However the smallness of the initial data

L(0, x) = L0(x), N (0, x) = N 0(x)

seems to be essential for the technique described in the paper. Obviously, to avo
assumption it needs to weaken the requirements on the solution to (1.10)–(1.12),
consider weak solutions to this problem.
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