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In this paper, we consider a two competitor–one prey diffusive model in which both
competitors exhibit Holling type-II functional response and one of the competitors exhibits
density dependent mortality rate. First, we study the local and global existence of
strong solution by using the C0 analytic semigroup. Then, we consider the local and
global stability of the positive constant equilibrium by using the linearization method
and Laypunov functional method, respectively. Furthermore, we derive some results for
the existence and non-existence of non-constant stationary solutions when the diffusion
rate of a certain species is small or large. The existence of non-constant stationary solutions
implies the possibility of pattern formation in this system.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Continuous models, usually in the form of differential equations, have formed a large part of the traditional mathematical
ecology literature. In these models, the key terms specifying the outcome of predator–prey interactions are the functional
and numerical response, which reflect the relationship between predators and their prey. In general, two competitor–one
prey model has the following form (see [1,3,5,9,11–14,17,19,23,24,31,32] and the references therein):

du1

dt
= ru1

(
1 − u1

K

)
− au2 f (u1) − Au3 g(u1) in R+,

du2

dt
= u2

(−d + ef (u1)
)

in R+,

du3

dt
= u3

(−D − Gu3 + Eg(u1)
)

in R+,

ui(0) = ui0 � 0, i = 1,2,3, (1)

where R+ = (0,∞), the parameters r, K , G , a, A, b, B , d, D , e, E are strictly positive, and ui0, i = 1,2,3, stand for the initial
condition. u2 and u3 are the densities of two competitors and u1 is the density of the prey. The density dependent mortality
term for the second species Gu2

3, referred as a ‘closure term’, describes either a self-limitation of the consumer, u3, or
the influence of predation. f (u1) and g(u1) are the so-called prey-dependent functional response which are taken as follows
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(i)
mu1

e + u1
, (ii)

mu2
1

e + εu1 + u2
1

, (iii)
mu2

1

e + u2
1

,

where m, e and ε are positive constants, m denotes the maximal growth rate of the species and e is the half-saturation
constant. The model (i) is called the Michaelis–Menten or Holling type-II function, (ii) is called the sigmoidal response
function, and (iii) is called the Holling type-III function.

On the other hand, understanding of spatial and temporal behaviors of interaction species in ecological systems is a
center issue in population ecology. One aspect of great interest for a model with multispecies interactions is whether the
involved species can persist or even stabilize at a coexistence steady state. When the species are homogeneously distributed,
this would be indicated by a constant positive solution of an ordinary differential equation system. In the spatially inho-
mogeneous case, the existence of a non-constant time-independent positive solution, also called stationary pattern, is an
indication of the richness of the corresponding partial differential equation dynamics. In recent years, stationary pattern
induced by diffusion has been studied extensively, and many important phenomena have been observed (see [4,6–8,15,16,
21–30,34–36] and references therein).

In this paper, we will study the effect of diffusion in the predator–prey system (1) with Holling type-II functional re-
sponse, i.e., the following reaction–diffusion system:

∂u1

∂t
− d1�u1 = ru1

(
1 − u1

K

)
− au1u2

1 + bu1
− Au1u3

1 + Bu1
in Ω × R+,

∂u2

∂t
− d2�u2 = u2

(
−d + eu1

1 + bu1

)
in Ω × R+,

∂u3

∂t
− d3�u3 = u3

(
−D − Gu3 + Eu1

1 + Bu1

)
in Ω × R+,

∂u1

∂ν
= ∂u2

∂ν
= ∂u3

∂ν
= 0 on ∂Ω × R+,

ui(·,0) = ui0 � 0, i = 1,2,3 in Ω, (2)

where Ω is a bounded domain of R
N (1 � N � 3) with smooth boundary ∂Ω , ∂

∂ν is the outward directional derivative
normal to ∂Ω , parameters r, K , G , a, A, b, B , d, d1, d2, d3, D , e, E are strictly positive, and ui0 ∈ C2+δ(Ω̄) (i = 1,2,3) for
some δ ∈ (0,1), stand for the initial condition.

In order to study the stationary pattern induced by diffusion, we consider the steady state of (2), i.e., the following
semi-linear elliptic system:

−d1�u1 = ru1

(
1 − u1

K

)
− au1u2

1 + bu1
− Au1u3

1 + Bu1
in Ω × R+,

−d2�u2 = u2

(
−d + eu1

1 + bu1

)
in Ω × R+,

−d3�u3 = u3

(
−D − Gu3 + Eu1

1 + Bu1

)
in Ω × R+,

∂u1

∂ν
= ∂u2

∂ν
= ∂u3

∂ν
= 0 on ∂Ω × R+. (3)

For convenience, we denote Λ = (r, K ,a, A,b, B,d, D, e, E, G) and U = (u1, u2, u3). It is easy to see that (2) has a positive
constant steady state E∗ = (u∗

1, u∗
2, u∗

3), where

u∗
1 = d

e − bd
, u∗

2 = 1 + bu∗
1

a

[
r

(
1 − u∗

1

K

)
− Au∗

3

1 + Bu∗
1

]
, u∗

3 = 1

G

(
−D + Ed

Bd + e − bd

)
(4)

provided

r

(
1 − u∗

1

K

)
− Au∗

3

1 + Bu∗
1

> 0, e > bd, Ed > D(Bd + e − bd). (5)

Let us start with the formulation of the original initial–boundary problem (2). We define the following product Banach
spaces for any 2 � p < ∞

H = Lp(Ω) × Lp(Ω) × Lp(Ω), E = W 1,p(Ω) × W 1,p(Ω) × W 1,p(Ω). (6)

One can check that, by the Lumer–Phillips Theorem and the generation theorem for analytic semigroup [33], the densely
defined, sectorial, linear operator
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A =
( A1 0 0

0 A2 0
0 0 A3

)
: D(A) → H, (7)

where A1 = −d1� + 1, A2 = −d2� + d, A3 = −d3� + D , D(A) = D(A1) × D(A2) × D(A3) with

D(A1) = D(A2) = D(A3) �
{
ω ∈ W 2,p(Ω)

∣∣∣ ∂ω

∂ν
= 0 on ∂Ω

}
, (8)

is the generator of an analytic C0 analytic semigroup {e−At, t � 0}, on the Banach space H. By the fact that
W 1,p(Ω) ↪→ L2p(Ω) is a continuous embedding for N � 3, one can check the nonlinear mapping Φ(U ) : E → H is a
locally Lipchitz continuous mapping defined on E , where U = (u1, u2, u3) and Φ = (φ1, φ2, φ3) with

φ1 = u1 + ru1

(
1 − u1

K

)
− au1u2

1 + bu1
− Au1u3

1 + Bu1
,

φ2 = eu1u2

1 + bu1
,

φ3 = u3

(
−Gu3 + Eu1

1 + Bu1

)
. (9)

Then the initial–boundary value problem (2) is formulated into an initial value problem as follows

dU
dt

+ AU = Φ(U ), t > 0,

U = U0 = (u10, u20, u30) ∈ H. (10)

By the theory of evolutionary equations [33], one can use the Contraction Mapping Theorem and the Gronwall–Henry
inequality [33, Lemma D.4] to prove the local existence and uniqueness of the strong solution U (t) of the initial value
problem (10) and the strong solution has the property

U ∈ C
([0, Tmax); H

) ∩ C1((0, Tmax); H
) ∩ L2

([0, Tmax); E
)
, (11)

where [0, Tmax) is the maximal interval of existence. Furthermore, the mild solution of (10) can be represented as

U (t) = e−At U0 +
t∫

0

e−A(t−s)Φ
(

U (s)
)

ds. (12)

In the remaining of this paper, we shall carry out the detailed analysis to systems (2) and (3). In Section 2, we study
the dissipation of system (2), which ensures the strong solution of (2) is global existence, viz, Tmax = ∞. In Section 3, we
consider the local and global stability of the steady state E∗ by using linearization method and Laypunov functional method,
respectively. In Section 4, we give a priori estimates to the positive solution of system (3), which are important to study the
non-existence of positive solution of (3) in Section 5 and existence of positive solution of (3) in Section 6.

2. Dissipation of system (2)

In this section, we will discuss the dissipation of system (2) and get the following theorem:

Theorem 2.1. There exist two positive constants K1 and K2 , which depend only on Λ,d1,d2,d3,Ω such that any non-negative
solution U (x, t) = (u1, u2, u3) of system (2) satisfies

lim sup
t→∞

∥∥u1(x, t)
∥∥

C(Ω̄)
� K ,

lim sup
t→∞

∥∥u2(x, t)
∥∥

C(Ω̄)
� K1,

lim sup
t→∞

∥∥u3(x, t)
∥∥

C(Ω̄)
� K2. (13)

In order to prove Theorem 2.1, we first give the L1-estimates for the non-negative solutions of system (2), then we derive
the L p-estimates for p large enough by using the L1-estimates (see [2,10,33]).
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Lemma 2.2. Any non-negative solution U (x, t) = (u1(x, t), u2(x, t), u3(x, t)) of system (2) satisfies the following estimate

‖u1‖L1(Ω) + a

e
‖u2‖L1(Ω) + A

E
‖u3‖L1(Ω)

� e−ct
∫
Ω

(
u10(x) + a

e
u20(x) + A

E
u30(x)

)
+ K (r + c)2

4r
|Ω|(1 − e−ct), (14)

where c = min{d, D}. Furthermore, for any q > 1, there exists a positive constant C which depends only on Λ,q,d1,d2,d3,Ω such
that any non-negative solution U (x, t) = (u1(x, t), u2(x, t), u3(x, t)) of system (2) satisfies

‖u1‖Lq(Ω) � C

(
‖u1‖L1(Ω) + a

e
‖u2‖L1(Ω) + A

E
‖u3‖L1(Ω)

)
,

‖u2‖Lq(Ω) � C

(
‖u1‖L1(Ω) + a

e
‖u2‖L1(Ω) + A

E
‖u3‖L1(Ω)

)
,

‖u3‖Lq(Ω) � C

(
‖u1‖L1(Ω) + a

e
‖u2‖L1(Ω) + A

E
‖u3‖L1(Ω)

)
. (15)

Proof. First, by using comparison principle, we get

u1(x, t) � max
{

max
x∈Ω̄

u10(x), K
}

� M. (16)

Next, from (2), we have

d

dt

∫
Ω

(
u1 + a

e
u2 + A

E
u3

)
dx �

∫
Ω

(
ru1 − r

K
u2

1 − ad

e
u2 − AD

E
u3

)
dx

= −c

∫
Ω

(
u1 + a

e
u2 + A

E
u3

)
dx +

∫
Ω

(
(r + c)u1 − r

K
u2

1

)
dx

� −c

∫
Ω

(
u1 + a

e
u2 + A

E
u3

)
dx + K (r + c)2

4r
|Ω|. (17)

Integrating the above inequality from 0 to t , we obtain (14).
Finally, we will prove (15) by induction. We already know (15) holds for q = 1. Next, we assume (15) holds for some q =

γ � 1 and we will prove (15) holds for q = 2γ . Multiplying the three equations of (2) by u2γ −1
1 , u2γ −1

2 , u2γ −1
2 respectively,

and then integrating the results over Ω , we obtain

1

2γ

d

dt

∫
Ω

(
u2γ

1 + u2γ
2 + u2γ

3

)
dx � −2γ − 1

γ 2

∫
Ω

(
d1

∣∣∇uγ
1

∣∣2 + d2
∣∣∇uγ

2

∣∣2 + d3
∣∣∇uγ

3

∣∣2)
dx

+
∫
Ω

(
ru2γ

1 + eu1u2γ
2 + Eu1u2γ

3

)
dx. (18)

That is,

d

dt

∫
Ω

(
u2γ

1 + u2γ
2 + u2γ

3

)
dx � −2ε(2γ − 1)

γ

∫
Ω

(∣∣∇uγ
1

∣∣2 + ∣∣∇uγ
2

∣∣2 + ∣∣∇uγ
3

∣∣2)
dx

+ 2γ D

∫
Ω

(
u2γ

1 + u2γ
2 + u2γ

3

)
dx, (19)

where ε = min{d1,d2,d3}, D = max{r, eM, E M}.
By using Nirenberg–Gagliardo’s inequality and Young’s inequality, we get∫

Ω

u2γ
1 dx � ε

[ ∫
Ω

∣∣∇uγ
1

∣∣2
dx +

( ∫
Ω

uγ
1 dx

)2]
+ η(ε)

( ∫
Ω

uγ
1 dx

)p

,

∫
u2γ

2 dx � ε

[ ∫ ∣∣∇uγ
2

∣∣2
dx +

( ∫
uγ

2 dx

)2]
+ η(ε)

( ∫
uγ

2 dx

)p

,

Ω Ω Ω Ω
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∫
Ω

u2γ
3 dx � ε

[ ∫
Ω

∣∣∇uγ
3

∣∣2
dx +

( ∫
Ω

uγ
3 dx

)2]
+ η(ε)

( ∫
Ω

uγ
3 dx

)p

(20)

for any constant ε > 0, where p > 1 is some constant, η(ε) is positive constant depending on ε.
Taking ε = 2ε(2γ − 1)/(q(2qD + 1)), then by (19) and (20), there exist two positive constants �1 and �2 such that

d

dt

∫
Ω

(
u2γ

1 + u2γ
2 + u2γ

3

)
dx � −

∫
Ω

(
u2γ

1 + u2γ
2 + u2γ

3

)
dx + �1

[( ∫
Ω

uγ
1 dx

)2

+
( ∫

Ω

uγ
2 dx

)2

+
( ∫

Ω

uγ
2 dx

)2]

+ �2

[( ∫
Ω

uγ
1 dx

)p

+
( ∫

Ω

uγ
2 dx

)p

+
( ∫

Ω

uγ
2 dx

)p]

� −
∫
Ω

(
u2γ

1 + u2γ
2 + u2γ

3

)
dx + C (21)

by using the assumption (i.e., (15) holds for some q = γ � 1), where C is dependent only on Λ,γ , p, �1, �2,d1,d2,d3,Ω .
Integrating the above inequality from 0 to t , we prove (15) holds for q = 2γ . So, (15) holds by induction. The proof is
completed. �
Proof of Theorem 2.1. From the first equation of (2), we know u1 satisfies

∂u1

∂t
− d1�u1 � ru1

(
1 − u1

K

)
in Ω × R+,

∂u1

∂ν
= 0 on ∂Ω × R+,

u1(x,0) = ui0(x) in Ω. (22)

Then the first inequality of (13) holds by comparison principle.
In order to prove the other two inequalities of (13), we exploit the C0 analytic semigroup theory. Recall Ai (i = 2,3)

defined in Section 1. Let σ(Ai) represent the spectrum of the operator Ai , it is easy to see Reσ(Ai) > � for some constant
� > 0. From [10,33], we can define two Banach spaces Y α

i = D(Aα
i ) (i = 2,3) with norm ‖ · ‖Y α

i
= ‖Aα

i · ‖Lp(Ω) for α > 0
and p > 1.

Let us choose p > max{2, N/2} and N/(2p) < α < 1, then the following imbedding result holds [10,33]:

Y α
i ↪→ Cβ(Ω̄) for 0 � β < 2α − N/p and i = 2,3. (23)

By (12) and ui0 ∈ C2+δ(Ω̄) ↪→ Y α
i (i = 2,3), it is easy to see

u2(x, t) = e−A2t u20(x) +
t∫

0

e−(t−τ )A2
eu1(x, τ )u2(x, τ )

1 + bu1(x, τ )
dτ ∈ Y α

2 ,

u3(x, t) = e−A3t u30(x) +
t∫

0

e−(t−τ )A3

[
Eu1(x, τ )u3(x, τ )

1 + Bu1(x, τ )
− Gu2

3(x, τ )

]
dτ ∈ Y α

3 , (24)

and

‖u2‖Y α
2

�
∥∥Aα

2 e−A2t u20(x)
∥∥

L p(Ω)
+

t∫
0

∥∥Aα
2 e−(t−τ )A2

∥∥∥∥∥∥eu1(x, τ )u2(x, τ )

1 + bu1(x, τ )

∥∥∥∥
L p(Ω)

dτ

� Cαt−αe−�t
∥∥u20(x)

∥∥
L p(Ω)

+ Cαζ1
(‖u1‖L p(Ω) + ‖u2‖L p(Ω) + ‖u3‖L p(Ω)

) t∫
0

(t − τ )−αe−�(t−τ ) dτ

� Cαt−αe−�t
∥∥u20(x)

∥∥
L p(Ω)

+ Cαζ1
(‖u1‖L p(Ω) + ‖u2‖L p(Ω) + ‖u3‖L p(Ω)

)
�α−1Γ (1 − α),

‖u3‖Y α
3

�
∥∥Aα

3 e−A3t u30(x)
∥∥

L p(Ω)
+

t∫ ∥∥Aα
3 e−(t−τ )A3

∥∥∥∥∥∥ Eu1(x, τ )u3(x, τ )

1 + Bu1(x, τ )
− Gu2

3(x, τ )

∥∥∥∥
L p(Ω)

dτ
0
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� Cαt−αe−�t
∥∥u30(x)

∥∥
L p(Ω)

+ Cαζ2
(‖u1‖L p(Ω) + ‖u2‖L p(Ω) + ‖u3‖L p(Ω)

) t∫
0

(t − τ )−αe−�(t−τ ) dτ

� Cαt−αe−�t
∥∥u30(x)

∥∥
L p(Ω)

+ Cαζ2
(‖u1‖L p(Ω) + ‖u2‖L p(Ω) + ‖u3‖L p(Ω)

)
�α−1Γ (1 − α), (25)

where Cα is a positive constant depending only on α, ζ1, ζ2 are two positive constants depending only on Λ,d1,d2,d3,Ω ,
Γ (r) = ∫ ∞

0 τ r−1e−τ dτ denotes the gamma function. From (14), (15), (23) and (25), we can get the last two inequalities
of (13). The proof is completed. �
3. Stability analysis of the constant solution E∗

In this section, we study the local and global stability of the steady state E∗ = (u∗
1, u∗

2, u∗
3) of (2), which is defined in (4)

and (5).

Theorem 3.1 (Local stability). Assume (5) holds. If

(i) u∗
1ρ

(
u∗

1

) + Gu∗
3 > 0,

(ii) d3u∗
1ρ

(
u∗

1

) + d1Gu∗
3 � 0,

(iii)
[
Gu∗

1u∗
3ρ

(
u∗

1

) + AEu∗
3 g

(
u∗

1

)
g′(u∗

1

)]
d2 + aeu∗

2 f
(
u∗

1

)
f ′(u∗

1

)
d3 � 0,

(iv) ρ
(
u∗

1

)
> ρ∗+, (26)

then the positive equilibrium E∗ of system (2) is locally asymptotically stable, where

ρ
(
u∗

1

) = r

K
− abu∗

2

(1 + bu∗
1)

2
− ABu∗

3

(1 + Bu∗
1)

2
,

ρ∗+ = 1

2

[
−

(
aeu∗

2

Gu∗
3(1 + bu∗

1)
3

+ AE

G(1 + Bu∗
1)

3
+ Gu∗

3

u∗
1

)
+ √
Γ

]
,


Γ �
[

aeu∗
2

Gu∗
3(1 + bu∗

1)
3

]2

+ 2aeu∗
2

Gu∗
3(1 + bu∗

1)
3

[
AE

G(1 + Bu∗
1)

3
+ Gu∗

3

u∗
1

]
+

[
AE

G(1 + Bu∗
1)

3
− Gu∗

3

u∗
1

]2

> 0,

f
(
u∗

1

) = u∗
1

1 + bu∗
1
, f ′(u∗

1

) = 1

(1 + bu∗
1)

2
, g

(
u∗

1

) = u∗
1

1 + Bu∗
1
, g′(u∗

1

) = 1

(1 + Bu∗
1)

2
. (27)

Theorem 3.2 (Global stability). Assume that the positive equilibrium E∗ of system (2) is locally stable. If

r

K
− abu∗

2

(1 + bu∗
1)

− ABu∗
3

(1 + Bu∗
1)

> 0, (28)

then E∗ is global stable.

Proof of Theorem 3.1. Let 0 = μ0 < μ1 < μ2 < μ3 < · · · be the eigenvalue of the operator −� in Ω with the homogeneous
Neumann boundary condition, and set

X =
{
(u1, u2, u3) ∈ [

C2(Ω) ∩ C1(Ω̄)
]3

:
∂u1

∂ν
= ∂u2

∂ν
= ∂u3

∂ν
= 0 on ∂Ω

}
,

E(μ) =
{
φ: −�φ = μφ in Ω,

∂φ

∂ν
on ∂Ω

}
, with μ ∈ R

1,

{φi j}dim E(μi)

j=1 to be an orthonormal basis of E(μi),

Xi j = {
cφi j: c ∈ R

3}. (29)

Then,

X =
∞⊕

Xi, where Xi =
dim E(μi)⊕

Xi j. (30)

i=0 j=1
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Define

ρ(u1) = r

K
+ au∗

2
d

du1

(
f (u1)

u1

)
+ Au∗

3
d

du1

(
g(u1)

u1

)
, (31)

where f (u1) = u1
1+bu1

, g(u1) = u1
1+Bu1

.
Let ū1 = u1 − u∗

1, ū2 = u2 − u∗
2, ū3 = u3 − u∗

3, and the linearized system of (2) at (u∗
1, u∗

2, u∗
3) is

∂ ū1

∂t
− d1�ū1 = j11ū1 + j12ū2 + j13ū3 in Ω × R+,

∂ ū2

∂t
− d2�ū2 = j21ū1 in Ω × R+,

∂ ū3

∂t
− d3�ū3 = j31ū1 + j33ū3 in Ω × R+,

∂ ū1

∂ν
= ∂ ū2

∂ν
= ∂ ū3

∂ν
= 0 on ∂Ω × R+, (32)

where

j11 = −u∗
1ρ

(
u∗

1

)
, j12 = −af

(
u∗

1

)
< 0, j13 = −Ag

(
u∗

1

)
< 0,

j21 = eu∗
2 f ′(u∗

1

)
> 0, j31 = Eu∗

3 g′(u∗
1

)
> 0, j33 = −Gu∗

3 < 0. (33)

Denote

L =
[d1� + j11 j12 j13

j21 d2� 0
j31 0 d3� + j33

]
. (34)

Then, for each i ∈ {0,1,2,3, . . .}, Xi is invariant under the operator L, and λ is an eigenvalue of L on Xi if and only if λ is
an eigenvalue of the following matrix

Ai =
[−d1μi + j11 j12 j13

j21 −d2μi 0
j31 0 −d3μi + j33

]
. (35)

The characteristic equation of Ai is given by

λ3 + a1λ
2 + a2λ + a3 = 0, (36)

where

a1 = a1(μi) = (d1 + d2 + d3)μi − ( j11 + j33) = (d1 + d2 + d3)μi + u∗
1ρ

(
u∗

1

) + Gu∗
3,

a2 = a2(μi) = (d1d2 + d1d3 + d2d3)μ
2
i − [

(d2 + d3) j11 + (d1 + d2) j33
]
μi + j11 j33 − j13 j31 − j12 j21,

a3 = a3(μi) = d1d2d3μ
3
i − (d1d2 j33 + d2d3 j11)μ

2
i + [

( j11 j33 − j13 j31)d2 − j12 j21d3
]
μi + aeGu∗

2u∗
3 f

(
u∗

1

)
f ′(u∗

1

)
.

Routh–Hurwitz criteria state that all roots of the characteristic Eq. (36) have negative real parts if and only if

a1 > 0, a3 > 0, a1a2 − a3 > 0. (37)

a1 > 0 follows from (i) of (26).
(33) shows that aeGu∗

2u∗
3 f (u∗

1) f ′(u∗
1) > 0, so we have

a3(μ0) > 0, (38)

and

a3(μi) > μi
[
d1d2d3μ

2
i − (d1d2 j33 + d2d3 j11)μi + [

( j11 j33 − j13 j31)d2 − j12 j21d3
]]

=: μiχ(μi) � μ1χ(μi), i � 1.

It follows (ii) that χ(τ ) is increasing in [0,∞), so by (iii) of (26) and (33) we obtain

a3(μi) > μ1χ(μi) � μ1χ(0)

= μ1
[
( j11 j33 − j13 j31)d2 − j12 j21d3

]
= μ1

{[
Gu∗

1u∗
3ρ

(
u∗

1

) + AEu∗
3 g

(
u∗

1

)
g′(u∗

1

)]
d2 + aeu∗

2 f
(
u∗

1

)
f ′(u∗

1

)
d3

}
� 0 (39)

for i � 1. Then, we get a3 > 0.
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Notice that

a1a2 − a3 = c1μ
3
i + c2μ

2
i + (c11d1 + c12d2 + c13d3)μi + G

(
u∗

1

)2
u∗

3h̄
(
ρ
(
u∗

1

))
, (40)

where c1, c2, c11, c12, c13 > 0 if u∗
1ρ(u∗

1) + Gu∗
3 > 0 and

h̄
(
ρ
(
u∗

1

))
�

[
ρ
(
u∗

1

)]2 + ρ
(
u∗

1

)[aeu∗
2 f (u∗

1)

Gu∗
1u∗

3
f ′(u∗

1

) + AEg(u∗
1)

Gu∗
1

g′(u∗
1

) + Gu∗
3

u∗
1

]
+ AEu∗

3 g(u∗
1)

(u∗
1)

2
g′(u∗

1

)
.

Thus, we have a1a2 − a3 > 0 if h̄(ρ(u∗
1)) > 0.

Observe that for the quadratic form h̄(ρ(u∗
1)) and recall the definition of 
Γ , ρ∗+ and h̄(− Gu∗

3
u∗

1
) = − aeu∗

2 f (u∗
1)

Gu∗
1u∗

3
f ′(u∗

1) < 0.

Thus, ρ∗+ > − Gu∗
3

u∗
1

. It follows that a1a2 − a3 > 0 if and only if ρ(u∗
1) > ρ∗+ . We observe that ρ∗+ < 0. Therefore, by Routh–

Hurwitz criteria we get Theorem 3.1. The proof is completed. �
Proof of Theorem 3.2. We use the Lyapunov functionals for the proof. Define

W (u1, u2, u3) = α

∫
u1 − u∗

1

u1
du1 + β

∫
u2 − u∗

2

u2
du2 + γ

∫
u3 − u∗

3

u3
du3 (41)

and

E(t) =
∫
Ω

W
(
u1(x, t), u2(x, t), u3(x, t)

)
dx, (42)

where α,β,γ are positive constants to be determined. Along any trajectory of system (2), we have

dE(t)

dt
=

∫
Ω

[Wu1 u1t + Wu2 u2t + Wu3 u3t]dx

=
∫
Ω

[
α

u1 − u∗
1

u1
d1�u1 + β

u2 − u∗
2

u2
d2�u2 + γ

u3 − u∗
3

u3
d3�u3

]
dx

+ α

∫
Ω

[
r

(
1 − u1

K

)
− au2

1 + bu1
− Au3

1 + Bu3

](
u1 − u∗

1

)
dx

+ β

∫
Ω

[
−d + eu1

1 + bu1

](
u2 − u∗

2

)
dx + γ

∫
Ω

[
−D − Gu3 + Eu1

1 + Bu1

](
u3 − u∗

3

)
dx

= −
∫
Ω

[
d1α

u∗
1

u2
1

|∇u1|2 + d2β
u∗

2

u2
2

|∇u2|2 + d3γ
u∗

3

u2
3

|∇u3|2
]

dx

+ α

∫
Ω

[
− r

K
+ abu∗

2

(1 + bu1)(1 + bu∗
1)

+ ABu∗
3

(1 + Bu1)(1 + Bu∗
1)

](
u1 − u∗

1

)2
dx

+
∫
Ω

1

1 + bu∗
1

[
−αa + βe − βbeu∗

1

1 + bu∗
1

](
u1 − u∗

1

)(
u2 − u∗

2

)
dx

+
∫
Ω

1

1 + Bu∗
1

[
−αA + γ E − γ B Eu∗

1

1 + Bu∗
1

](
u1 − u∗

1

)(
u3 − u∗

3

)
dx − γ G

∫
Ω

(
u3 − u∗

3

)2
dx.

Choose

α = 1, β = a

e − bd
, γ = A(e − bd + Bd)

E(e − bd)
. (43)

Then we have

dE(t)

dt
�

∫
Ω

[
− r

K
+ abu∗

2

(1 + bu1)(1 + bu∗
1)

+ ABu∗
3

(1 + Bu1)(1 + Bu∗
1)

](
u1 − u∗

1

)2
dx

−
∫

AG(e − bd + Bd)

E(e − bd)

(
u3 − u∗

3

)2
dx. (44)
Ω
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The coefficient for (u3 − u∗
3)

2 is always negative. The coefficient for (u1 − u∗
1)

2 is

− r

K
+ abu∗

2

(1 + bu1)(1 + bu∗
1)

+ ABu∗
3

(1 + Bu1)(1 + Bu∗
1)

� − r

K
+ abu∗

2

1 + bu∗
1

+ ABu∗
3

1 + Bu∗
1

< 0. (45)

Thus, if (28) is satisfied, then dE(t)
dt � 0 and dE(t)

dt = 0 if and only if u1 = u∗
1, u2 = u∗

2, u3 = u∗
3. The proof is completed. �

4. A priori estimates to the positive solution of system (3)

In this section, we will give a priori estimates to the positive solution of system (3) and our results are the following
two theorems:

Theorem 4.1. Any positive solution U (x) = (u1(x), u2(x), u3(x)) of system (3) satisfies

max
x∈Ω̄

u1(x) � K , max
x∈Ω̄

u2(x) � deK

d2a
+ reK

da
, max

x∈Ω̄
u3(x) � D E K

d3 A
+ rE K

D A
. (46)

Theorem 4.2. There exist three positive constants: C1 (depending on r
d1

,Ω), C2 (depending on e
bd2

,Ω), C3 (depending on E
Bd3

,Ω),
such that any positive solution U (x) = (u1(x), u2(x), u3(x)) of system (3) satisfies

maxx∈Ω̄ u1(x)

minx∈Ω̄ u1(x)
� C1,

maxx∈Ω̄ u2(x)

minx∈Ω̄ u2(x)
� C2,

maxx∈Ω̄ u3(x)

minx∈Ω̄ u3(x)
� C3. (47)

In order to prove Theorems 4.1 and 4.2. Let us first introduce two lemmas. The first lemma that is due to Lou and
Ni [20].

Lemma 4.3 (Maximum principle). Suppose that g ∈ (Ω̄ × R).

(i) Assume that w ∈ C2(ω) ∩ C1(Ω̄) and satisfies

�w(x) + g
(
x, w(x)

)
� 0 in Ω,

∂ w

∂ν
� 0 on ∂Ω. (48)

If w(x0) = maxx∈Ω̄ w(x), then g(x0, w(x0)) � 0.
(ii) Assume that w ∈ C2(ω) ∩ C1(Ω̄) and satisfies

�w(x) + g
(
x, w(x)

)
� 0 in Ω,

∂ w

∂ν
� 0 on ∂Ω. (49)

If w(x0) = minx∈Ω̄ w(x), then g(x0, w(x0)) � 0.

Next, we state the second lemma that is due to Lin, Ni and Takagi [18].

Lemma 4.4 (Harnack inequality). Let w ∈ C2(ω)∩C1(Ω̄) be a positive solution to �w(x)+c(x)w(x) = 0, where c ∈ C(Ω̄), satisfying
the homogeneous Neumann boundary condition. Then there exists a positive constant C , depending only on ‖c(x)‖C(Ω̄) and Ω , such
that

max
x∈Ω̄

w(x) � C min
x∈Ω̄

w(x). (50)

Proof of Theorem 4.1. Let x0 ∈ Ω̄ such that u1(x0) = maxx∈Ω̄ u1(x), then by Lemma 4.3 we have

ru1(x0)

(
1 − u1(x0)

K

)
− au1(x0)u2(x0)

1 + bu1(x0)
− Au1(x0)u3(x0)

1 + Bu1(x0)
� 0, (51)

which implies u1(x0) = maxx∈Ω̄ u1(x) � K .
Define y(x) � d1eu1(x) + d2au2(x), then y satisfies

−�y = reu1

(
1 − u1

K

)
− adu2 − Aeu1u3

1 + Bu1
in Ω,

∂ y = 0 on ∂Ω. (52)

∂ν
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Let x1 ∈ Ω̄ such that y(x1) = maxx∈Ω̄ y(x), then by Lemma 4.3 we have

reu1(x1)

(
1 − u1(x1)

K

)
− adu2(x1) − Aeu1(x1)u3(x1)

1 + Bu1(x1)
� 0, (53)

which implies u1(x1) � K and u2(x1) � reu(x1)
ad � reK

ad . So, by the definition of y(x), we obtain

d2a max
x∈Ω̄

u2(x) � max
x∈Ω̄

y(x) = y(x1) = deu1(x1) + d2au2(x1) � deK + reKd2

d
, (54)

i.e.,

max
x∈Ω̄

u2(x) � deK

d2a
+ reK

da
. (55)

Similarly, we can prove maxx∈Ω̄ u3(x) � D E K
d3 A + rE K

D A . The proof is completed. �
Proof of Theorem 4.2. It is easy to see u1(x) satisfies

�u1 + c1(x)

d1
u1 = 0 in Ω,

∂u1

∂ν
= 0 on ∂Ω, (56)

where c1(x) = ru1(1 − u1
K ) − au1u2

1+bu1
− Au1u3

1+Bu1
. Since ‖c1/d1‖C(Ω̄) � r/d1, by Lemma 4.4, we can get the first inequality of (47).

The proof the other two inequalities of (47) are similar. The proof is completed. �
5. Non-existence of non-constant positive solution of system (3)

In Theorem 3.2, the global stability of the constant coexistence steady state implies the non-existence of non-constant
positive solution of (3) regardless of diffusions. Several non-existence results of non-constant positive solutions to (3) will
presented in this section, and in these results, the diffusion coefficients do play important roles. The mathematical tech-
niques to be employed is the energy method.

Theorem 5.1. Recall 0 = μ0 < μ1 < μ2 < μ3 < · · · represent the eigenvalues of the operator −� in Ω with the homogeneous
Neumann boundary condition. Then we have:

(i) For any ε1 > 0, there exists a positive constant D∗
1 , depending on Λ,ε1,Ω , such that (3) has no non-constant positive solution

provided μ1d1 > D∗
1 , μ1d2 > eK

1+bK + ε1 and μ1d3 > E K
1+B K + ε1 .

(ii) For any ε2 > 0, there exists a positive constant D∗
2 , depending on Λ,ε2,Ω , such that (3) has no non-constant positive solution

provided μ1d1 > r + ε2 , λ1d2 > D∗
2 and λ1d3 > D∗

2 .

Proof. We only prove (i), the proof of (ii) can be accomplished similarly. Let (u1, u2, u3) be a positive solution of (3)
and write ū = |Ω|−1

∫
Ω

u(x)dx. Then, multiplying the first equation of (3) by (u1 − ū1), integrating over Ω and using
Theorems 4.1 and 4.2, we have

d1

∫
Ω

∣∣∇(u1 − ū1)
2
∣∣dx =

∫
Ω

[
ru1 − r

K
u2

1 − au1u2

1 + bu1
− Au1u3

1 + Bu1
− rū1 + r

K
ū2

1 + aū1ū2

1 + bū1
+ Aū1ū3

1 + Bū1

]
(u1 − ū1)dx

=
∫
Ω

[
r − r

K
(u1 + ū1) − au2

(1 + bu1)(1 + bū1)
− Au3

(1 + Bu1)(1 + Bū1)

]
(u1 − ū1)

2 dx

−
∫
Ω

[
aū1

1 + bū1
(u1 − ū1)(u2 − ū2) + Aū1

1 + Bū1
(u1 − ū1)(u3 − ū3)

]
dx

�
[
r + c(ε)

] ∫
Ω

(u1 − ū1)
2 dx + ε

∫
Ω

(u2 − ū2)
2 dx + ε

∫
Ω

(u3 − ū3)
2 dx (57)

for any ε > 0, where c(ε) is a positive constant depending on ε,Λ,Ω .
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Similarly, by using the second and the third equations of (3), we obtain

d2

∫
Ω

∣∣∇(u2 − ū2)
2
∣∣dx =

∫
Ω

[
−du2 + eu1u2

1 + bu1
+ dū2 − eū1ū2

1 + bū1

]
(u2 − ū2)dx

=
∫
Ω

[
−d + eū1

1 + bū1

]
(u2 − ū2)

2 dx +
∫
Ω

eu2

(1 + bu1)(1 + bū1)
(u1 − ū1)(u2 − ū2)dx

� c(ε)

∫
Ω

(u1 − ū1)
2 dx +

(
eK

1 + bK
+ ε

)∫
Ω

(u2 − ū2)
2 dx (58)

for any ε > 0, where c(ε) is a positive constant depending on ε,Λ,Ω .

d3

∫
Ω

∣∣∇(u3 − ū3)
2
∣∣dx =

∫
Ω

[
−Du3 − Gu2

3 + Eu1u3

1 + Bu1
+ Dū3 + Gū3 − Eū1ū3

1 + Bū1

]
(u3 − ū3)dx

=
∫
Ω

[
−D − G(u3 + ū3) + Eū1

1 + Bū1

]
(u3 − ū3)

2 dx

+
∫
Ω

Eu3

(1 + Bu1)(1 + Bū1)
(u1 − ū1)(u3 − ū3)dx

� c(ε)

∫
Ω

(u1 − ū1)
2 dx +

(
E K

1 + B K
+ ε

)∫
Ω

(u3 − ū3)
2 dx, (59)

for any ε > 0, where c(ε) is a positive constant depending on ε,Λ,Ω .
Hence, adding (57)–(59) and applying Poincaré’s inequality, we have

μ1d1

∫
Ω

(u1 − ū1)
2 dx + μ1d2

∫
Ω

(u2 − ū2)
2 dx + μ1d3

∫
Ω

(u3 − ū3)
2 dx

�
[
r + 3c(ε)

] ∫
Ω

(u1 − ū1)
2 dx +

(
eK

1 + bK
+ 2ε

)∫
Ω

(u2 − ū2)
2 dx +

(
E K

1 + B K
+ 2ε

)∫
Ω

(u3 − ū3)
2 dx. (60)

We take ε = ε1/2 in (60) such that ε1 = 2ε. If μ1d2 > eK
1+bK + ε1 and μ1d3 > E K

1+B K + ε1, then it is easy to see from
(60) that there exists D∗

1 = r + 3c(ε1/2) such that (3) has only the positive constant solution (u1, u2, u3) = (u∗
1, u∗

2, u∗
3) if

μ1d1 > D∗
1. The proof is completed. �

6. Existence of non-constant positive solutions of system (3)

This section is devoted to the existence of non-constant positive solutions of (3) for certain values of diffusion coefficients
d2 and d3, respectively, while the other parameters are fixed. Our results show that, if the parameters are properly chosen,
both the general stationary pattern and more interesting Turing pattern can arise as a result of diffusion. Let m(μn) be the
multiplicity of μn . Our main findings are the following two theorems.

Theorem 6.1. Assume

j11 j33 − j13 j31 > 0, j33d1 + j11d3 > 0,


1 � ( j33d1 + j11d3)
2 − 4d1d3( j11 j33 − j13 j31) > 0, (61)

where jk,l , k, l = 1,2,3 are defined in (33). If μ∗
2(d2) ∈ (μi,μi+1) and μ∗

3(d2) ∈ (μ j,μ j+1) for some j > i � 0, where μ∗
2(d2) and

μ∗
3(d2) are defined in Proposition 2, and the sum

∑ j
n=i+1 m(μn) is odd, then there exists a positive constant D̃2 such that, if d2 � D̃2 ,

(3) admits at least one non-constant positive solution.

Theorem 6.2. Assume

j11d2 > 0, 
2 = ( j11d2)
2 + 4 j12 j21d1d2 > 0, (62)

where jk,l , k, l = 1,2,3 are defined in (33). If μ∗
2(d3) ∈ (μi,μi+1) and μ∗

3(d3) ∈ (μ j,μ j+1) for some j > i � 0, where μ∗
2(d3) and

μ∗
3(d3) are defined in Proposition 3, and the sum

∑ j
n=i+1 m(μn) is odd, then there exists a positive constant D̃3 such that, if d3 � D̃3 ,

(3) admits at least one non-constant positive solution.
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In order to prove the above two theorems, we start with some preliminary results. Recall the definition of U , E∗ in
Section 1 and X in (29), we denote

X+ = {U ∈ X | ui > 0 on Ω̄, i = 1,2,3},
B(C) = {

U ∈ X
∣∣ C−1 < ui < C on Ω̄, i = 1,2,3

}
, C > 0. (63)

With the diffusion matrix D = diag(d1,d2,d3), (3) can be written as

−D�U = F (U ) in Ω,

∂U
∂ν

= 0 on ∂Ω, (64)

where

F (U ) =
⎛
⎝ ru1(1 − u1

K ) − au1u2
1+bu1

− Au1u3
1+Bu1

u2(−d + eu1
1+bu1

)

u3(−D − Gu3 + Eu1
1+Bu1

)

⎞
⎠ . (65)

Then U is a positive solution to (64) if and only if

G(U ) � U − (I − �)−1[D−1 F (U ) + U
] = 0 for U ∈ X+, (66)

where (I − �)−1 is the inverse of I − � in X. As G(·) is a compact perturbation of the identity operator, for any B = B(C),
the Leray–Schauder degree deg(G(·),0,B) is well defined if G(U ) �= 0 on ∂B.

We also note that

D U G
(

E∗) = I − (I − �)−1[D−1 F U
(

E∗) + I
]
, (67)

and recall that if D U G(E∗) is invertible, the index of G at E∗ is defined as index(G(·), E∗) = (−1)γ , where γ is the multi-
plicity of negative eigenvalues of D U G(E∗) [25, Theorem 2.8.1].

For the sake of convenience, we denote

H(d1,d2,d3,μ) = det
[
μI − D−1 F U

(
E∗)] = 1

d1d2d3
det

[
μD − F U

(
E∗)]. (68)

By arguments similar to those in [29], it can be shown that the following proposition holds.

Proposition 1. Suppose that, for all n � 0, the matrix μn I − D−1 F U (E∗) is non-singular. Then

index
(

G(·), E∗) = (−1)γ , where γ =
∑

n�0, H(d1,d2,d3;μn)<0

m(μn). (69)

To compute index(G(·), E∗), we have to consider the sign of H(d1,d2,d3;μ). Direct calculation gives

det
[
μD − F U

(
E∗)] = A3(d2,d3)μ

3 + A2(d2,d3)μ
2 + A1(d2,d3)μ − det

[
F U

(
E∗)]

� A(d2,d3;μ), (70)

with

A3(d2,d3) = d1d2d3, A2(d2,d3) = −( j33d1d2 + j11d2d3),

A1(d2,d3) = ( j11 j33 − j13 j31)d2 − j12 j21d3. (71)

We first consider the dependence of A on d2. Let μ̃i(d2;d3), i = 1,2,3, be the three roots of A(d2,d3;μ) = 0 satis-
fying Re μ̃1(d2;d3) � Re μ̃2(d2;d3) � Re μ̃3(d2;d3). Since det F U (E∗) < 0 and A3(d2,d3) > 0, one of μ̃i(d2;d3) is real and
negative, and the product of the other two is positive.

In addition, we have

lim
d2→∞

A(d2;d3)/d2 = μ
[
d1d3μ

2 − ( j33d1 + j11d3)μ + j11 j33 − j13 j31
]
. (72)

Note that if (61) holds, we can establish the following proposition.



J. Zhou, C. Mu / J. Math. Anal. Appl. 385 (2012) 913–927 925
Proposition 2. Assume that (61) holds. Then there exists a positive constant D∗
2 such that when d2 � D∗

2 , the three roots μ̃i(d2;d3),
i = 1,2,3, of A(d2,d3;μ) are real and satisfy

lim
d2→∞

μ̃1(d2;d3) = 0,

lim
d2→∞

μ̃2(d2;d3) = 1

2d1d3
[ j33d1 + j11d3 − √
1 ] � μ∗

2(d3) > 0,

lim
d2→∞

μ̃3(d2;d3) = 1

2d1d3
[ j33d1 + j11d3 + √
1 ] � μ∗

3(d3) > 0. (73)

Moreover, when d2 > D∗
2 ,

−∞ < μ̃1(d2;d3) < 0 < μ̃2(d2;d3) < μ̃3(d2;d3),

A(d2,d3;μ) < 0 if μ ∈ (−∞, μ̃1(d2;d3)
) ∪ (

μ̃2(d2;d3), μ̃3(d2;d3)
)
,

A(d2,d3;μ) > 0 if μ ∈ (
μ̃1(d2;d3), μ̃2(d2;d3)

) ∪ (
μ̃3(d2;d3),∞

)
. (74)

Similarly, we consider d3 as the parameter, we have the following propositions.

Proposition 3. Assume that (62) holds. Then there exists a positive constant D∗
3 such that when d3 � D∗

2 , the three roots μ̃i(d3;d2),
i = 1,2,3, of A(d2,d3;μ) are real and satisfy

lim
d3→∞

μ̃1(d3;d2) = 0,

lim
d3→∞

μ̃2(d3;d2) = 1

2d1d2
[ j11d2 − √
2 ] � μ∗

2(d2) > 0,

lim
d3→∞

μ̃3(d3;d2) = 1

2d1d3
[ j11d2 + √
2 ] � μ∗

3(d2) > 0. (75)

Moreover, when d3 > D∗
3 ,

−∞ < μ̃1(d3;d2) < 0 < μ̃2(d3;d2) < μ̃3(d3;d2),

A(d2,d3;μ) < 0 if μ ∈ (−∞, μ̃1(d3;d2)
) ∪ (

μ̃2(d3;d2), μ̃3(d3;d2)
)
,

A(d2,d3;μ) > 0 if μ ∈ (
μ̃1(d3;d2), μ̃2(d3;d2)

) ∪ (
μ̃3(d3;d2),∞

)
. (76)

Now, we can give the proofs of Theorems 6.1 and 6.2. Since the proof of Theorem 6.2 is similar to the proof of Theo-
rem 6.1, we only give the proof for Theorem 6.1.

Proof of Theorem 6.1. By Proposition 1 and our assumptions, there exists a positive constant D̃2, such that when d2 � D̃2,
(74) holds and

μi < μ̃2(d2;d3) < μi+1, μ j < μ̃3(d2;d3) < μ j+1. (77)

According to Theorem 5.1, for d̂2 and d̂3 large enough, there exists d̂1 such that (3) has no non-constant positive solutions
when d1 � d̂1, d2 � d̂2 and d3 � d̂3. In addition, since det[F U ](E∗) < 0 and limn→∞ μn = ∞, from (70), we can further
choose d̂1, d̂2 and d̂3 to be so large such that

H(d̂1, d̂2, d̂3;μn) > 0 for all n � 0. (78)

Now, we show that for any d2 � D̃2, (3) has at least one non-constant positive solution. The proof, which is accomplished
by a contradict argument, is based on the homotopy invariance of the topological degree. Suppose on the contrary that the
assertion is not true for some d2 = d̃2 � D̃2.

Fix d2 = d̃2, let di(t) = tdi + (1 − t)d̂i , i = 1,2,3 and define

D(t) = diag
[
d1(t),d2(t),d3(t)

]
.

Now we consider the following problem

−D(t)�U = F (U ) in Ω,

∂U = 0 on ∂Ω. (79)

∂ν
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Then U is a positive solution of (3) if and only if it is a positive solution of (79) for t = 1. It is obvious that E∗ is the unique
constant positive solution of (79) for 0 � t � 1. For any 0 � t � 1, U is a positive solution of (79) if and only if

G(t; U ) � U − (I − �)−1[D−1(t)F (U ) + U
] = 0 for U ∈ X+. (80)

Clearly, G(1; U ) = G(U ). Theorem 5.1 shows that the only positive solution of G(0; U ) is E∗ . From direct calculation,

D U G
(
t; E∗) = I − (I − �)−1[D−1(t)F U

(
E∗) + I

]
. (81)

In particular,

D U G
(
0; E∗) = I − (I − �)−1[D̂−1 F U

(
E∗) + I

]
,

D U G
(
1; E∗) = I − (I − �)−1[D−1 F U

(
E∗) + I

] = D U G
(

E∗), (82)

where D̂ = diag[d̂1, d̂2, d̂3]. From (68) and (70) we see that

H(d1,d2,d3;μ) = 1

d1,d2,d3
A(d2,d3;μ). (83)

In view of (74) and (77), it follows from (83) that

H(d1,d2,d3;μ0) = H(0) > 0,

H(d1,d2,d3;μn) < 0, i + 1 � n � j,

H(d1,d2,d3;μn) > 0, 1 � n � i and n � j + 1. (84)

Therefore, zero is not an eigenvalue of the matrix μi I − D−1 F U (E∗) for all n � 0 and

∑
n�0, H(d1,d2,d3;μn)<0

m(μn) =
j∑

n=i+1

m(μn) = an odd number. (85)

Then Proposition 1 shows that

index
(

G(1; ·), E∗) = (−1)γ = −1. (86)

On the other hand, by (78) and Proposition 1 again, we obtain

index
(

G(0; ·), E∗) = (−1)0 = 1. (87)

In view of d̃2 � D̃2, by Theorems 4.1 and 4.2, there exists a positive constant C , depending on D̃2,d1,d3, d̂1, d̂2, d̂3,Λ,
such that, for 0 � t � 1, the positive solutions of (79) satisfy C−1 < u1, u2, u3 < C . Therefore, G(t; U ) �= 0 on ∂B(C) for all
0 � t � 1. By the homotopy invariance of the topological degree,

deg
(

G(1; ·),0,B(C)
) = deg

(
G(0; ·),0,B(C)

)
. (88)

Moreover, under our assumptions, the only positive solution of both G(1; U ) = 0 and G(0; U ) = 0 in B(C) is E∗ , and hence,
by (86) and (87),

deg
(

G(0; ·),0,B(C)
) = index

(
G(0; ·), E∗) = (−1)0 = 1, (89)

and

deg
(

G(1; ·),0,B(C)
) = index

(
G(1; ·), E∗) = (−1)γ = −1. (90)

This contradicts (88), and the proof is completed. �
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