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Abstract 

The aim of this paper is to apply a class of constant stepsize explicit pseudo two-step Runge-Kutta methods of arbitrarily 
high order to nonstiff problems for systems of first-order differential equations with variable stepsize strategy. Embedded 
formulas are provided for giving a cheap error estimate used in stepsize control. Continuous approximation formulas are 
also considered for use in an eventual implementation of the methods with dense output. By a few widely used test 
problems, we compare the efficiency of two pseudo two-step Runge-Kutta methods of orders 5 and 8 with the codes 
DOPRI5, DOP853 and PIRK8. This comparison shows that in terms off-evaluations on a parallel computer, these two 
pseudo two-step Runge-Kutta methods are a factor ranging from 3 to 8 cheaper than DOPRI5, DOP853 and PIRK8. Even 
in a sequential implementation mode, fifth-order new method beats DOPRI5 by a factor more than 1.5 with stringent error 
tolerances. (~) 1999 Elsevier Science B.V. All rights reserved. 

Keywords: Runge-Kutta methods; Two-step Runge-Kutta methods; Embedded and dense output formulas; Parallelism 

1. Introduction 

The arrival of parallel computers influences the development of methods for the numerical solution 
of a nonstiff initial value problem (IVP) for systems of first-order ordinary differential equations 
(ODEs) 

y'(t) =f(t,y(t)), y(to) =Y0, Y,f  E •a. (1.1) 

The most efficient numerical methods for solving this problem are the explicit Runge-Kutta methods 
(RK methods). In the literature, sequential explicit RK methods up to order 10 can be found in, 
e.g., [10-12]. In order to exploit the facilities of parallel computers, several classes of parallel 
explicit methods have been investigated in, e.g., [2, 4, 5, 7, 8, 13-15, 17-19]. A common challenge 
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in the latter mentioned works is to reduce, for a given order of accuracy, the required number of 
effective sequential f-evaluations per step, using parallel processors. In our previous work [6], we 
have considered a general class of  explicit pseudo two-step RK methods (EPTRK methods) for 
solving problems of the form (1.1). A general s-stage (constant stepsize) EPTRK method based on 
an s-dimensional collocation vector c = (c~,. . .  ,Cs) T with distinct abscissas ci has the form 

Y~ = e  ® Yn + h(A @ I ) F ( t , _ l e  + he, Yn-1), 

Y,+1 =Yn + h(b T ®I )F( tne  + he, Yn). 

This method has been specified by the tableau 

(1.2a) 

(1.2b) 

A Yn~l 0 
b • 

The (constant) s x s matrix A and s-dimensional vector b of  the method parameters are given by 
(see [6, Section 2.1]) 

A = P Q  P =  (p j) = , O = (qij) lY-'), 

 13, 
b =g R -', g =  (0i)  = , R =  (r,+) = ( c / - ' ) ,  

i = l , . . . , s ,  j =  1, . . . , s .  

The method (1.2) is of order p and stage order q at least equal s for any collocation vector c, it 
has the highest order p = s + 1 if c satisfies the orthogonality relation (cf. [6, Theorem 2.2]). The 
number of f-evaluations per step equals s in a sequential implementation and equals 1 in a parallel 
implementation using s processors. This class of  EPTRK methods implemented with constant stepsize 
was shown to be very efficient for the solution of  problems with stringent accuracy demand (cf. [6, 
Section 3]). 

In the present work, we equip the EPTRK methods with an ability of  being able to change the 
stepsize. Since the EPTRK methods are of  a two-step nature, we consider the method with (variable) 
parameters which are functions of  stepsizes (see Section 2). For a practical error estimation used 
in a stepsize selection, an approach for constructing embedded formulas is discussed in Section 3. 
Section 4 is devoted to a continuous extension of  EPTRK methods where a general explicit expression 
of  dense output formulas is given. Notice that for EPTRK methods, embedded and dense output 
formulas are provided without additional f-evaluations. Finally, in Section 5, we present numerical 
results of  the currently available codes DOPRI5, DOP853, PIRK8 and two comparable order EPTRK 
methods by applying them to the three widely used test examples, viz. two-body problem, Fehlberg 
problem, and Jacobian elliptic functions problem (cf., e.g., [12, p. 240; 2, 14, 16]) for a performance 
comparison of  various methods. 

2. Variable stepsize EPTRK methods 

It is well known that an efficient integration method must be able to change stepsizes. Because 
EPTRK methods are of a two-step nature, there is an additional difficulty in using these methods 
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with variable stepsize mode. There exist in principle two approaches for overcoming this difficulty 
(cf., e.g., [12, p. 397; 3, p. 44]): 
• interpolating past stage values, 
• deriving methods with variable parameters. 
The first approach using polynomial interpolation to reproduce the starting stage values for the new 
step involves with computational cost which increases as the dimension of the problem increases, 
while for the second approach, the computational cost is independent of the dimension of the problem. 
For this reason, the variable parameter approach is more feasible and robust. Thus, we consider the 
EPTRK method 

Yn =e ® Yn + hn(An ® I)F(tn_le + hn-lc, Yn-1), (2.1a) 

Yn+l =Yn -I- hn(b T ®I)F(tne + h,c, Y,), (2.1b) 

with variable stepsize hn = tn+l - t, and variable parameter matrix An. The order and stage order of 
a variable stepsize EPTRK method is defined in the same way as in the case of constant stepsize 
EPTRK methods (cf. [6, Definition 2.1]). The matrix An in the method (2.1) can be determined by 
order conditions as a matrix function of the stepsize ratios. The s-order conditions can be derived 
by replacing Yn-1, Yn and Y~ in (2.1a) by the exact solution values y(tn-le + h,-lc), y(tn) and 
y( tne + hnc ), respectively, that is 

y(t,e + hnc) - e ® y(tn) - h,(An @ I)y'(tn_le + hn-lC) = O(h~ +l ). (2.2) 

Let us suppose that the stepsize ratio hn/hn-~ is bounded from above (i.e., hn/hn_~ <<.f2), then along 
the same lines of [6, Section 2.1], using Taylor expansions, we can expand the left-hand side of 
(2.2) in powers of hn and obtain the order conditions for determining An given by 

C(J) = j_~.l [([\hn_,h~ J'~ J- ' c jj - A n ( c - e )  j-'  ] =0,  j = l , . . . , s .  (2.3a) 

Condition (2.3a) can be written in the form (cf. (1.3)) 

AnQ-Pdiag 1, hn-l '""  ~ =O,  (2.3b) 

which yields the explicit expression of An defined as 

{ hn ( h~_~)s-'}Q_,. (2.3c) An = P d i a g  1, hn-~-'"" 

The following lemma can easily be deduced from (2.3c) 

Lemma 2.1. For the variable stepsize EPTRK method (2.1), the variable parameter matrix A, is 
uniformly bounded whenever the stepsize ratio hn/hn-1 is bounded from above. 

For hn/hn-l <~ Q, the principal error vector C (s+l) is also uniformly bounded. Consequently, similar 
to the order considerations for a general variable stepsize multistep method (cf., e.g., [12, p. 401]), 
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relations (2.3) imply that locally 

Y(t,e + h,c) - Y,, = O(h s+t ). 

Along the lines of  the proof of  Theorems 2.1 and 2.2 in [6], we have that if the function f is 
Lipschitz continuous and if the condition of Lemma 2.1 is satisfied then at t,+l 

y(t,+t ) - y,+, = O(hn p+I ) + O(h~+2), 

where p is the order of  the associated constant stepsize EPTRK method. Hence, the order and stage 
order of  the variable stepsize EPTRK method defined by (2.1) and (2.3c) is identical with those of  
the associated constant stepsize EPTRK method (see [6, Theorem 2.2], also Section 1). Thus we 
have 

Theorem 2.2. An s-stage variable stepsize E P T R K  method defined by (2.1) with parameters vector 
b as defined in (1.3) and matrix An defined by (2.3c) is o f  order p = s  and of  stage order q =s for 
any collocation vector c with distinct abscissas c~ if h,/h,_l is bounded from above. It has order 
p = s + 1 if in addition the orthogonality relation 

fo x Pj(1) = 0, Pj(x) := - ci)d , 

i=1 

is satisfied for j >>. 1. 

Remark 2.3. The condition hn/hn_ 1 ~< ~'~ is a reasonable assumption for a numerical code. 

Remark 2.4. Since zero-stability property of  EPTRK methods is independent of  the method param- 
eters (see [6, Section 2.2]), the variable stepsize EPTRK methods are always stable. 

3. Embedded EPTRK methods 

With the aim to have a cheap error estimate for stepsize control in an implementation of EPTRK 
methods, parallelly with the pth-order method (2.1), we consider a second fith-order EPTRK method 
based on collocation vector ~ = (Cl,--.,~¢)T of  the form 

= e @ y ,  -4-hn~®I)F(t,_l"eq-hn_,'c, Yn-1), 
Yn+I = •  + h,(b r ®I)F(t, '~+ h,~, ~) ,  (3.1) 

where, p > f i ,  the vector ~ is a subvector of  the vector c, i.e., { ~ , . . .  ,?e} C{c~ . . . .  ,cs}. By introducing 
a new parameter vector b = (bl . . . .  ,bD T which is defined according to 

if  c ;=~j ,  then b i=b j ,  j =  1,. . . ,~,  (3.2) 
else b i = 0 ,  i = 1  . . . . .  s, 

we obtain an embedded formula without additional f-evaluations given by 

Yn4-1 =Y, "~- h,(b v ® I)F(t,e + h,c, Y,). (3.3) 
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Theorem 3.1. I f  the function f is Lipschitz continuous, then the numerical approximations at tn+t 
defined by (2.1b) and by locally satisfy the order relation 

Y.+, - Yn+l = O(h~ +t )- (3.4) 

Proof.  As the EPTRK method (3.1) has order fi less than order p of the EPTRK method (1.2), we 
may write 

Yn+l -- Yn+l = (Yn+l -- Yn+l ) "~ (Yn+l -- .~n+l ) 
(3.5a) 

: O ( h .  ) + (Y.+,  - 

Since the function f is Lipschitz continuous, from the definition of the vector b in (3.2) we have 

Yn+l - -  .~n+l = (Yn --  Yn)  ~- O ( h ~ + 2 )  • 

In view of the relations (3.5), Theorem 3.1 is proved. [] 

(3.5b) 

Thus, for a practical error estimation used in a stepsize selection we have the embedded EPTRK 
method given by (2.1a), (2.1b) and (3.3) which can be specified by the tableau 

An c 

Yn+l b T 

Yn+l 

The local error estimate is then defined by (3.4). By this approach of  constructing embedded EPTRK 
methods, there exist several embedded formulas for an EPTRK method. 

4. Continuous E P T R K  methods 

A numerical method is inefficient, if the number of output points becomes very large (of. [12, 
p. 188]). In the literature almost efficient embedded RK pairs have been provided with a dense 
output formula. In this section we also consider such a dense output formula for EPTRK methods. 
Since the EPTRK methods are of collocation nature, a continuous extension is very natural and 
straightforward. Thus, we consider a continuous extension of  EPTRK method (2.1) defined by 

Y~ = e ® .In + hn(A N I)F(tn_le + hn-tc, Y,-I ), (4.1a) 

Yn+¢ =Yn + h,(bT(~) ® I)F(tne + h,c, Yn), (4.1b) 

where 0~<~ ~< 1, y,+¢ ~ y(tn+¢), with tn+¢ = tn + ~hn. Furthermore, b(~) satisfies the continuity con- 
ditions b ( 0 ) =  0 and b(1)---b. The vector b(¢) is a vector function of  ~ and can be determined by 
order conditions. Along the same lines of Section 2 (see also [6, Section 2.1]), by using Taylor 
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expansions we obtain the s-order conditions for determining bT(~) in (4.1b) 

D (j~=~. ~ - - b r ( ~ ) e  j-~ =0,  j = l , . . . , s .  (4.2a) 

The order conditions (4.2a) can be seen to be of the form (cf. (1.3)) 

br(~)R _ gr diag {~, ~2 . . . .  , ~s} = 0. (4.2b) 

From (4.2b) the explicit expression of the vector function b(~) then comes out 

br(~) = g r  diag {~, ~2,..., ~,} R- ' .  (4.2c) 

The following theorem holds: 

Theorem 4.1. The E P T R K  method defined by (4.1) and (4.2c) 9ires rise to a continuous E P T R K  
method o f  order s, i.e., f o r  all ~: 0 <<, ~ <~ 1 we have 

y(tn + ~hn) - yn+¢ = O(hSn +1 ). 

We end this section by giving an example of a continuous variable stepsize embedded EPTRK 
pair p ( f i )=  4(2) with dense output formula of order 3 given by the following tableau: 

0 0 0 
7(27+3) )'(7+3) 272+97+12 

24 6 24 
7(47+3) 2~(27+3) 4)'2+97+6 

6 3 6 

0 0 0 

0 0 0 

0 0 0 

1 2 1 
Yn+ l - - 6 3 6 

Yn+l 0 1 0 

Yn+~ ~(4~2-9~+6)6 2~(3-2~)3 ~2(4~-3)6 

(4.3) 

where in Tableau (4.3), 7 denotes the stepsize ratio h,/hn_l. 

5. Numerical experiments 

In this section we shall report the numerical results obtained by two new (parallel) EPTRK 
methods of orders 5 and 8, two sequential codes DOPRI5 and DOP853 and a parallel code PIRK8. 
The codes DOPRI5 and DOP853 are embedded explicit RK methods due to Dormand and Prince 
and coded by Hairer and Waner (cf. [12]). They are based on a pair 5(4) and a "triple" 8(5)(3), 
respectively. DOP853 is the new version of DOPRI8 with a "stretched" error estimator (see [12, 
p. 254]). PIRK8 is eighth-order parallel code taken from [14]. These three codes are currently 
recognized as being the most efficient sequential and parallel integrators for first-order ODE nonstiff 
problems. 
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The fifth-order EPTRK method is based on the collocation vector 

c 5 = (0.089, 0.409, 0.788, 1.000, 1.409) T, (5.1a) 

with fourth-order embedded formula based on 

~4 = (0.409, 0.788, 1.000, 1.409) T. (5.1b) 

The eighth-order EPTRK method is based on the collocation vector 

c 8 = (0.057, 0.277, 0.584, 0.860, 1.000, 1.277, 1.584, 1.860) T, (5.2a) 

with two embedded formulas of orders 6 and 4 based on 

"~6 = (0.584, 0.860, 1.000, 1.277, 1.584, 1.860) T, 
~4 = (0.057, 0.277, 0.584, 0.860) T. 

(5.2b) 

Notice that the choice of  the collocation vectors in (5.1a) and (5.2a) minimizes the principal error 
terms for some stage approximated values (cf. [6, Theorem 2.4]) and gives slightly larger stability 
boundaries. No special effort has been made to optimize the parameters of the above methods. An 
optimal choice of  the method parameters was beyond the scope of this work. 

The real and imaginary stability boundary pairs (/~im,/~re) of the methods defined by (5.1a) and 
(5.2a) are numerically calculated and equal to (0.414, 0.415) and (0.388, 0.388), respectively. In 
terms of considering stability of  a method, it is the scaled stability region and not the stability region 
that is significant (cf., e.g., [3, p. 198]). The stability region of an EPTRK method is at the same 
time the scaled stability region. With these stability boundary pairs, the associated EPTRK methods 
are expected to be efficient for solving problem (1.1) especially with a stringent accuracy demand. 

For these EPTRK methods we apply an implementation strategy using local extrapolation and 
a starting procedure based on corrections until convergence of an appropriate s-stage collocation 
RK corrector. The EPTRK pair 5(4) defined by (5.1) is implemented with the same strategy as in 
DOPRI5. The EPTRK "triple" 8(6)(4) defined by (5.2) is implemented with two embedded formulas 
of orders 6 and 4 giving a "stretched" error estimator of  local order 9 following the approach used 
in DOP853. That is, if err6 and err 4 are two error estimates given by the embedded formulas defined 
by (5.2b) of orders 6 and 4, respectively, then we consider 

e r r  6 
e r r  = e r r  6 = O ( h  9) 

err4 + 0 .01  err6 

as the error estimator. It behaves like the local error of the method. These two new EPTRK methods 
will be denoted by EPTRK54 and EPTRK864. The new stepsize is chosen in the same way as in 
DOPRI5 and DOP853 with Atol = Rtol, facmax = 2 and facmin = 0.5 (cf. [12, p. 167]). 

Furthermore, in the tables of  numerical results, NSfcn and NPfcn denote the number of 
f-evaluations in sequential and parallel implementation modes, NCD is the number of correct decimal 
digits, Nstep and Nrejct are the total number of  integration steps and of  rejected ones, respectively. 
All the computations were carried out on a 14-digit precision computer. An actual implementation 
on a parallel machine is a subject of our later work [9]. 
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Table 1 
Numerical results for Problem (5.3) 

Methods Tol NSFcn NPFcn NCD Nstep Nr~ct 

DOPRI5 10 -5 188 188 2.5 31 7 
10 -7 356 356 4.4 59 7 
10 -9 758 758 6.5 126 0 
10 -11 1880 1880 8.7 313 0 
10 -13 4706 4706 10.8 784 0 

EPTRK54 10 -5 375 75 2.7 49 9 
10 -7 550 110 6.6 99 0 
10 -9 1305 261 9.2 251 0 
10 -I1 3205 641 11.8 632 0 

DOP853 10 -5 179 179 4.5 15 3 
10 -7 307 307 5.6 26 7 
10 -9 495 495 7.0 42 11 
10 -11 780 780 8.9 66 14 
10 -13 1125 1125 10.7 94 5 

EPTRK864 10 -5 480 60 2.6 45 4 
10 -7 632 79 5.8 67 0 
10 -9 984 123 8.9 112 0 
10 -ll 1232 154 10.2 145 0 

5.1. Two body problem 

As a first test example,  we  integrate the t w o - b o d y  p rob lem on the interval [0, 2re], with eccentr ic i ty  

= 6 g iven by  (cf., e.g., [14, 16]) 

y;( t )  = y3(t) ,  y l ( 0 )  = 1 -- c, 

y~(t) = y4(t) ,  y2(0)  = 0, 

Y3(t) = - -y4( t )  
[y~(t)  + y~(t)] 3/2' y3(0)  = 0, 

y~(t) = - y z ( t )  y4(0)  = t / 1  

I 

+ E 

[YlZ(t) + Y~(t)] 3/2' V 1 -- e" 

(5.3) 

The numer ica l  results for  this p rob lem are listed in Table  1. W e  see f rom Table  1 that in parallel  
implementa t ion  mode ,  E P T R K 5 4  offers a speed-up factor  ranging  f rom 3 to 8 w h e n  c o m p a r e d  with 
D O P R I 5  while  E P T R K 8 6 4  is a factor  ranging  f rom 3 to 6 faster than D O P 8 5 3  (depend ing  on  the 
accuracy  required).  Even  in sequential  implementa t ion  mode ,  the me thod  E P T R K 5 4  beats  D O P R I 5  
by  a factor  more  than 1.5 wi th  str ingent error  tolerances.  
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Table 2 
Numerical results for Problem (5.4) 

Methods Tol NSFcn NPFcn NCD N~ep  Nrejct 

DOPRI5 10 -5 452 452 3.2 75 8 
10 -7 974 974 5.3 162 4 
10 -9 2360 2360 7.4 393 2 
10 - l l  5876 5876 9.4 979 0 
10 -13 14 750 14750 11.4 2458 1 

EPTRK54 

DOP853 

EPTRK864 

10 -5 650 130 3.7 123 10 
10 -7 1490 298 6.4 292 10 
10 -9 3595 719 9.2 714 8 
10 -11 8925 1785 11.8 1780 8 

10 -5 552 552 4.5 47 14 
10 -7 825 825 6.2 70 17 
10 -9 1265 1265 8.0 107 21 
10 -11 1950 1950 10.2 164 20 
10 -13 3123 3123 12.2 261 11 

10 -5 1120 140 5.0 133 26 
10 -7 1608 201 7.7 195 21 
10 -9  2504 313 10.0 308 20 
10 -1~ 3096 387 10.8 382 13 

113 

5.2. Fehlber9 problem 

For the second test example, we consider the often-used test problem of Fehlberg on the interval 
[0, 5] (el., e.g., [5, 14, 161) 

y ( ( t )  = 2ty l ( t ) log(max{y2( t ) ,  1 0 - 3 } )  y l ( O )  = 1, 

y~(t) = - 2ty2(t)log(max{y~(t), 10-3}) y2(O) = e, 
(5.4) 

with the exact solution yl(t)=exp(sin(t2)), yz(t)=exp(cos(t2)). The results reported in Table 2 
show a similar efficiency of EPTRK54 and EPTRK876 in parallel and sequential implementation 
modes as for the two-body problem when they are compared with DOPRI5 and DOP853. 

5.3. Jacobian elliptic functions problem 

The final test example is the Jacobian elliptic functions sn, cn, dn problem for the equation of 
motion of a rigid body without external forces on a long integration interval [0, 601 (cf., e.g., 
[12, Problem JACB, p. 240], also [1, 16]) 

y;( t )=y2(t)y3(t) ,  
y~(t)= - y l ( t ) y a ( t ) ,  
y~(t)= -0 .51yl( t )y2( t ) ,  

y l ( O )  = 0 ,  

y2(O) = 1, 
y3(0)---= 1. 

(5.5) 
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Table 3 
Numerical experiment results for Problem (5.5) 

Methods Tol NSFcn NPFcn NCD Nstep Nrejct 

DOPRI5 10 -5 968 968 4.0 161 30 
10 -7 2024 2024 5.2 337 23 
10 -9 4682 4682 6.8 780 0 
10 -I1 11 768 11 768 8.7 1961 0 
10 -13 29 564 29 564 10.7 4927 0 

EPTRK54 10 -5 1255 251 3.6 241 0 
10 -7 3050 610 6.7 601 0 
10 -9 7580 1516 9.3 1508 0 
10 -11 18 970 3794 11.8 3787 0 

DOP853 10 -5 1066 1066 3.6 91 28 
10 -7 1458 1458 5.4 123 20 
10 -9 2339 2339 7.4 196 15 
10 -I1 3830 3830 9.6 319 0 
10 -13 6818 6818 11.7 568 0 

EPTRK864 10 -5 2104 263 4.4 253 28 
10 -7 3248 406 7.5 397 28 
10 - 9  5160 645 9.6 1637 29 
10 - u  6512 814 10.4 806 24 

Table 4 
Numerical experiment results obtained by PIRK8 for various problems 

Problems Tol NSFcn NPFcn NCD Nstep Nr~ct 

(5.3) (Section 5.1) 10 -5 652 163 4.8 21 5 
10 - 7  1024 256 6.4 33 8 
10 - 9  1592 398 8.2 51 10 
10 -II 2320 580 10.0 73 4 

(5.4) (Section 5.2) 10 -5 1544 386 5.3 50 14 
10 - 7  2336 584 6.7 75 16 
10 - 9  3820 955 8.6 1228 21 
10 -II 6048 1512 10.5 191 16 

(5.5) (Section 5.3) 10 -5 3192 798 5.1 103 26 
10 -7 5368 1342 6.7 173 42 
10 -9 8956 2239 8.5 288 65 
10 - u  13 564 3391 10.2 430 49 

The  numer i ca l  resul ts  are g i v e n  in Tab le  3 w h i c h  g ive  r ise  to r ough ly  the same conc lus ions  as 

fo rmula ted  in the two  p rev ious  examples .  
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5.4. Compar&on with a parallel P I R K  code 

Testing new numerical methods for nonstiff problems (1.1), most people compare them with the 
PIRK methods initially introduced by van der Houwen and Sommeijer [14] (see, e.g., [2, 5, 6, 8]). 
That is motivated by not only the orginality but also the high performance of the PIRK methods. 
In this section we also report on the numerical results obtained by PIRK8 code (a code based 
on the PIRK method of order 8) for the three above problems. Because a starting stepsize in the 
implementation of PIRK8 not much influences efficiency of the code for these problems, we set 
in all examples the starting stepsize h0 = ~ .  A comparison of the results obtained by PIRK8 
listed in Table 4 and of the ones obtained by EPTRK54 and EPTRK864 listed in Tables 1-3 shows 
that for the considered Tol-values, PIRK8 is less efficient than EPTRK54 and EPTRK864 in both 
sequential and parallel implementation modes. 

6. Concluding remarks 

In this paper we have developed a class of continuous variable stepsize embedded explicit pseudo 
two-step RK methods requiring only one effective sequential f-evaluations per step for any order of 
accuracy. Implemented with a variable stepsize strategy using embedding techniques, two explicit 
pseudo two-step RK methods derived from this class are shown to be superior to the currently most 
efficient sequential and parallel codes DOPRI5, DOP853 and PIRK8. In a very stringent accuracy 
range, these methods are expected to have an efficiency equal if not superior to sequential codes 
even in a sequential implementation. These conclusions encourage us to pursue the study of explicit 
pseudo two-step RK methods. In particular, we will concentrate on the optimal choice of the method 
parameters, numerical experiments with high-order explicit pseudo two-step RK methods and also 
on an implementation of these methods on parallel computers. 
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