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Abstract

For a couple of lifetimes ðX1;X2Þ with an exchangeable joint survival function %F; attention is
focused on notions of bivariate aging that can be described in terms of properties of the level

curves of %F: We analyze the relations existing among those notions of bivariate aging,

univariate aging, and dependence. A goal and, at the same time, a method to this purpose is to

define axiomatically a correspondence among those objects; in fact, we characterize notions of

univariate and bivariate aging in terms of properties of dependence. Dependence between two

lifetimes will be described in terms of their survival copula. The language of copulæ turns out

to be generally useful for our purposes; in particular, we shall introduce the more general

notion of semicopula. It will be seen that this is a natural object for our analysis. Our

definitions and subsequent results will be illustrated by considering a few remarkable cases; in

particular, we find some necessary or sufficient conditions for Schur-concavity of %F; or for IFR
properties of the one-dimensional marginals. The case characterized by the condition that the

survival copula of ðX1;X2Þ is Archimedean will be considered in some detail. For most of our

arguments, the extension to the case of n42 is straightforward.

r 2004 Published by Elsevier Inc.

AMS 2000 subject classifications: 60K10; 60E15; 62N05

Keywords: Survival copulæ; Semicopulæ; Bivariate aging function; Total positivity; Schur-concavity;

Time-transformed exponential models

ARTICLE IN PRESS

$Work partially supported by MIUR, Progetto PRIN ‘‘Processi stocastici, calcolo stocastico e

applicazioni’’.
�Corresponding author.

E-mail addresses: bassan@mat.uniroma1.it (B. Bassan), fabio.spizzichino@uniroma1.it

(F. Spizzichino).

0047-259X/$ - see front matter r 2004 Published by Elsevier Inc.

doi:10.1016/j.jmva.2004.04.002

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82127011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Introduction

Univariate notions of aging, such as IFR, DFR, NBU, constitute a well-
established core of reliability theory: the definitions given in the, by-now classical,
literature are very clear and provide the basis for many useful results, which apply
when dealing with the analysis of a single unit or of several units with stochastically
independent lifetimes (see, e.g., [6]).
On the contrary, multivariate definitions of aging, i.e. definitions valid when

dealing with several dependent lifetimes, are rather controversial. In fact, starting
from univariate notions, several types of multivariate extensions can be defined;
furthermore, the non-trivial interactions between aging and dependence contribute
to make the analysis quite challenging.
More specifically, the study of the relations between multivariate aging and

dependence, or between multivariate aging and univariate aging of marginal
distributions, or among multivariate aging, dependence, and univariate aging of
marginals, is a very intricate issue.
Of course, such relations heavily depend on the specific definition of multivariate

aging that is taken into consideration. For example it is shown in the literature that
some (‘‘dynamical-type’’) definitions of positive multivariate aging do imply
‘‘corresponding’’ conditions of positive dependence (see, e.g. [1,21]). Furthermore,
many notions of multivariate aging imply ‘‘corresponding’’ univariate aging
properties for the unidimensional marginals.
The present paper will be entirely devoted to analyze the relations between

dependence and suitable notions of aging. In Section 4, we shall in fact single out a
class of concepts of multivariate aging; later, we shall show that such definitions
allow us to obtain results in the desired direction. The discussion of a few examples
and applications will clarify the meaning and the interest of those definitions and of
the corresponding results. The emphasis, though, is on the nature of the relations
between aging and dependence, rather than on the ‘‘philosophical’’ meaning of the
aging concepts considered.
A goal and, at the same time, a method in this paper, is to provide convenient

axiomatic definitions of ‘‘correspondence’’ among notions of multivariate aging,
univariate aging and stochastic dependence. We shall see that the language of copulæ
will turn out to be very useful, in that respect.
We point out that we are interested in notions of positive (negative) multivariate

aging which can be compatible with negative (positive) dependence and with
negative (positive) aging of one-dimensional marginals. Furthermore, it should be
said that our treatment is confined to the class of exchangeable pairs of random
lifetimes. In the last section, we shall sketch possible ways of extending the analysis
to the case of non-exchangeability.
Thus, to summarize, we consider exchangeable bivariate laws which describe the

lifetimes of two similar, dependent items and focus on three main features, namely
dependence, univariate aging (in short, 1-aging) and bivariate aging (2-aging). As
mentioned above, the first two notions are well established, whereas bivariate aging
can be given different interpretations.
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In [8], we considered the approach that can be briefly described as follows: a
bivariate exchangeable law is said to have positive bivariate aging if, conditionally
on a same history of survivals, the law of the residual lifetime of the younger
component dominates in some stochastic order sense the corresponding law of the
elder component (see also [23] for a wider discussion on such approach). This
approach allows one to reinterpret some multivariate notions considered in the
literature and to define some new notions, starting from well-established univariate
definitions.
In [10], we noticed that some of the notions of bivariate aging considered in [8]

could be described in terms of the behavior of the level curves of the joint survival
function and that, in turn, the latter behavior could be described in terms of
dependence of a suitable function.
The approach developed in [10] will be a starting point for the treatment to be

developed in the present paper. As a further related feature, here we try and describe
univariate aging in terms of dependence of a suitable bivariate law, expanding on
ideas presented in [2].
Such an approach led us to introduce the concept of semicopula. In a few

words, a semicopula is a bivariate function that shares all the properties of
copulæ, except that it need not be 2-increasing. We will associate three
different semicopulæ, K ;B;C; to a same bivariate exchangeable law. K denotes
the usual survival copula, and dependence properties of the bivariate law
can be described by requiring K to belong to special families of copulæ. We
shall see in the sequel that properties of univariate and bivariate aging will be
described in a similar way by imposing that C or B belong to suitable families of
semicopulæ.
In order to motivate the results which will be proved, we make some preliminary

considerations:

(a) Positive bivariate aging can coexist with several forms of dependence and
univariate aging. Nonetheless, the knowledge of dependence (expressed, e.g. by
the survival copula, as we shall discuss below) and of the marginal (which
determines univariate aging) completely defines the joint law, and hence its
bivariate aging. Thus bivariate aging is the result of the interplay between

dependence and univariate aging.
(b) Positive dependence plays in favor of positive bivariate aging: Take an exchange-

able law with standard exponential marginals, i.e. with no univariate aging.
Then the only source of bivariate aging is dependence. In fact, if the components
are independent we are obviously indifferent between the younger and the elder
component, whereas if there is positive dependence we are more hopeful in the
future of the younger component (rather than in the future of the elder one),
because its outlook is strengthened by the long surviving of the other
component.

(c) Positive univariate aging plays in favor of positive bivariate aging: In fact, consider
an independent law. Then trivially we prefer the younger component to the elder
iff there is positive univariate aging.
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Actually, under suitable, rather natural, conditions to be defined below, we shall
prove results in the following vein:

(1) Positive dependence and positive 1-aging imply positive 2-aging: In fact, both
positive dependence and positive 1-aging play in favor of positive 2-aging.

(2) Positive 2-aging and negative 1-aging imply positive dependence: In fact, despite
the fact that 1-aging is negative, we have positive 2-aging. Hence at least
dependence must be ‘‘favorable’’

(3) Positive 2-aging and negative dependence imply positive 1-aging: Despite negative
dependence, we have positive 2-aging. Hence, at least 1-aging must be ‘‘favorable’’.

Corollaries of the above general statements yield, for example, conditions of
negative dependence which ensure that a law with Schur-concave survival function
(that can be seen as a notion of bivariate IFR) has IFR marginals. Furthermore, we
find suitable conditions of positive dependence that, combined with the IFR
property of the marginals, imply Schur-concavity.
Statements (1)–(3) above give some compatibility conditions among univariate

aging, bivariate aging and dependence. One may think that other implications of the
same type could be proved by applying the same kind of techniques, but this does
not appear to be true. See Remark 6.8 below.
The paper will be structured as follows: in Section 2 we give some definitions and

we fix notation. In particular, we define the concept of semicopula and introduce a
triple of semicopulæ associated with a same bivariate, exchangeable, survival
function. Furthermore, some basic aspects about the relations among these three
semicopulæ are pointed out and some other definitions related with the concept of
semicopula are mentioned. In Section 3 we focus on some notions of positive and
negative dependence that will be formally extended also to semicopulæ. In Section 4,
we give axiomatic definitions of 1- and 2-aging in terms of dependence of suitable
semicopulæ; this setup will be used in Section 5 to provide our main results
concerning relations, implications and compatibility conditions among dependence,
1- and 2-aging. Sections 6 and 7 deal with examples and applications. In particular,
as mentioned above, results related to Schur-concavity will be provided.
Furthermore, aging and dependence for the class of the so-called TTE—time-
transformed exponential models will be studied in some detail. The paper will end
with a section devoted to trace some final comments and remarks; in particular, we
list some natural questions that can be given direct answers in terms of our results
and sketch some aspects related to their extensions to the case of n42 lifetimes.

2. Definitions and notation

Let G be the class of one-dimensional, continuous survival functions which are
positive and strictly decreasing on Rþ and that take the value 1 at 0. We denote by F
the class of two-dimensional exchangeable survival functions on R2

þ whose one-

dimensional marginals are in G:
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Consider now exchangeable random lifetimes X1;X2 and denote by %F their joint
survival function:

%FðxÞ ¼ PfX14x1;X24x2g:

We denote by %G the one-dimensional marginal survival function of X1;X2; namely,

%GðxÞ ¼ %Fðx; 0Þ: ð1Þ

We also denote by F the distribution function corresponding to %F:

Throughout the paper, we assume %FAF ; i.e. %GAG:

2.1. Copulæ and semicopulæ

Let #K be the family of bivariate copulæ, namely, the family of functions

C : ½0; 1�2-½0; 1� such that

Cð0; vÞ ¼ Cðu; 0Þ ¼ 0; 0pu; vp1; ð2Þ

Cð1; vÞ ¼ v; Cðu; 1Þ ¼ u; 0pu; vp1; ð3Þ

Cðu; vÞ is increasing in each variable; ð4Þ

Cðu; vÞ þ Cðu0; v0Þ � Cðu; v0Þ � Cðu0; vÞX0; 0pupu0p1; 0pvpv0p1: ð5Þ

Thus, a copula is the restriction to the unit square of a distribution function with
uniform marginals on ½0; 1�:
Let #X be the family of functions which satisfy (2)–(4), but which need not satisfy

the rectangular inequality (5). We shall call these functions extended semicopulæ.
Denote by H the space of continuous, strictly increasing functions h : ½0; 1�-½0; 1�

such that hð0Þ ¼ 0; hð1Þ ¼ 1: Clearly, hAH if and only if h�1AH: Thus, denoting by 3
the composition operator in H; ðH; 3Þ is a group, whose identity is here denoted by
h0:

h0ðxÞ ¼ x; 8xA½0; 1�:

For CA #X and hAH; let now

ChCðu; vÞ � h�1ðCðhðuÞ; hðvÞÞÞ: ð6Þ

Furthermore, for DCH and EC #X ; let

CF ðEÞ ¼ fChCjhAD;CAEg:

It is a simple matter to check that CHð #XÞ ¼ #X :

Let also #S ¼ CHð #KÞ: We shall call H-semicopulæ the elements of #S:
Finally, let K;S;X denote the families of elements of #K; #S; #X ; respectively, which

are exchangeable (or symmetric, commutative), namely, which satisfy

Cðu; vÞ ¼ Cðv; uÞ; 0pu; vp1: ð7Þ
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In the sequel, we shall be interested mainly in the family S of exchangeable H-
semicopulæ. It is clear that we can write

S ¼ CHðKÞ ¼ fChCjhAH;CAKg: ð8Þ

We shall call the elements of S simply semicopulæ. Notice, in particular, that a
semicopula is continuous in each variable, whereas an extended semicopula need not
have this property.
Extended semicopulæ are dealt in [13], where their mathematical properties are

studied in detail. Here, we notice only that #X strictly includes the family of the so-
called quasicopulæ, namely, of those functions which satisfy (2)–(4) and a Lipschitz

condition. For example (see [13,24]), Chðu; vÞ ¼ h�1ðhðuÞhðvÞÞ is a quasicopula (and a
copula) if and only if hAH and �log h is convex, whereas it is a simple matter to
check that Ch is a semicopula for every hAH:

Furthermore, we notice also that #X strictly includes the family of t-norms, or
triangular norms, namely, the family of those functions which satisfy (2)–(4), (7) and
which are associative, namely,

CðCðu; vÞ; zÞ ¼ Cðu;Cðv; zÞÞ; u; v; zA½0; 1�:

For example, any non-associative copula is an extended semicopula but not a t-
norm.
For the description of aging, a relevant family of semicopulæ is

A ¼ CHðfS0gÞ ¼ fChS0jhAHg;

where

S0ðu; vÞ ¼ uv ð9Þ

denotes the copula of independence. The elements of A are of the form

Chðu; vÞ :¼ h�1ðhðuÞhðvÞÞ ¼ f�1ðfðuÞ þ fðvÞÞ ¼: Afðu; vÞ; ð10Þ

where hAH is called the multiplicative generator and f ¼ �log h the additive
generator. The semicopulæ in A are indeed Archimedean t-norms (see [20] for
definition and properties of Archimedean t-norms), and we shall use also the term
Archimedean semicopulæ.
Note that, as we mentioned before, an Archimedean semicopula is a copula if and

only if �log h is convex. See [18,14], for further details about copulæ, and [16] for t-
norms.
We shall see in the next Section 2.2 the role of the mappings Ch in our setting and

corresponding interest for semicopulae. Here, we confine ourselves to the next
proposition, which shows, in particular, that the family S is closed under the
operation Ch; for every hAH; i.e.

hAH; CAS ) ChCAS:

Note that a similar property does not hold for the family K of copulæ, since in
general we have: hAH; CAKRChCAK:
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Proposition 2.1. For h; h0AH; and CA #X ; it is

ðCh 3Ch0 ÞC ¼ Ch0 3 hC: ð11Þ

Furthermore, CHðAÞ ¼ A; CHðSÞ ¼ S and CHð #SÞ ¼ #S:

Proof. We can write, for 0pu; vp1;

ðCh 3Ch0 ÞCðu; vÞ ¼ h�1½Ch0CðhðuÞ; hðvÞÞ�

¼ h�1½h0�1½Cðh0ðhðuÞÞ; h0ðhðvÞÞÞ��

¼Ch0 3 hCðu; vÞ: ð12Þ

The other statements follow immediately. In fact, if Ch0AA; then ChCh0 ¼
Ch0 3 hAA; and if S ¼ Ch0K ; with KAK; then ChS ¼ Ch0 3 hKAS: The proof in the

case of #S is similar. &

Remark 2.2. Let U � fCh; hAHg and let � be the composition in U: Then, by (12),
we see that ðU; �Þ is a (non-commutative) group, isomorphic to ðH; 3Þ:

Remark 2.3. It is natural to consider on S the equivalence relation E defined by
setting

S0ES003S00 ¼ ChS0 for some hAH:

The set A is one of the equivalence classes induced by E: For any other equivalence
class B; it is CHðBÞ ¼ B; as well. It is worthwhile noting that the maximal copula
Cðu; vÞ ¼ minfu; vg forms by itself an equivalence class.

2.2. Semicopulæ associated to a joint survival function

Given a survival function %FAF ; we shall be interested mainly in three semicopulæ:

(1) The survival copula K ¼ K %F given by

Kðu; vÞ ¼ %Fð %G�1ðuÞ; %G�1ðvÞÞ: ð13Þ

(2) The multivariate aging function (see [10]) B ¼ B %F given by

Bðu; vÞ ¼ expf� %G�1ð %Fð�log u;�log vÞÞg: ð14Þ

(3) The Archimedean semicopula with (additive) generator given by %G�1; the inverse
of the one-dimensional survival function, namely,

A %G�1ðu; vÞ ¼ %Gð %G�1ðuÞ þ %G�1ðvÞÞ ¼ G�1ðGðuÞGðvÞÞ ¼ CGðu; vÞ; ð15Þ
where, here and in the sequel, G : ½0; 1�-½0; 1� is the function defined by

GðxÞ :¼ expf� %G�1ðxÞg; Gð0Þ ¼ 0: ð16Þ
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Clearly, G belongs to the set H and A %G�1 ¼ CG ¼ CGS0:

Here are some simple considerations

* K is a copula; in fact, %GðX1Þ and %GðX2Þ are random variables with uniform
distribution on ½0; 1�; and K is their joint distribution function:

Kðu; vÞ ¼ Pð %GðX1Þpu; %GðX2ÞpvÞ:

* For %FAF ; we have, recalling (6),

B ¼ CG�1K ; ð17Þ

K ¼ CGB: ð18Þ

Eq. (17) shows, in particular, that B is a semicopula, and that K and B belong to
the same equivalence class.

* B is not necessarily a copula (see, e.g. Section 7 below). The interest in introducing
the multivariate aging function B lies in the fact that B is a semicopula

which describes the level curves of %F; regardless of what the marginal of %F is. In

fact, ðx1; x2Þ and ðx1
0; x2

0Þ belong to the same level curve of %F (i.e.
%Fðx1; x2Þ ¼ %Fðx1

0; x2
0Þ) if and only if ðe�x1 ; e�x2Þ and ðe�x1

0
; e�x2

0 Þ belong to the
same level curve of B:

In this respect, we note that, as mentioned in the Introduction, some notions of

bivariate aging can be characterized in terms of level curves of %F:

* The semicopula A %G�1 ¼ CG will be used in Section 4 to describe univariate aging.
* A %G�1 is a copula if and only if %G is convex.
* Clearly, %F specifies %G;K and B; in view of (1), (13), and (14). Conversely, each of

the pairs ðK ; %GÞ and ðB; %GÞ completely specifies %F: In fact, it is easy to verify that

%FðxÞ ¼ Kð %Gðx1Þ; %Gðx2ÞÞ; ð19Þ

%FðxÞ ¼ %Gð�log Bðe�x1 ; e�x2ÞÞ: ð20Þ

3. Some relevant families of semicopulæ

We shall consider in this section several families of semicopulæ which will play a
relevant role in the description of aging and dependence. In most cases, the
properties satisfied by the semicopulæ in the families under consideration can be
viewed as formal extensions of some notions of positive and negative dependence to
semicopulæ. For this reason, we shall often use the term dependent families. We
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confine ourselves to a few ‘‘dependence’’ concepts, which will provide the examples
that we shall use to illustrate our method.
Define first

P1
þ :¼ fSASjSðu; vÞXuvg;

P1
� :¼ fSASjSðu; vÞpuvg:

Clearly, copulæ in P1
þ are positively quadrant dependent (PQD), whereas copulæ in

P1
� are negatively quadrant dependent (NQD). We refer to [14] or [12] for details on

PQD and other dependence concepts, such as TP2; LTD, etc.

We shall consider subfamilies Pþ of P1
þ; and we shall refer to them as positively

dependent families of semicopulæ. It should be observed that axiomatic definitions à

la Kimeldorf and Sampson ([15]) cannot be applied automatically in this context.
For the moment, we take the concept of a positive dependent family as a primitive
one. We shall see in Section 5 which properties are actually needed for our
approach.
Analogous considerations hold for negatively dependent semicopulæ. It should be

pointed out that it is not clear what a canonical way of associating a negative
dependent family of semicopulæ to a positively dependent one could be. In many
special cases, though, there is an obvious answer (for example, it is clear that NQD
corresponds to PQD). Hypotheses 3 and 4 below deal with this issue, and specify the
conditions concerning the relations between positively and negatively dependent
families that are needed in our setup.

We shall consider some subfamilies of P1
þ: First of all, the family P1

þ itself. Then,

P2
þ :¼ SAS Sðu0; vÞ

u0 p
Sðu; vÞ

u
; 8 0ouou0p1; 8 0pvp1

����
� �

; ð21Þ

P3
þ :¼ fSASjSðus; vÞXSðu; svÞ; 8 0pvpup1; 0oso1g: ð22Þ

Copulæ in P2
þ are left tail decreasing (LTD). The family P3

þ has some relations with

Schur-concavity, as we shall see below. The families P2
� and P3

� are defined in the

obvious way.
We shall also consider the following family of Archimedean semicopulæ:

P4
þ ¼ AfAA fðvÞ

f0ðvÞXv log v; 8vAð0; 1Þ
����

� �
:

Copulæ in this family are positively K dependent (PKD). See [2] for further details.

The family P4
� is defined in the obvious way, reversing the inequality.

An obvious but necessary remark is that the copula of independence S0 belongs to

P j
þ and to P j

�; for any j ¼ 1;y; 4:
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4. Definitions of aging in terms of dependence

We first give some definitions in terms of families of semicopulæ. Some examples
and remarks with possible motivations will follow.

Definition 4.1. Let P ¼ fPþ;P�g; where PþCP1
þ is a family of positively dependent

semicopulæ, and P�CP1
� is a family of negatively dependent semicopulæ. Let also

%FAF :

(1) We say that %F is P-positively dependent if KAPþ:
(2) We say that %F has P-positive bivariate aging if BAPþ:
(3) We say that %F has P-negative univariate aging if CGAPþ:

The corresponding definitions of negative dependence, negative 2-aging and positive
1-aging are obtained replacing Pþ with P�:

Concerning these definitions, it is worthwhile noticing the following points:

* The survival copula K is a natural object for the description of the dependence

of %F:
* There exists a natural relation between bivariate aging and dependence of the

function B (see also the discussion and examples presented in [10]).
* We describe an aging property of %G by means of a condition on the semicopula

CG: The idea of describing a univariate property of %G by means of a bivariate

condition turns out to be particularly adequate for the present approach; the

relations between negative aging of %G and positive dependence of CG were already
established and studied in [2] and related ideas can be also found in [23] and [19].
More on this issue below.

Hereafter, the concepts above will be illustrated by considering in detail the cases of
the dependent families listed in Section 3. First it is convenient to focus attention on
three remarkable limiting cases.

Example 4.1. Recalling Eq. (9), the condition K ¼ S0 is equivalent to stochastic
independence of X1;X2 (no dependence).
The condition CG ¼ S0 means that the one-dimensional marginal distributions of

%F are standard exponential (no 1-aging).
Finally, the condition B ¼ S0 is equivalent to the condition

%Fðx1; x2Þ ¼ %Gðx1 þ x2Þ: ð23Þ

Functions satisfying (23) are both Schur-concave and Schur-convex, and have been
called Schur-constant in Bayesian reliability (see, e.g. [4,23]; see also [17] for general
aspects of the concept of Schur-concavity). The interest of this property in reliability
lies in the fact that it is equivalent to the requirement that, for every t40 and
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x1; x2X0; the following identity holds:

PfX14x1 þ tjX14x1;X24x2g ¼ PfX24x2 þ tjX14x1;X24x2g: ð24Þ

This corresponds to a condition of no 2-aging. In fact, the relation above states that,
conditionally on a same history of survivals, the marginal laws of the residual
lifetimes ðX1 � x1Þ; ðX2 � x2Þ; of the younger and of the elder component are
identical. It can be shown that the two residual lifetimes are actually exchangeable.
See also the brief discussion in Example 4.4 below.

Example 4.2. Let Pþ � P1
þ; P� � P1

�: The condition KAPþ is equivalent to saying

that ðX1;X2Þ is PQD, i.e.

PfX14x1;X24x2gXPfX14x1gPfX24x2g

or

%Fðx1; x2ÞX %Gðx1Þ %Gðx2Þ;

the inequalities are reversed for KAP�:
In view of Eq. (14), it is easy to check that BAPþ means

%Fðx1; x2ÞX %Gðx1 þ x2Þ; 8x1; x2X0:

In turn, the latter inequality can be rewritten as

PfX14x þ tjX14xgpPfX24tjX14xg; ð25Þ

that can be interpreted as a bivariate notion of NBU (new better than used); in fact
(see [9]), consider a new item with lifetime X2 and a used one with lifetime X1:
conditionally on the knowledge of the age of the used item, survival probabilities of
the new item are greater than the survival probabilities of the used one. Similarly,
BAP� can be interpreted as a bivariate notion of NWU (new worse than used).
Finally, note that CGAPþ is a condition of negative univariate aging. In fact, by

using the arguments in [2], it is easy to check that it is equivalent to the fact that the
lifetimes X1;X2 are marginally NWU.

Example 4.3. Consider now the case Pþ � P2
þ; P� � P2

�: In view of (13), the

condition KAP2
þ (K LTD copula) means that PfX24x2jX14x1g is an increasing

function of x1; for any given x240:

The condition CGAP2
þ is a condition of negative 1-aging; in fact, it is easily seen to

be equivalent to the marginal DFR property of X1;X2 (see [2]).

Example 4.4. The condition CGAP3
þ corresponds (see Proposition 6.1) to the

marginal DFR property of X1;X2; in other words, it is equivalent to CGAP2
þ:

As far as the condition BAP3
þ is concerned, we shall see in Lemma 4.2 that it is

equivalent to Schur-concavity of the joint survival function %F:

%Fðx1 þ t; x2 � tÞX %Fðx1; x2Þ; 8x1ox2; 0ptpx2 � x1: ð26Þ
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The condition of Schur-concavity of %F can be seen as a significant notion of
positive 2-aging. In fact, it has been considered in, e.g. [4,5,7,22] as a multivariate
notion of IFR. Note that such condition holds for the case of two i.i.d. IFR lifetimes
and for the case of two lifetimes that are conditionally i.i.d. IFR. More generally, as
it is easy to see, it is equivalent to the following condition: for t40 and 0px1ox2;

PfX14x1 þ tjX14x1;X24x2gXPfX24x2 þ tjX14x1;X24x2g; ð27Þ

i.e. given the joint survival data fX14x1;X24x2g; survival probabilities are greater
for the younger component than for the elder. A limiting case of Schur-concavity for
%F is the condition of no-aging (24) considered in Example 4.1. For further details,
see [23].

Lemma 4.2. A survival function %FAF is Schur-concave if and only if B %FAP3
þ:

Proof. We begin by observing that it is easy to check that the class P3
þ can be

characterized also in the following way:

P3
þ ¼ SASjSðu; vÞpS us;

v

s

� �
; 80pvpup1; sX

v

u

n o
: ð28Þ

Next, from (20) note that %F is Schur-concave if and only if

%G½�log Bðe�x�t; e�yþtÞ�X %G½�log Bðe�x; e�yÞ� ð29Þ

for xoy; toy � x: Since %G is a decreasing function, (29) becomes

Bðe�xe�t; e�yetÞXBðe�x; e�yÞ

and, since e�x4e�y; e�t4e�y

e�x; the proof is completed by putting

u ¼ e�x; v ¼ e�y; s ¼ e�t: &

The conditions KAP4
þ; BAP4

þ; CGAP4
þ will be analyzed in detail in Section 7.

Here are some further considerations about Definition 4.1.

Remark 4.3. Definition 4.1, point (3), shows that to every notion of dependence
there corresponds a notion of univariate aging. However, one should not think that
to every notion of dependence there corresponds a different notion of 1-aging. In
fact, 1-aging can be defined through Archimedean semicopulæ, and different notions
of positive dependence may agree on the set of Archimedean semicopulæ. For
example, Proposition 6.1 below shows that the same notion of 1-aging, namely,
DFR, corresponds to (at least) three notions of dependence.

Remark 4.4. Let

%Hðx; yÞ ¼ %Gðx þ yÞ:
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The function %H is Schur-constant, and it is a bivariate survival function iff %G is

convex. Clearly, %H has the same 1-marginal as %F; namely, %G: It is easy to check that

the Archimedean (semi)copula CG is the survival (semi)copula corresponding to %H;
namely, K %H ¼ CG:

As mentioned before, the fact that negative aging of %G corresponds to positive
dependence of CG has been studied in [2]; besides what reported in this respect in

Examples 4.2–4.4 above, it was also shown in [2] that %G is DFRA iff CG is PKD.
We can also illustrate this general fact as follows, focusing attention on a typical

special case of positive dependence: Let %G be convex and let ðX̃; ỸÞB %H: Let us
compare, for a40;

PðỸ4y þ tjX̃4x; Ỹ4yÞ and PðỸ4y þ tjX̃4x þ a; Ỹ4yÞ:

If ðX̃; ỸÞ are positively dependent, e.g. if we require that the second term be bigger
than the first one, then

%Hðx þ a; y þ tÞ
%Hðx þ a; yÞ ¼

%Gðx þ y þ a þ tÞ
%Gðx þ y þ aÞ

X

%Gðx þ y þ tÞ
%Gðx þ yÞ

¼
%Hðx; y þ tÞ
%Hðx; yÞ : ð30Þ

But (30) states that %G has negative univariate aging (it says it is DFR).

Remark 4.5. Let %M ¼ G 3 %F; i.e.

%Mðx; yÞ ¼ Gð %Fðx; yÞÞ:

The function %M has all the properties of a survival function, except possibly for the
fact that it need not satisfy the rectangular inequality. Correspondingly, the function
K %M defined formally as in (13) need not be a copula, but it is in general a semicopula.

It is not hard to check that %M has standard exponential marginals (hence, it displays

no 1-aging), and has the same bivariate aging as %F; namely, B %F ¼ B %M: Furthermore,
%M satisfies K %M ¼ B %M; which is consistent with our previous assertion that in absence
of 1-aging, the only source of 2-aging is dependence.

Thus, we may rephrase the definition of P-positive bivariate aging as follows: %F

has P-positive 2-aging iff the function %M with the same level sets as %F and standard
exponential marginals has a survival (semi)copula in Pþ:

5. Relations among 1-aging, 2-aging, and dependence: some conditions and basic

results

We define here a basic notion of closure which will be needed in the sequel, and we
single out some properties of families of semicopulæ needed to state and prove the

main results of this note. Later, we shall show that the families P j
þ;P j

�; j ¼ 1;y; 4;
considered so far satisfy these properties.
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For PCS; letHP ¼ fhAHjChAA-Pg: Recall that Ch was defined in (10) and that
A denotes the family of Archimedean semicopulæ; recall also that we denote by h0
the identity mapping on ½0; 1�; thus Ch0ðu; vÞ ¼ S0ðu; vÞ ¼ uv:

Definition 5.1. A family PCS; containing S0 (i.e. such that h0AHP), is said to be C-
closed if

CHP ðPÞ ¼ P: ð31Þ

Thus, a family containing the independent copula is P-closed if the following
implication holds: if SAP and if h is such that ChAP; then ChSAP:
Clearly, for every semicopula C we have Ch0C ¼ C: Hence CHPðPÞ*P always

holds, and in order to verify theC-closure of a family P it is enough to check that the
opposite inclusion holds.

5.1. Main hypotheses

For what follows, we need to consider the following conditions on a family P ¼
fPþ;P�g; where PþCP1

þ and P�CP1
�:

Hypothesis 1. The family Pþ is C-closed.

Hypothesis 2. The family P� is C-closed.

The following two conditions require a relation between Pþ and P�:

Hypothesis 3. hAHPþ if and only if h�1AHP� :

Hypothesis 4. The following implication holds:

SAP�;ChSAPþ ) hAHPþ :

5.2. Relations among dependence, 1- and 2-aging

We are now ready to state and prove some results about the relations among
dependence, 1- and 2-aging.

Proposition 5.2. Let P ¼ fPþ;P�g; and let %FAF :

(1) Assume Hypotheses 1 and 3. If %F has P-positive 1-aging and P-positive

dependence, then it has P-positive 2-aging.
(2) Assume Hypotheses 2 and 3. If %F has P-negative 1-aging and P-negative

dependence, then it has P-negative 2-aging.
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Proof. We shall prove only the first claim, since the second one can be dealt
with in a similar way. The assumptions mean that CGAP� and KAPþ: By
Hypothesis 3, CG�1APþ: It follows immediately that B ¼ CG�1KAPþ; since Pþ is C-

closed. &

Proposition 5.3. Let P ¼ fPþ;P�g; and let %FAF :

(1) Assume Hypothesis 1. If %F has P-positive 2-aging and P-negative 1-aging, then it is

P-positively dependent.
(2) Assume Hypothesis 2. If %F has P-negative 2-aging and P-positive 1-aging, then it is

P-negatively dependent.

Proof. Again, we shall prove only the first claim. The assumptions mean that BAPþ
and CGAPþ: Hence we have K ¼ CGBAPþ: &

Proposition 5.4. Let P ¼ fPþ;P�g; and let %FAF :

(1) Assume Hypotheses 3 and 4. If %F has P-negative dependence and P-positive 2-
aging, then it has P-positive 1-aging.

(2) Assume Hypothesis 4. If %F has P-negative 2-aging and P-positive dependence, then

it has P-negative 1-aging.

Proof. Consider the first claim. We have: KAP� and B ¼ CG�1KAPþ: By

Hypothesis 4, we have CG�1APþ; and hence CGAP�; by Hypothesis 3.

The second claim is similar. We have: BAP� and K ¼ CGBAPþ: Then
CGAPþ: &

6. Examples and applications

In this section we shall consider some of the specific conclusions that can be drawn
by applying Propositions 5.2–5.4 to the families of semicopulæ considered so far.

6.1. Examples of families which satisfy the main hypotheses

6.1.1. Families of Archimedean semicopulæ
We begin our presentation of examples with the analysis of the families

P j
þ-A; j ¼ 1;y; 4: Most of the results in this section could be derived as special

cases of next section, in which we will deal with P j
þ; j ¼ 1; 2; 3; but we decided to

present them in this order for several reasons. In fact, the proofs in the case of
Archimedean semicopulæ are simpler and more straightforward; moreover, the

family P4
þ ¼ P4

þ-A; is not covered in next section, and the proofs for P4
þ are

analogous to those for P j
þ-A; j ¼ 1; 2; 3: Finally, the proof that P j

þ-A; j ¼
1; 2; 3; satisfy Hypothesis 3 will be taken verbatim into next section.
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First, it is interesting to note that different dependent families may agree on the set
of Archimedean semicopulæ. In fact, the following proposition shows in particular

that P2
þ-A ¼ P3

þ-A:

Proposition 6.1. Let f be an additive generator of an Archimedean semicopula,

and let h ¼ e�f be the corresponding multiplicative generator. The following are

equivalent:

(1) f�1 is log-convex, i.e. it is a DFR survival function.
(2) Ch is TP2:
(3) ChAP2

þ; i.e. it is LTD.

(4) ChAP3
þ:

Proof. The equivalence of (1) and (2) can be established by considering the following

chain of double implications: f�1 is log-convex iff

log f�1ðx þ yÞ � log f�1ðx þ y0ÞXlog f�1ðx0 þ yÞ � log f�1ðx0 þ y0Þ;

8xox0; yoy0;

iff

f�1ðx þ yÞf�1ðx0 þ y0ÞXf�1ðx0 þ yÞf�1ðx þ y0Þ;

i.e. %Hðx; yÞ :¼ f�1ðx þ yÞ is TP2: This is easily seen to be equivalent to the TP2
property of Af; i.e. of Ch:

The equivalence between (1) and (3) was proved in [2]. Finally, we establish the

equivalence of (1) and (4). Write f�1 ¼ expf�gg: Then, observing that fðxÞ ¼
g�1ð�log xÞ; we note that f�1 is log-convex iff g�1 is convex iff, for every 0ovpup1
and every 0oso1;

g�1ð�log u � log sÞ � g�1ð�log uÞpg�1ð�log v � log sÞ � g�1ð�log vÞ;

iff

fðusÞ � fðuÞpfðvsÞ � fðvÞ;

iff

f�1ðfðusÞ þ fðvÞÞXf�1ðfðuÞ þ fðvsÞÞ: &

For the remaining part of this section, we shall not refer to P2
þ-A anymore, since

it coincides with P3
þ-A:

Next, we show that, in the case of families of Archimedean semicopulæ, the main
hypotheses are not independent of one another.
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Proposition 6.2. Let P ¼ fPþ;P�g; where PþCP1
þ and P�CP1

� are families of

Archimedean semicopulæ. If P satisfies Hypotheses 1 and 3, then it satisfies also

Hypotheses 2 and 4.

Proof. Let us begin with Hypothesis 2. Let Cg;ChAP�: Then

ChCg ¼ Cg 3 h ¼ Cðh�1 3 g�1Þ�1 :

Now, Ch�1 ;Cg�1APþ: Hence Ch�1 3 g�1 ¼ Cg�1Ch�1APþ; and the conclusion follows.

Next, let us consider Hypothesis 4. Let CgAP� and let ChCg ¼ Cg 3 hAPþ: Then
Cg�1APþ and

Ch ¼ Cg�1 3 g 3 h ¼ Cg 3 hCg�1APþ: &

Before we turn our attention to the specific families under consideration, we need
to state the following Proposition 6.3, which was proved essentially in [2]. It
establishes relations between certain conditions of dependence of an Archimedean
(semi)copula and suitable properties of the generator. See also [10]. Here, we state
the result in terms of multiplicative generators.
Given a multiplicative generator h; let

ZhðxÞ :¼ �log hðe�xÞ ¼ fðe�xÞ:

The following properties are easy to verify and shall be needed in the sequel:

Zh0 3 h ¼ Zh0 3 Zh;

Z�1h ðxÞ ¼ Zh�1ðxÞ:

Incidentally, observe also the following: if f ¼ %G�1 and %GðxÞ ¼ expf�RðxÞg; then
GðxÞ ¼ expf�R�1ð�log xÞg and ZG ¼ R�1:

Proposition 6.3. Let Ch be an Archimedean semicopula with multiplicative generator h:

(1) ChAP1
þ-A if and only if Zh is superadditive.

(2) ChAP2
þ-A ¼ P3

þ-A if and only if Zh is convex.

(3) ChAP4
þ if and only if Zh is star-shaped.

Similar statements hold for the corresponding negatively dependent families.

We are now ready to show that the families P j-A; j ¼ 1; 3; 4 satisfy Hypotheses
1 and 2.

Proposition 6.4. The families P1
þ-A; P3

þ-A and P4
þ are C-closed.

Proof. Let h; h0 be two multiplicative generators. If Zh0 and Zh are increasing and
superadditive (respectively, star-shaped, convex), then so is Zh0 3 h ¼ Zh0 3 Zh; since
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these families of functions are closed under composition. The conclusion follows
recalling that ChCh0 ¼ Ch0 3 h: &

Next, we deal with Hypothesis 3.

Proposition 6.5. For j ¼ 1; 3; 4; we have

ChAP j
þ-A 3 Ch�1AP j

�-A:

Proof. The fact that the following statements are equivalent yields the desired result.

(1) ChAP j
þ-A; with j ¼ 1 (respectively, j ¼ 3; 4),

(2) Zh is increasing and superadditive (respectively, convex, star-shaped),
(3) Z�1h ¼ Zh�1 is increasing and subadditive (respectively, concave, anti-star-

shaped),
(4) Ch�1AP j

�-A; with j ¼ 1 (respectively, j ¼ 3; 4). &

6.1.2. The families P1; P2; P3

In this section we shall see that all the families considered so far satisfy the main
hypotheses.

Proposition 6.6. The families P1
þ; P2

þ; P3
þ; P1

�; P2
�;P3

� are C-closed.

Proof. We prove the result only for the positive dependent families. The other case is
similar

Let S;ChAP1
þ: Then

ChSðu; vÞ ¼ h�1ðSðhðuÞ; hðvÞÞÞXh�1ðhðuÞhðvÞÞ ¼ Chðu; vÞXuv:

Next, let S;ChAP2
þ: For uou0 we have

ChSðu0; vÞ
u0 ¼ 1

u0 h�1ðSðhðu0Þ; hðvÞÞÞ ¼ 1

u0 h�1 hðu0ÞSðhðu
0Þ; hðvÞÞ

hðu0Þ

� 	

p
1

u0 h�1 hðu0Þ SðhðuÞ; hðvÞÞ
hðuÞ

� 	
¼ 1

u0 h�1ðhðu0ÞhðũÞÞ

¼Chðu0; ũÞ
u0 ;

where ũ is such that

hðũÞ ¼ SðhðuÞ; hðvÞÞ
hðuÞ :
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Hence, we get

ChSðu0; vÞ
u0 p

Chðu0; ũÞ
u0 p

Chðu; ũÞ
u

¼ 1

u
h�1 hðuÞ SðhðuÞ; hðvÞÞ

hðuÞ

� 	

¼ 1

u
h�1ðSðhðuÞ; hðvÞÞÞ ¼ ChSðu; vÞ

u
:

Next, let S;ChAP3
þ: Let 0pvpup1 and 0oso1: First, it is easy to check that

ChAP3
þ if and only if

x/
hðxsÞ
hðxÞ

is increasing. Hence

ChSðus; vÞ ¼ h�1ðSðhðusÞ; hðvÞÞÞ ¼ h�1 S hðuÞ hðusÞ
hðuÞ ; hðvÞ

� 	� 	

X h�1 S hðuÞ; hðusÞ
hðuÞ hðvÞ

� 	� 	

X h�1 S hðuÞ; hðvsÞ
hðvÞ hðvÞ

� 	� 	
¼ ChSðu; vsÞ: &

As far as Hypothesis 3 is concerned, the desired result has already been proved in
Section 6.1.1. Hence, we turn our attention to Hypothesis 4.

Proposition 6.7. The families P1; P2; P3 satisfy Hypothesis 4.

Proof. The case j ¼ 1: Let S be NQD and let ChS be PQD. Then

uvph�1ðSðhðuÞ; hðvÞÞph�1ðhðuÞhðvÞÞ ¼ Chðu; vÞ:

The case j ¼ 2: Let 0ouou0p1; and let 0pvp1: Let also ṽ be such that

hðvÞ ¼ SðhðuÞ; hðṽÞÞ
hðuÞ ;

i.e. such that Chðu; vÞ ¼ ChSðu; ṽÞ: Then
Chðu0; vÞ

u0 ¼ 1

u0 h�1ðhðu0ÞhðvÞÞ ¼ 1

u0 h�1 hðu0Þ SðhðuÞ; hðṽÞÞ
hðuÞ

� 	

p
1

u0 h�1 hðu0Þ Sðhðu0Þ; hðṽÞÞ
hðu0Þ

� 	
¼ 1

u0 ChSðu0; ṽÞ

p
1

u
ChSðu; ṽÞ ¼ Chðu; vÞ

u
;

as we wanted to prove. Observe that the first inequality is due to the fact that SAP2
�;

and the second one to the fact that ChSAP2
þ:

ARTICLE IN PRESS
B. Bassan, F. Spizzichino / Journal of Multivariate Analysis 93 (2005) 313–339 331



The case j ¼ 3: Let 0ovpup1 and 0oso1: We assume

Sðus; vÞpSðu; svÞ;

h�1ðSðhðusÞ; hðvÞÞÞXh�1ðSðhðuÞ; hðsvÞÞÞ:

Write ṽ :¼ hðvÞ; ũ :¼ hðuÞ and s̃ :¼ hðusÞ=hðuÞ: Then, recalling that h�1 is increasing,
the two assumptions together yield:

Sðũ; s̃ṽÞXSðũs̃; ṽÞ ¼ SðhðusÞ; hðvÞÞXSðũ; hðsvÞÞ:

It follows that

hðsvÞps̃ṽ ¼ hðusÞhðvÞ
hðuÞ ;

and hence

h�1ðhðusÞhðvÞÞXh�1ðhðuÞhðsvÞÞ;

as we wanted to prove. &

6.2. Applications

The results in Section 6.1 guarantee that Propositions 5.2–5.4 can be applied to

each of the cases P j ð j ¼ 1;y; 4Þ: Taking into account the considerations contained
in Examples 4.2–4.4, here we spell out some of the specific conclusions, that are

implied by those propositions, relatively to the cases j ¼ 1; 2; 3: The case P4 will be
considered in detail in the next section.
In each example we consider a pair of exchangeable lifetimes X1;X2:

Example 6.1. Let X1;X2 have NBU marginal distribution and PQD dependence, i.e.

CGAP1
� and KAP1

þ: Then, by Proposition 5.2, BAP1
þ; the latter is equivalent to

inequality (25), which has a natural interpretation as a bivariate NBU property for
ðX1;X2Þ (see Example 4.2).
Similarly we can obtain that the opposite inequality

PfX14x þ tjX14xgXPfX24tjX14xg

is implied by the conditions that Xi ði ¼ 1; 2Þ is NWU and the joint distribution is
NQD.
If (25) holds, and if the NQD property of ðX1;X2Þ is assumed, then, by

Proposition 5.4, we obtain that Xi is NBU.

Example 6.2. Let X1;X2 have IFR marginal distribution, and let the survival copula
be LTD, i.e. PfX24x2jX14xg is an increasing function of x (see Example 4.3). This

means that CGAP2
� and KAP2

þ: Then, by applying Proposition 5.2, we get the
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condition BAP2
þ; i.e. by the definition given in (21), B is such that

Bðu0; vÞ
u0 p

Bðu; vÞ
u

; 80ouou0p1; 80pvp1:

Taking into account Eq. (14), we obtain that the following inequality holds:

%G�1½ %Fðx0; yÞ� � x0p %G�1½ %Fðx; yÞ� � x; xox0:

This inequality amounts to the Lipschitz condition for the function

hðx; yÞ :¼ %G�1½ %Fðx; yÞ� ¼ �log Bðe�x; e�yÞ;

which has been considered in [7].

Next example, in particular, shows sufficient conditions for a joint distribution
with IFR marginals to have a Schur-concave joint survival function.

Example 6.3. Recalling Lemma 4.2, we know that Schur-concavity of the joint

survival function is equivalent to the condition BAP3
þ: We also know that the

condition CGAP3
� amounts to the IFR property for the marginal distribution of

X1;X2: Notice now that, by the definition of P3
þ; the condition K AP3

þ becomes

%Fð %G�1ðsuÞ; %G�1ðvÞÞX %Fð %G�1ðuÞ; %G�1ðsvÞÞ; 0pvpup1; 0oso1: ð32Þ

By applying Proposition 5.2 we can get the following conclusion: Let X1;X2 have

IFR marginal distribution and let inequality (32) hold. Then %F is Schur-concave, (i.e.
inequalities (26) and (27) hold). Note that condition (27) is stronger than (25). In
fact, the latter only requires that the inequality in (27) hold for x2 ¼ 0:

Example 6.4. From Proposition 5.4 we obtain sufficient conditions on a Schur-

concave survival function in order to have IFR 1-marginals. In fact, let %FAF be

Schur-concave. If K %FAP3
�; i.e. if

%Fð %G�1ðsuÞ; %G�1ðvÞÞp %Fð %G�1ðuÞ; %G�1ðsvÞÞ; 0pvpup1; 0oso1:

then the 1-marginal %G is IFR.

Remark 6.8. In this remark, we turn our attention to some of the implications that
do not hold. Here are some examples:

* Positive 1-aging and positive 2-aging need not imply positive dependence. In fact,
a counterexample is given in [11], Remark 18, where it is shown that

%Fðx; yÞ ¼ expf1� ex2þy2g

displays positive 1-aging, positive 2-aging and negative dependence.
* Positive 2-aging need not generally imply positive 1-aging; in particular positive 2-

aging and positive dependence need not imply positive 1-aging. This can be easily
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seen, e.g., by taking into account the well known fact that a mixture of IFR
distributions need not be IFR: let T1; T2 be conditionally i.i.d. IFR given a
parameter Y; then the joint survival function of T1; T2 is Schur-concave (and

hence it has P3-positive 2-aging). It is easy to find conditional distributions (of Ti

given Y) and a marginal distribution for Y; such that the marginal distribution of
Ti is not IFR. For example assume that the law of Y is a standard exponential,
and that the conditional marginal law of T1; T2 is a Weibull ðy; 2Þ (which is an
IFR law). Then T1; T2 are positively dependent, and their joint (conditional and
unconditional) survival function is Schur-concave, i.e. we have positive bivariate
aging. However, one can check that the unconditional law is not even NBU; see
[11], Remark 7, for details.

7. Time-transformed exponential (TTE) models

In this section we focus our attention on joint exchangeable probability
distributions for ðX1;X2Þ; characterized by the following conditions:

* the survival copula is Archimedean, i.e. KAK-A:
* %GAG:

Here we shall denote the generic element of K-A as

Kðu; vÞ ¼ W ½W�1ðuÞ þ W�1ðvÞ�;

where W is a one-dimensional convex survival function belonging to G:
By using (19), we see that the joint survival function is of the form

%Fðx1; x2Þ ¼ W ½Rðx1Þ þ Rðx2Þ�; ð33Þ

where R : ½0;þNÞ-½0;þNÞ is the increasing function defined by R � W�1
3 %G; %G

being the one-dimensional marginal survival function of %F:

In terms of W and R; the marginal survival function is %G ¼ W 3 R:
From (14) it is immediately seen that the corresponding aging function B is an

Archimedean semicopula, with additive generator given by fðxÞ ¼ Rð�log xÞ; then
B turns out to be a copula if and only if R 3 ð�logÞ is convex, and, in particular, if R

is convex.
To designate distributions with joint survival functions of the form (33), we use the

term TTE models and the symbol TTEðW ;RÞ:
Of course the class of TTE models is a quite restricted one; yet, it contains the

remarkable models listed hereafter:

(1) The case of i.i.d. lifetimes, described by the relation WðxÞ ¼ expf�xg:
(2) The Schur-constant case; this is obtained for RðxÞ ¼ x:
(3) Proportional hazard models, of the type

%Fðx1; x2Þ ¼
Z þN

0

expf�y½Rðx1Þ þ Rðx2Þ�g dPðyÞ:
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P being a probability distribution over ½0;þNÞ: Here it is

WðxÞ ¼
Z þN

0

expf�y � xg dPðyÞ:

Of course case (1) is a special case of (3) (P is a degenerate distribution).

Models with an Archimedean survival copula have been dealt with extensively in the
literature; see e.g. [12,14,18]. Their interest in the applications lies, in particular, in
that they constitute a natural generalization of frailty models.
The statistical interest of models with Archimedean copulæ and variables that are

not necessarily exchangeable is also discussed in [3].
A few different characterizations of the class of TTE models can be given (see also

[4,7]); for the purposes of the present paper it is of interest to report the following
characterizations, obtained in [10].

Proposition 7.1. (1) The TTE class is the family of all exchangeable survival functions
%F such that there exists a law with independent marginals which has the same level

curves (hence, the same multivariate aging function B) as %F:

(2) The TTE class is the family of all exchangeable survival functions %F such that

there exists a Schur-constant law with the same dependence structure (i.e., same

copula) as %F:

The arguments developed in the previous sections can be used, in particular, to
analyze the relations among dependence, 1- and 2-aging for TTE models. The
specific results take a particularly simple form; this will be illustrated by the examples
listed below.
In the following two examples we consider a family P � ðPþ;P�Þ of Archimedean

semicopulæ.

Example 7.1. Let X1; X2 be two i.i.d lifetimes with survival function %G: Then
ðX1;X2Þ has P-positive (negative) bivariate aging if and only if it has P-positive
(negative) 1-aging.

The next example is related to Remark 4.4.

Example 7.2. Let X1; X2 be two lifetimes with a Schur-constant survival function

%Fðx1; x2Þ ¼ %Gðx1 þ x2Þ:

Then KAPþ (KAP�) if and only if %F displays P-negative 1-aging ( %F displays P-
positive 1-aging).

In the forthcoming example we make use of Proposition 6.1 and of Lemma 4.2.
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Example 7.3. Consider a TTE model and take Pþ � P3
þ: Since K is an Archimedean

copula, the condition KAPþ means, by Proposition 6.1, that K is TP2 or,

equivalently, that %F is TP2:
We consider now the family P� of RR2 semicopulæ, i.e. semicopulæ such that

Sðu0; v0ÞSðu00; v00ÞpSðu0; v00ÞSðu00; v0Þ; u0pu00; v0pv00:

KAP� is equivalent to %F being RR2: It is immediate to check that if ChAPþ; then
Ch�1AP�:
By recalling that Pþ is C-closed, we can apply Propositions 5.2, 5.3, 5.4 to obtain

the following implications:

* If the joint survival function %F is TP2 and X1; X2 are IFR, then %F is Schur-
concave.

* If %F is Schur-concave and X1; X2 are DFR, then %F is TP2:
* If %F is Schur-concave and RR2; then X1; X2 are IFR.

We can also obtain the same implications directly, by taking into account that, for
the present case of a TTEðW ;RÞ model, the following holds:

* K is TP2 iff logðWÞ is convex (i.e. iff the inverse of the generator of K ; namely, W ;
is DFR);

* %F is Schur-concave iff R is convex (i.e. iff the inverse of the generator of B;

namely, e�R�1
; is DFR);

* %G is IFR iff �logðW 3 RÞ is convex.

The above statements point out that dependence and bivariate aging can be
described in terms of univariate aging; one could show that this is true in general for
TTE models.

Notice also that Schur-concavity of %F (i.e. convexity of R) implies, as mentioned
above, that the aging function B turns out to be a copula.

Example 7.4. Let Pþ � P4
þ; P� � P4

�: First we note that, by taking into account

the definitions of IFRA and DFRA distributions (see, e.g. [6]), and by taking into
account the third claim of Proposition 6.3, we can obtain: CGAPþ if and only if
X1;X2 are DFRA, and CGAP� if and only if X1;X2 are IFRA.
In view of this and in the spirit of Definition 4.1, we can interpret the condition

BAPþ as a notion of bivariate IFRA and the condition BAP� as a notion of
bivariate DFRA (see also [10]).
From Section 6.1 we can, in particular, derive that Pþ;P� satisfy Hypotheses 1–4

of Section 5.1. Then, Propositions 5.2, 5.3, 5.4 hold, and we are in a position to
conclude as follows:

* If K is a PKD copula and X1;X2 are IFRA, then ðX1;X2Þ is bivariate IFRA.
* If ðX1;X2Þ is bivariate IFRA and X1;X2 are DFRA, then K is PKD.
* If ðX1;X2Þ is bivariate IFRA and K is NKD, then X1;X2 are IFRA.
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Example 7.5. It can be checked that the joint survival function in a proportional
hazard model is TP2: Furthermore, we know that, if R is concave, two conclusions
follow:

(1) The law with survival function expf�yRðxÞg is DFR, for each y40:
(2) %F is Schur-convex, i.e. it has P3-negative bivariate aging.

By Proposition 5.4, it follows that the marginal

%GðxÞ ¼
Z

N

0

expf�yRðxÞg dPðyÞ

is DFR. Thus, we find a particular case of the well-known result that mixtures of
DFR laws are DFR.

8. Conclusions and final remarks

As mentioned in the Introduction, the main purpose of this paper is to analyze
the intricate relations between dependence and aging. Our main results in
this direction have been obtained in Section 5, in terms of the definitions given in
Section 4.
Those results allowed us to answer some questions that motivated the present

work. Typical such questions are about the relations among Schur-concavity,
marginal IFR property and dependence of a joint law.
More precisely, we know that if two lifetimes are i.i.d. (i.e. exchangeable

with K ¼ K0; the independent copula) and IFR, then their joint survival
functions is Schur-concave. One may think that the same applies for K displaying
a suitable degree of positive dependence. In this note we find sufficient conditions

on the positive dependence of K that guarantee Schur-concavity of %F; namely,

KAP3
þ:

Similarly, one may wonder what degree of negative dependence guarantees that
the marginals of a law with Schur-concave survival function display positive aging.

Here we answer this question: KAP3
�:

We also show that these sufficient conditions on the survival copula can
be expressed in terms of more familiar dependence concepts, in the case of TTE
models.
The framework that allows us to answer the above questions involves a

description of notions of univariate and bivariate aging in terms of dependence.
More specifically, 2-aging is represented by the dependence of the law with survival

G 3 %F; and 1-aging of %G is represented in terms of the dependence of the Schur-

constant law with %G as marginal survival. A certain symmetry emerges, and a
relevant role is played by the three ‘‘reference’’ cases, namely, the independent
laws (with Kðu; vÞ ¼ K0ðu; vÞ ¼ uv), the Schur-constant laws (with
Bðu; vÞ ¼ B0ðu; vÞ ¼ uv), and the laws with standard exponential marginals (with
A %G�1ðu; vÞ ¼ uv).
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A natural relation emerges between notions of positive and negative dependence,
namely, the relation specified in the main hypotheses. It should be observed that this
relation allows us, in view also of Proposition 6.1, to couple ‘‘different’’ notions of
dependence, such as LTD and RR2: As a further example, it is perfectly legitimate to

take P � ðP2
þ;P3

�Þ in our analysis.

As we just repeated, we described 2- and 1-aging in terms of dependence. In the
case of TTE models, it is possible to reverse the perspective, and define dependence
and 2-aging in terms of 1-aging. This could allow us to provide a more direct proof
of results like Propositions 5.2–5.4; this has been briefly sketched at the end of
Example 7.3.
Throughout this paper, we confined our attention to exchangeable vectors of

lifetimes. In a sense, it is the very spirit of the notions of aging considered here that
led us to the assumption of exchangeability.
As mentioned, our main aim is to analyze the nature of basic relations between

aging and dependence; we feel that, in this respect, the above limitation is not very
severe.
As far as applications to various real-world problems are concerned, the extension

of our arguments to the non-exchangeable case is an open field.
The first step to extend our analysis to such a case dwells, however, on appropriate

extensions of our definitions of multivariate aging.
One possible way of tackling the latter problem relies on the following two facts:

(a) Relevant aspects of properties of multivariate aging can be described in terms of
the behavior of the vector of order statistics.

(b) For any arbitrary vector of lifetimes we can find one and only one vector of
exchangeable lifetimes such that the probability laws of the two associate vectors
of order statistics coincide.

Then we might say that a (non-exchangeable) vector has a multivariate aging
property if this is the case for the ‘‘corresponding’’ exchangeable vector (see also
[23]).
A further natural extension of our analysis concerns the case of n42 exchangeable

lifetimes. Most of the definitions and most of the basic properties can be translated
to this more general setup with little effort. However, many applications to
specific cases become involved when the dimension exceeds n ¼ 2: For example,
even the basic notion of PQD has no meaning in higher dimension, and should
be replaced by PUOD and PLOD (positive upper/lower orthant dependence).
We plan to deal with the case of an arbitrary number of exchangeable lifetimes in
another paper.
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