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a b s t r a c t

Numerous empirical equations have been proposed to estimate the joint roughness coefficient (JRC) of a
rock fracture based on its fractal dimension (D). A detailed review is made on these various methods,
along with a discussion about their usability and limitations. It is found that great variation exists among
the previously proposed equations. This is partially because of the limited number of data points used to
derive these equations, and partially because of the inconsistency in the methods for determining D. The
10 standard profiles on which most previous equations are based are probably too few for deriving a
reliable correlation. Different methods may give different values of D for a given profile. The h–L method
is updated in this study to avoid subjectivity involved in identifying the high-order asperities. The
compass-walking, box-counting and the updated h–L method are employed to examine a larger population
of 112 rock joint profiles. Based on these results, a new set of empirical equations are proposed, which
indicate that the fractal dimension estimated from compass-walking and the updated h–L method closely
relate to JRC, whereas the values estimated from box-counting do not relate as closely.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Discontinuities play an important role in the deformation
behavior of a rock mass. Properties of the rock discontinuities
include extent, orientation, roughness, infilling and joint wall
strength. Roughness, which refers to the local departures from
planarity, influences the friction angle, dilatancy and peak shear
strength. A milestone was made by Barton [1], who puts forward
an empirical equation to estimate the peak shear strength of a rock
joint τ¼ σ tan ½JRC log ðJCS=σÞþφb�, where τ is the peak shear
strength of the rock joint, σ is the normal stress, JRC is the joint
roughness coefficient, JCS is the strength of joint wall, and φb is the
basic friction angle. The JRC of a particular rock joint profile is most
often estimated by visibly comparing it to the 10 standard profiles
with JRC values ranging from 0 to 20 [2]. This approach was also
adopted by the ISRM commission on test methods in 1981 [3].
However, the visual comparison is subjective, since the user has to
judge which profile his joint fits the best.

The development of objective methods was gradually advanced
by researchers considering statistical parameters and the fractal
dimension of the rock joint profiles [4–8]. A detailed review was

carried out more recently [9] on the determination of JRC using
statistical parameters, where empirical equations with Rz (max-
imum height of the profile), λ (ultimate slope of the profile) and δ
(profile elongation index) were proposed and highly recom-
mended for engineering practice as they have high correlation
coefficients and are easy to calculate.

The fractal dimension (D) describes the degree of variation in a
curve, a surface or a volume from a line, a plane or a cube. Since
the work of Turk et al. [10] and Carr and Warriner [11], the fractal
dimension was thought to be a suitable parameter for quantifying
the roughness of a natural rock joint profile [12–18], as the fractal
dimension has a minimum value of 1 for a perfectly smooth profile
and a maximum value of less than 2 for an extremely rough
undulating profile [19,20]. Numerous empirical equations were
put forward for estimating JRC using D. However, difficulties arise
when ranking the suitability of these equations and choosing a
particular one to use in engineering practice, as the D determina-
tion methods, examined profiles and data processing methods on
which the empirical equations were based are diverse.

The present study aims to review the determination of JRC
using D. The definition and calculation of D determination meth-
ods are clearly described, followed by a detailed review of the
empirical equations in the literature. The authors will repeat what
the previous researchers have done to evaluate the accuracy and
limitations of these equations. Finally, 112 joint profiles are utilized
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to correct and update the empirical equations for them to be
better used in rock engineering.

2. Fractal dimension and its determination

To date, the fractal dimension of a rock joint profile was
generally determined by compass-walking [7], box-counting [24]
and the h–L methods [25] in rock engineering. A review of these
methods is given in the following subsections in terms of defini-
tion and calculation.

2.1. Compass-walking method

The compass-walking is also called divider, a yardstick or stick-
measuring method [7,21,22], and the main concept of this method
is to measure a curve by “walking a compass of radius r” along the
curve (Fig. 1). The detailed process of measurement is as follows
(Fig. 1): set a compass to a prescribed radius r, and walk the
compass along the profile, each new step starting where the
previous step leaves off. For each compass of a certain radius r,
one would get an N (the number of steps) for fully measuring the
curve. With compasses of different radii, a set of Ns would be
obtained. If the base 10 log of the N values are plotted against the
base 10 log of the corresponding r values, the slope of this plot
is �D [23]:

�D¼ Δ log N=Δ log r ð1Þ
where Δlog N is the increment of log N, and Δlog r is the incre-
ment of log r.

An alternative to the above calculation was used by Maerz et al.
[7]. They counted the number N of dividers of length r needed to
cover the profile and repeated this measurements for various
lengths of r. The fractal dimension D is calculated in practice by
plotting Nr versus r in a log–log space and equating the slope
to 1�D:

1�D¼ Δ log ðNrÞ=Δ log r ð2Þ
where Δlog(Nr) is the increment of log(Nr) in the plot.

A modification of the traditional calculation (1) was made by
Bae et al. [21]. The fractal dimension of a joint profile is defined by
three parameters including N, r, and f, where, N is the number of
steps for walking through a joint profile by a divider with a span of
r (Fig. 1). The length of the joint profile was defined as Nrþ f,
where, the value f is obtained by measuring the remaining length
shorter than r after excluding the length of Nr for the total joint
profile length. The fractal dimension D, thus, is defined as the
slope of log(Nþ f/r) versus log(r) according to:

�D¼ Δ log ½Nþðf =rÞ�=Δ log r ð3Þ

2.2. Box-counting method

The box-counting dimension is also known as the Minkowski–
Bouligand dimension, which works as a way of determining the
fractal dimension of a set in a Euclidean space, or more generally
in a metric space (X, d) [24].

To calculate the fractal dimension, the joint profile is placed on an
evenly-spaced grid, and the number of boxes required to fully cover
the profile is counted. Suppose that G is the number of boxes of side
length ε required to cover the profile. In practice the box-counting

dimension is calculated by seeing how this number changes as the
grid gets finer and is obtained by plotting Gs against the correspond-
ing εs in a log–log space. The slope of this plot is regarded as –D:

�D¼ Δ log G=Δ log ε ð4Þ

2.3. The h–L method

This method was firstly proposed by Xie and Pariseau [25], and
was defined as:

D¼ log 4
log f2ð1þ cos ½arctanð2h=LÞ�Þg

h¼ 1
M

XM

i ¼ 1

hi; L¼ 1
M

XM

i ¼ 1

Li ð5Þ

where L and h are the average base length and the average height
of “high-order” asperities of a joint, respectively (Fig. 2). A similar
definition was also given in the following expression by Askari and
Ahmadi [26]:

D¼ log 4
log f4 cos ½arctanð2h=LÞ�g ð6Þ

The difficulties in using the above two equations are the identi-
fication of the so-called “high-order” asperities of a profile and the
manual measurement of their base length and height (Fig. 2). The
subjectivity involved in identifying the asperities may introduce bias
into the estimated D.

3. Review of available empirical equations

Since Turk et al. [10], who put forward the first correlation
between JRC and D of a joint profile, studies of this relationship have
attracted attention from researchers. Table 1 lists the empirical
equations from the literature for estimating JRC from D; in the text,
these equations will be referred to as T1, T2, etc., to avoid confusion
with the previous six displayed and numbered equations. It is found
that diverse measuring methods for determining D were employed,
including the compass-walking, box-counting and h–L method.
Most of the empirical equations (T1, T2, T5, T6, T7, T9, T10, T12,
T13 and T17) were derived from the 10 standard JRC profiles
proposed by Barton and Choubey [2]. Equations (T14-T16) were
derived from 10 profiles published by Xu et al. [22]. Equation (T3)
was derived from seven profiles published by Qin et al. [27].
Equation (T11) was derived from 42 profiles published by Jia [28].
No clear description of the data source was given for the rest of the
equations. The correlation coefficients (if provided) are generally
greater than 0.9, showing a close correlation between JRC and D.
Most equations are not accompanied by the sampling interval and
the sampling intervals (if provided) are variable.

Equations (T1–T5) take D as the independent variable. One of
the apparent disadvantages of these equations is that they result
in a JRC value not equal to 0 for a perfectly smooth plane. That is,
they are not applicable for planar or sub-planar joint profiles.

N = 6 
    r              f 

Fig. 1. Schematic of the compass-walking method for determination of D of a
profile. Fig. 2. Measurement of h and L in Eqs. (5) and (6) (Xie and Pariseau [25]).
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Equations (T6–T19) take D�1 as the independent variable, and
they are capable of evaluating a smooth joint profile.

The equations in Table 1 are plotted in Fig. 3, where Fig. 3a is for
compass-walking and Fig. 3c for the h–L method. The circled part of

Fig. 3a is magnified and shown to its right as Fig. 3b. Though the
consistent trend shows that JRC increases with D, inconsistency does
exist. Equations (T3, T4, T10 and T11) are separate from the others, to
a great extent (Fig. 3a). The fractal dimensions for the densely

Table 1
Literature review of empirical equations for estimating JRC by using D.

No. Equation Method R SI JRC0 D Range# St. Profiles Reference

T1 JRC¼�1138.6þ1141.6D C-Wn – – 3 1.0–1.0149 Y Turk et al. [10]
T2 JRC¼�1022.55þ1023.92D C-Wn 0.9800 – 1.3700 1.0–1.0182 Y Carr and Warriner cr
T3 JRC¼209.7517D�204.1486 C-W 0.9470 0.5 5.6031 1.0–1.0686 N Qin et al. [277]
T4 JRC¼172.206D�167.2946 C-W 0.9976 – 4.9114 1.0–1.0876 Y Zhou and Xiong [29]
T5 JRC¼7811778.928D3�23723041.6842D2þ

24014672.3562D�8103409.7809
C-W# 0.9930 0.05 �0.1809 1.0–1.0144 Y Bae et al. [21]

T6 JRC¼1000(D�1) C-Wn – – 0 1.0–1.0200 Y Carr and Warriner [11]
T7 JRC¼1870(D�1) C-WMR – 0.684 0 1.0–1.0107 Y Maerz and Franklin [30]
T8 JRC¼1647(D�1) C-W 0.9600 – 0 1.0–1.0121 N Liu [31]
T9 JRC¼1195.38(D�1) C-W – – 0 1.0–1.0167 Y Lamas [32]

T10 JRC¼479.396(D�1) 1.0566 C-W – – 0 1.0–1.0495 Y Zhou and Xiong [29]
T11 JRC¼29.35(D�1)0.46 C-W 0.9045 0.02 0 1.0–1.4343 N Jia et al. [28]
T12 JRC¼150.5335(D�1)0.5 C-W – – 0 1.0–1.0177 Y Wakabayashi and Fukushige [33]
T13 JRC¼�0.87804þ27.7844(D�1)/0.015–16.9304[(D�1)/0.15]2 C-W 0.9500 1 �0.8780 1.0005–1.0113 Y Lee et al. [23]
T14 JRC ¼ 28:5 � 33:18

1þ150ðD�1Þ C-W 0.9985 0.5 �4.6800 1.0011–1.0194 N Xu et al. [22]

T15 JRC ¼ 100ðD � 1Þ0:4ð1� 1
exp½300 D � 1ð Þ�Þ C-W – 0.5 0 1.0–1.0181 N Xu et al. [22]

T16 JRC ¼ 60ðD � 1Þ1:2
0:006 þ ðD � 1Þ

C-W – 0.5 0 1.0–1.0177 N

T17 JRC¼15179Wd(D�1)1.46 B-C – – 0 – Y Chen [35]
T18 JRC¼53.7031(D�1)0.3642 h–L1 0.9850 – 0 1.0–1.0664 N Askari and Ahmadi [26]
T19 JRC¼85.2671(D�1)0.5679 h–L2 � � 0 1.0–1.0778 Y Xie and Pariseau [25]

Note: SI: Sample interval; R: correlation coefficient; JRC0: estimated JRC value for a truly smooth plane; D Range#: applicable range of independent value; and St. profiles: the
10 standard profiles.
C-W: Compass walking, D¼- ΔlogN/Δlogr; C-W#: Compass walking, D=�Δlog[N+(f/r)]/Δlogr; C-WMR: Compass walking, D¼1�Δlog(Nr)/Δlogr; B-C: Box counting, �ΔlogG/
Δlogε; h–L1: D ¼ log 4

log f4 cos ½arctanð2h=LÞ�g; h–L
2: D ¼ log 4

log f2ð1þ cos ½arctanð2h=LÞ�Þg.
Wd : Waviness degree; equals to r=L; r the asperity height and L the projected length of the profile:
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Fig. 3. Empirical relationships in literature for estimating JRC by means of the fractal dimension: (a) compass-walking method; (b) enlargement of the circled part in (a); (c)
h–L methods. (Equations refer to Table 1).
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clustered equations (the circled part) range from 1.0 to 1.02, which is
much narrower than that for equations (T3, T4, T10 and T11).
Correlations between JRC and Dh–L (Fig. 3c) are totally different from
those with Dc (Fig. 3a and b) in terms of range of fractal dimension.
The cluster (circled part) in Fig. 3a, if magnified (Fig. 3b), still shows
obvious differences. This may lead to non-ignorable uncertainties
when estimating JRC. The differences among the published equations
suggest that the same D determination method as that used to
originally develop the empirical equation must be employed when
using a certain empirical equation for estimating JRC.

The determination method of D is one of the reasons leading to
the inconsistency among Fig. 3a, b and c. The compass-walking
method generally produces Dco1.02 for the profiles in the
literature [10,23,36,37]. The h–L method may give a greater Dh–L.
This is because that Dh–L is governed only by the “high-order”
asperities of the profile (Fig. 2), while Dc is taking the average
roughness level of all asperities (small and large ones).

Another reason for the inconsistency among the equations in
Fig. 3 is the data source. The equations were generally based on
two categories of rock joint profiles: the 10 standard profiles and
those measured by the authors. In general, equations based on the
10 standard profiles show a good agreement (see the clustered
part of Fig. 1a). The JRC values of the 42 profiles used by Jia [28] to
derive equation (T11) were from visual comparison with Barton's
10 standard profiles [1], which would lead to errors in JRC values

due to subjectivity during the comparison process. Eq. (T3) was
based on seven profiles (rather than the 10 standard profiles),
whose JRC values were determined by using Tse and Cruden's
equation JRC¼�4.41þ64.46 Z2 (where Z2 is the root mean square
of the first deviation of the profile). The errors involved in this
transformation might be another source of error in the JRC values.

After a careful verification, the authors found that the JRC value
for each standard profile was inconsistently assigned in the
literature for deriving empirical equations in Table 1 and Fig. 1.
As shown in Table 2, Lee et al. [23], Bae et al. [21], Xie and Pariseau
[25], Xu et al. [34] and Chen [35] took the intermediate odd
numbers (i.e., 1, 3, 5, etc.) as the JRC value of the standard profiles,
while other researchers used the values from Barton and Choubey
[2]. This would certainly lead to deviation not only in the plots but
also in the empirical equations derived.

The above observation and discussion suggest that the following
causes are responsible for the variation of empirical equations in the
literature: the origin of joint profiles, D determination methods and
JRC determination methods. This study employs the compass-walking,
box-counting and h–L methods to examine 112 joint profiles. The JRC
values of these profiles were directly determined by back calculation
of the direct shear test of rock joints with the Barton–Bandis shear
strength model. Comparisons between different D determination
methods are made together with the discussion about applicability
and usability of the proposed equations.

Table 2
JRC values used in literature for deriving empirical equations in Table 1

Standard JRC profiles 1 2 3 4 5 6 7 8 9 10

JRC values recommended by Barton and ISRM 0–2 2–4 4–6 6–8 8–10 10–12 12–14 14–16 16–18 18–20
Bae et al. [21]; Xie and Pariseau [25]; Lee et al. [23]; Xu et al. [34]; and Chen [35] 1 3 5 7 9 11 13 15 17 19
Seidel and Haberfield [37]; Turk et al. [10] and this study 0.4 2.8 5.8 6.7 9.5 10.8 12.8 14.5 16.7 18.7

Log(N+f/r) = -1.004log(r) + 2.006
R² = 1
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Fig. 4. Scheme of determining D by: (a) compass-walking; and (b) box-counting methods (Barton's profile 6–8 as example).
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4. Data set

In addition to the 10 standard profiles, this study makes use of
another 102 profiles from the literature. Among them, 12 profiles
are from Grasselli [38], 26 are from Bandis et al. [39] and the rest
(64) are from Bandis [40]. The projected length of the employed
112 profiles ranges from 72 to 119.6 mm, and the JRC values range
from 0.4 to 20. The rocks these joint profiles come from cover a
wide variety of rock types, including sandstone, limestone, marble,
granite, gneiss, slate, dolerite and siltstone of various weathering
degrees (fresh, slightly weathered and moderately weathered).
These joints are tension fractures and vary from well-interlocked
planar cleavage fractures to poorly interlocked film-covered walls.

As there were no available digital data of these profiles, the
images of these profiles in the original publications in PDF format
were imported into AutoCAD. The dimension system of AutoCAD
was configured to meet each image by referencing to the scale bar
on the original figure. A set of vertical lines spaced 0.4 mm apart
were constructed across the length of the profiles. Polylines were
used to trace the profiles with the intermediate points falling on
the intersection of the vertical lines with the profile. Once each

profile was traced, the coordinates defining the polylines were
exported to an ASCII file by using a LISP function.

It should be noted that some error may be introduced by the above
data processing, as this process indeed re-samples the profile which is
essentially a re-sampling of the original joint profile. The digitized
points of the profiles considered in this study along with the associated
back-calculated JRC values are supplemented as an electronic resource
to this paper. Researchers may make use of them for future investiga-
tion without further degradation of the quality of data source.

5. Determination of the fractal dimension, D

Following digitization of the profiles, it was found that the best-fit
line through all profiles had a non-zero overall slope. To make the
profiles horizontally aligned the trend removal was conducted by
utilizing a computer program written by the authors.

The other function of this computer program is to perform data
validation and determination of fractal dimension for each rock
joint profile. For box-counting, the initial length of the box, ε, was
set to be half the projected length of the whole profile (as shown
in Fig. 4). The second length of the box was half of the first. In this
way, the lengths of the box were set as a geometric sequence with
a common ratio of 2. The cutoff for the minimum box length was
set to be 0.2 mm, which leads to 500 boxes in a row for a 10 cm
long profile. The assignment of divider length for compass-
walking followed the same method as for box-counting.

After the assignment of the box length and divider length, the
program counted the number (G) of boxes required to cover the
whole profile, the number (N) of dividers to walk along the profile

L1 L3L2

h1

h2 h3

Fig. 5. The updated h–L method for determining fractal dimension D.
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as well as the remainders (f). The fractal dimension of the
examined profile was then obtained by plotting G against ε or
Nþ(f/r) against r in log–log space, as shown in Fig. 4.

As mentioned before, the main difficulty in using the h–L
methods proposed by Xie and Pariseau [25] and Askari and
Ahmadi [26] is the identification of the “high-order” asperities of
a profile (Fig. 2). Accuracy during manually measurement of the
base length and height of the identified asperities is another

difficulty. An improvement was made in this study (Fig. 5) and
the process is as follows: construct the least-square line (dashed
line in Fig. 5) on the trend-removed profile; segment the profile by
the intersection points; and measure the base length (L) and the
extreme peak or valley (h) for each segment. One of the main
advantages of this proposal is that it avoids arbitrary identification
of “high-order” asperities. This scheme can be performed by a
computer program without any subjectivity. The averages of h and
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Fig. 7. Verification of correlations between D and JRC in the literature : (a) compass-walking method; and (b) enlargement of the circled part in (a).
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L for a rock joint profile can then be used in the formula of [25] to
calculate the fractal dimension.

6. New empirical equations

The data points retrieved from the original figures of the
literature are replotted in Fig. 6 together with the D values of this
study for Barton's 10 standard profiles. It can be seen that the
result of this study is in good agreement with the literature in that
JRC increases with Dc, Db and Dh–L. The correlations from the
literature and the results of this study are plotted in Fig. 7. Again,
equations (T3, T4, T10 and T11) depart far from the main trend of
JRC vs. Dc. As the magnified plot (Fig. 7b) shows, equations (T7, T8
and T13) are seemingly consistent with the results of this study.
Meanwhile, the remaining equations only appear to be correct
over specific ranges of D and JRC. The agreement in Fig. 6 between
the literature and this study and the inconsistence in Fig. 7
demonstrate that using only the 10 standard profiles is insufficient
for a reliable empirical equation.

The results of D by different methods are plotted in Fig. 8. As
indicated, JRC displays a linear relationship with D, although some
nonlinear regressions are considered. The 112 data points by
compass-walking and h–L method are clustered within a thin
band in between the dashed lines. The box-counting method,
however, produces a dispersed point set, scattered in a wide area.

Thus the relationship between Db and JRC displays a lower corr-
elation coefficient of about 0.673.

As shown in Fig. 9, JRC also correlates with D�1. Table 3 lists the
newly developed equations. Power-law equations (E4–E6) are cap-
able of giving a reasonable JRC value to a planar or sub-planar joint
profile. Equations (E2) and (E5) are not recommended due to the low
correlation coefficients of Db with JRC. With regard to the usability,
equation (E6) may grasp the highest priority due to the easy and
convenient determination of Dh–L. As its definition in Fig. 5, one can
even utilize a spreadsheet to quickly obtain the Dh–L by identifying
the asperities and obtaining the base length and height of a profile.
However, a well-developed computer programmay be a need for the
determination of Dc. Equations (E1) and (E4) also display good
correlation coefficients and are therefore recommended to engineer-
ing practice, once a precise Dc can be obtained.

7. Conclusions

This study reviewed estimation of JRC based on the fractal
dimension. The methods for determining D and empirical equations
relating D to JRC were discussed. Based on the forgoing discussions,
the following conclusions can be made.

The fractal dimension can be used to estimate JRC of a rock
joint. However, the previous empirical equations show some
sizable variations from one another. These variations exist because
the data points for deriving these equations are limited and the
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Fig. 9. Relationships between JRC and D�1 in this study: (a) compass-walking; (b) box-counting; and (c) h–L method.
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methods for the determination of D vary. Equations based exclu-
sively on the 10 standard JRC profiles may misestimate the JRC.

This study updated the h–L methods proposed by Xie and
Pariseau [25] and Askari and Ahmadi [26]. The updated method
can avoid subjectivity during identification of asperities of a joint.
The compass-walking, box-counting and updated h–L methods are
used in this study to examine 112 joint profiles. It was found that D
values determined by the compass-walking and h–L method are
more closely related to JRC than those obtained by box-counting.
Correlations from this study are considered more reliable due to the
large data population and the consistent data processing.

As the employed profiles in this study range from 72 to
119.6 mm in length, which is a narrow band, the authors suggest
the equations developed in this study are applicable to laboratory
scale. Further study taking profiles of other sizes is demanded. As
the sampling interval may influence the correlation between D
and JRC, it is suggested to use the equations with a sampling
interval of about 0.4 mm. This interval is thought to be easily and
conveniently achieved during scanning or digitizing.

It should also be noted that the current study takes 112 rock
joint profiles which are currently available in the literature. A
bigger sample population would help justify or improve the
empirical equations proposed by this study.
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