JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 127, 435-442 (1987)

On the Resonance Problem with Nonlinearity which has Arbitrary Linear Growth

PAVEL DRÁBEK

Technical University of Plzeň, Department of Mathematics, Nejedlého sady 14,306 14 Plzeň, Czechoslovakia

Submitted by V. Lakshmikantham

Received December 27, 1985

This paper deals with the nonlinear two-point boundary value problem at resonance. Even nonlinearities g with an arbitrary linear growth in $+\infty$ (resp. $-\infty$) may be considered but only on the cost of the corresponding bound on their linear growth at $-\infty$ (resp. $+\infty$). It generalizes the previous results in this direction obtained by M. Schechter, J. Shapiro, and M. Snow (*Trans. Amer. Math. Soc.* **241** (1978), 69–78), L. Cesari and R. Kannan (*Proc. Amer. Math. Soc.* **88** (1983), 605–613), and S. Ahmad (*Proc. Amer. Math. Soc.* **93** (1984), 381–384). \oplus 1987 Academic Press, Inc.

1. INTRODUCTION

We are studying the solvability of the boundary value problem (BVP)

$$u'' + u + g(x, u) = h(x), \qquad u(0) = u(\pi) = 0, \tag{1.1}$$

where $h \in L^1(0, \pi)$ and g is a Caratheodory function. If g does not depend on x, if the numbers

 $g_{+\infty} = \liminf_{s \to +\infty} g(s)$ and $g^{-\infty} = \limsup_{s \to -\infty} g(s)$

are finite and if

$$g^{-\infty} \int_0^{\pi} \sin x \, dx < \int_0^{\pi} h(x) \sin x \, dx < g_{+\infty} \int_0^{\pi} \sin x \, dx \qquad (1.2)$$

holds then it follows from a slight modification of the theorem due to Landesman and Lazer [7] that (1.1) has a solution (see, e.g., Fučík [6]). This result has been generalized in subsequent papers by Schechter *et al.* [8], Cesari and Kannan [3], and Ahmad [1]. These improvements are due to the fact that the numbers $g_{+\infty}$, $g^{-\infty}$ are allowed to be infinite

provided that the function g does not grow too quickly at $\pm \infty$. More precisely, it is proved in [8] that (1.2) is a sufficient condition for the solvability of (1.1) if there exist real numbers c and q > 0 such that

$$g(s)/s \leqslant c \qquad \text{for } |s| \ge q,$$
 (1.3)

g is odd, nondecreasing, and c < 0.24347. This result was improved in [3]: c < 0.433 suffices and g need not be odd. In the recent paper [1] there are no hypotheses concerning the monotonicity of g and (1.3) is assumed to be satisfied with some c < 3. Since the BVP

$$u'' + u + 3u = \sin 2x, \qquad u(0) = u(\pi) = 0$$

has no solution the condition c < 3 is sharp.

It follows from the proof of the result [1] that (1.3) with c < 3 and (1.2) are sufficient for the solvability of the problem (1.1) because $\lambda_2 - \lambda_1 = 3$, where λ_1 and λ_2 is the first and the second eigenvalue, respectively, of

$$u'' + \lambda u = 0,$$
 $u(0) = u(\pi) = 0;$ (1.4)

i.e., the distance between λ_1 and λ_2 determines the rate of the linear growth of the nonlinearity g.

The purpose of this paper is to show that we can consider also nonlinearity g with an arbitrary linear growth at $+\infty$ (resp. $-\infty$) but with the corresponding bound on their linear growth at $-\infty$ (resp. $+\infty$). To prove the result we use some properties of the "generalized eigenvalue problem"

$$u'' + au^{+} - bu^{-} = 0, \qquad u(0) = u(\pi) = 0, \tag{1.5}$$

instead of the properties of (1.4) (here $u^{\pm} := (|u|^{\pm} u)/2$ are the positive and the negative part of the function u). For example, our Theorem 3.1 implies that for any positive integer m BVP,

$$u'' + u + mu^+ - (m)^{-1/2}u^- = h(x), \qquad u(0) = u(\pi) = 0,$$

has a solution for arbitrary h from $L^{1}(0, \pi)$.

Let us note that in contrast to the previous results our nonlinearity g may depend also on the variable x.

2. Some Properties of the Generalized Spectrum

In this section we present the results on the BVPs for the second-order ODEs which will be used throughout the rest of the paper. The first one is the following lemma by Fučík [6, Lemma 42.2] concerning the "generalized spectrum" of (1.5).

LEMMA 2.1. Let $(a, b) \in \mathbb{R}^2$. The BVP (1.5) has a nontrivial solution if and only if

$$(a,b)\in C_0^*\cup\left[\bigcup_{k=1}^{\infty}(C_k\cup C_k^*)\right],$$

where

$$C_0^* := \{ (a, b) \in \mathbb{R}^2 : (a-1)(b-1) = 0 \},\$$

$$C_k := \{ (a, b) \in \mathbb{R}^2 : a > k^2, b > 0, b^{1/2} = ka^{1/2}/(a^{1/2} - k) \},\$$

$$C_k^* := \{ (a, b) \in \mathbb{R}^2 : a > k^2, b > 0, b^{1/2} = (k+1)a^{1/2}/(a^{1/2} - k) \},\$$

$$\cup \{ (a, b) \in \mathbb{R}^2 : a > (k+1)^2, b > 0, b^{1/2} = ka^{1/2}(a^{1/2} - k - 1) \},\$$

k is an integer.

Remark 2.1. The proof of this assertion may be found in [6]. The figure describing the structure of the sets C_k , C_k^* is drawn in [4].

Remark 2.2. The proof of Lemma 2.1 contains some useful information about the nontrivial solutions of (1.5). Namely, the nontrivial solution $u_{a,b}$ of (1.5) corresponding to $(a, b) \in C_k$, k = 1, 2, ... (resp. $(a, b) \in C_k^*$, k = 0, 1, 2, ...) has precisely 2k - 1 (resp. 2k) zero points in $]0, \pi[$. The distance between two successive zero points is either $\pi a^{-1/2}$ or $\pi b^{-1/2}$ if $u_{a,b}$ is positive or negative, respectively, between these zero points.

The following assertion is most important in the proof of our result.

LEMMA 2.2. Let g_{\pm} be two functions in $L^{\infty}(0, \pi)$. Assume that there exists a real number a > 1 such that

$$g_{+}(x) \leq a - \varepsilon$$
 and $g_{-}(x) \leq a/(a^{1/2} - 1)^{2} - \varepsilon$ (2.1)

hold with some (arbitrary small) $\varepsilon > 0$. Then the nonlinear Dirichlet BVP

$$u'' + g_{+}(x) u^{+} - g_{-}(x) u^{-} = 0, \qquad u(0) = u(\pi) = 0, \qquad (2.2)$$

has either only a trivial solution or a nontrivial solution which is strictly negative or strictly positive in $]0, \pi[$.

Remark 2.3. Note that we have $(a, b) \in C_1$ if $b = a/(a^{1/2} - 1)^2$.

Proof of Lemma 2.2. Based essentially on the shooting method, let us suppose that (2.2) has a nontrivial solution u. Using (2.1) we can compare the zero points of u and $u_{a,b}$ (the nontrivial solution of (1.5) with $(a, b) \in C_1$; see Remark 2.3). This comparison proves that u has only one

zero point in $]0, \pi]$ (cf. [4, Lemma 2.2]). In order to fulfil the boundary condition in π the nontrivial solution u must be either strictly negative or strictly positive in $]0, \pi[$.

3. MAIN RESULT

Let us consider BVP (1.1). We shall suppose that the right-hand side h is an element of the Banach space $X := L^1(0, \pi)$, equipped with the usual norm $\|\cdot\|$, and g is a Caratheodory function (i.e., $g(\cdot, s)$ is measurable for all s and $g(x, \cdot)$ is continuous for a.e. $x \in [0, \pi]$). Let

$$|g(x,s)| \le p_1(x) + p_2|s| \tag{3.1}$$

for a.e. $x \in [0, \pi]$ and for all $s \in \mathbb{R}$, with some $p_1 \in X$, $p_2 \in \mathbb{R}$, $p_2 \ge 0$. We shall consider only such a function g that

(g)
$$g^{-\infty}(x) = \limsup_{s \to -\infty} g(x, s)$$
 and $g_{+\infty} = \liminf_{s \to +\infty} g(x, s)$

are bounded from above and from below, respectively, for a.e. $x \in [0, \pi]$.

A solution u of (1.1) is a continuously differentiable function $u: [0, \pi] \to \mathbb{R}$ such that u' is absolutely continuous, u satisfies boundary conditions, and the equation (1.1) holds a.e. in $[0, \pi]$.

THEOREM 3.1. Let us suppose that there exists some real number a > 1 such that

$$\limsup_{s \to +\infty} \frac{g(x, s)}{s} \leqslant a - 1 - 2\varepsilon, \tag{3.2}$$

$$\limsup_{s \to -\infty} \frac{g(x, s)}{s} \leqslant a/(a^{1/2} - 1)^2 - 1 - 2\varepsilon$$
(3.3)

hold for a.e. $x \in [0, \pi]$ with some small $\varepsilon > 0$. Moreover, let (g) hold and

$$\int_{0}^{\pi} g^{-\infty}(x) \sin x \, dx < \int_{0}^{\pi} h(x) \sin x \, dx < \int_{0}^{\pi} g_{+\infty}(x) \sin x \, dx \qquad (3.4)$$

for a.e. $x \in [0, \pi]$. Then (1.1) is solvable.

Proof. The idea of the proof is analogous to that used in [1] and it is based on the well-known continuation method of Leray and Schauder. Consider the linear operator $K: X \to X$ defined by Ke := the unique solution u of the linear BVP: u'' + (1 + d) u = e and $u(0) = u(\pi) = 0$, with $0 < d < \min\{\varepsilon, 3\}$. It is easy to see that K is a well-defined, completely continuous operator. The standard regularity argument for ODEs proves that K maps bounded sets in $L^1(0, \pi)$ onto relatively compact sets in $C(0, \pi)$.

Since the Nemytski's operator induced by g is continuous, $X \rightarrow X$ and maps bounded sets into bounded sets, the map

$$H: [0, 1] \times X \to X,$$
$$H(\tau, u) := u - K(h + \tau(du - g(\cdot, u)))$$

is a homotopy of completely continuous perturbations of the identity. Our aim is to prove that

(r) there exist r > 0 such that ||u|| < r for any $(\tau, u) \in [0, 1] \times X$ satisfying $H(\tau, u) = 0$.

Let us assume the contrary. Then there is a sequence $(\tau_n, u_n) \in [0, 1] \times X$ verifying $H(\tau_n, u_n) = 0$ and $||u_n|| > n$, for every $n \ge 0$. Hence the normalized sequence $v_n := u_n/||u_n||$ verifies

$$v_n = K(h \|u_n\|^{-1} + \tau_n (dv_n - \|u_n\|^{-1} g(\cdot, u_n))).$$
(3.5)

According to (3.1) the sequence $g_n := ||u_n||^{-1} g(\cdot, u_n)$ is bounded in X. Therefore, passing if necessary to subsequences, we can assume that $v_n \to v$ uniformly on $[0, \pi]$ (we use that K is a completely continuous operator). But in this case (3.1) implies that

$$|g_n(x)| \leq |p_1(x)| ||u_n||^{-1} + p_2|v_n| \leq p(x),$$

for all *n*, with some $p \in X$. Hence

$$\int_{x_1}^{x_2} |g_n(x)| \, dx \to 0 \qquad \text{for} \quad |x_1 - x_2| \to 0 \tag{3.1'}$$

uniformly with respect to *n*. Therefore $\{g_n\}_{n=1}^{\infty}$ is weakly sequentially compact (see [5, IV. Corollary 8.11]), i.e., there is some $f \in X$ such that $\{g_n\}_{n=1}^{\infty}$ converges weakly to f (passing if necessary to subsequences). Simultaneously we obtain from here that $\lim |v'_n(x_1) - v'_n(x_2)| = 0$, for $|x_1 - x_2| \to 0$, uniformly with respect to *n*. Indeed, it is sufficient to realize that (3.5) is equivalent to

$$v_n'' + v_n + d(1 - \tau_n) v_n + \tau_n g_n = ||u_n||^{-1} h, \quad v_n(0) = v_n(\pi) = 0,$$

and to take into account (3.1'). We also claim that $||v''_n||$ is bounded independently of *n*. Since by Rolle's theorem, v'_n must vanish somewhere in]0, $\pi[$, the sequence $\{v'_n\}_{n=1}^{\infty}$ is both equicontinuous and uniformly bounded on $[0, \pi]$. Therefore, by using the Arzela-Ascoli theorem we may also assume that $v'_n \rightarrow v'$ uniformly on $[0, \pi]$. Of course, we may assume $\tau_n \rightarrow \tau \in [0, 1]$. Since every bounded linear map is continuous as well as weakly continuous, we can pass to the weak limit in (3.5) and we get

$$v = K(\tau \, dv - \tau f). \tag{3.6}$$

Note that with respect to (g)

$$\liminf_{s \to \pm \infty} \frac{g(x, s)}{s} \ge 0 \tag{3.7}$$

for a.e. $x \in [0, \pi]$. Then it is a direct consequence of (3.2), (3.3), and (3.7) (by using Lebesgue's theorem and Fatou's lemma) that

$$f(x) = p_{+}(x) v^{+}(x) - p_{-}(x) v^{-}(x) \quad \text{a.e. on } [0, \pi], \quad (3.8)$$

with the functions p_{\pm} from $L^{\infty}(0, \pi)$ verifying

$$0 \leq p_{+}(x) \leq a - 1 - 2\varepsilon, \qquad 0 \leq p_{-}(x) \leq a/(a^{1/2} - 1)^{2} - 1 - 2\varepsilon \qquad (3.9)$$

a.e. on $[0, \pi]$ (cf. [4]). But (3.9) implies that the functions $g_{\pm}(x) = \tau p_{\pm}(x) + 1 + d(1-\tau)$ satisfy the assumption (2.1). Hence we obtain from (3.6), (3.8), and Lemma 2.2 that the function v (note that ||v|| = 1) does not change sign in]0, π [. Assuming that v(x) > 0 in]0, π [we arrive at a contradiction with (3.4) (the alternative case v(x) < 0 in]0, π [will also lead to a contradiction with (3.4)). The operator equation $H(\tau_n, u_n) = 0$ is equivalent to

$$u_n'' + u_n + (1 - \tau_n) \, du_n + \tau_n \, g(x, \, u_n) = h(x), \qquad u_n(0) = u_n(\pi) = 0, \, (3.10)$$

for a.e. $x \in [0, \pi]$. Multiplying (3.10) by sin x and integrating by parts, we obtain

$$\int_0^{\pi} \left[d(1 - \tau_n) \, u_n + \tau_n \, g(x, \, u_n) \right] \sin x \, dx = \int_0^{\pi} h(x) \sin x \, dx. \tag{3.11}$$

Since v'(0) > 0, $v'(\pi) < 0$ and $v'_n \to v'$ uniformly on $[0, \pi]$ as $n \to \infty$, it follows that $u_n(x) > 0$ on $]0, \pi[$, for large *n*. Consequently the sequence $z_n(x) = d(1 - \tau_n) u_n(x) + \tau_n g(x, u_n)$ is bounded from below a.e. in $[0, \pi]$ independently of *n* (see (g)) and $u_n(x) \to \infty$ uniformly on compact sub-intervals of $]0, \pi[$. Hence it follows from (3.4) that

$$\int_0^{\pi} h(x) \sin x \, dx < \int_0^{\pi} \left[\liminf_{n \to +\infty} z_n(x) \right] \sin x \, dx. \tag{3.12}$$

On the other hand, Fatou's lemma and (3.11) imply

$$\int_0^{\pi} \left[\liminf_{n \to +\infty} z_n(x) \right] \sin x \, dx \leq \liminf_{n \to +\infty} \int_0^{\pi} z_n(x) \sin x \, dx$$
$$= \int_0^{\pi} h(x) \sin x \, dx,$$

440

which contradicts (3.12). This proves (r), and we can apply Leray-Schauder's continuation principle. We conclude that

$$\deg(H(1, u); B_r(0), 0) = \deg(H(0, u); B_r(0), 0),$$
(3.13)

where $B_r(0)$ denotes the ball in X centered at the origin and with the radius r > 0. Assuming r large enough also the homotopy

$$\overline{H}: [0, 1] \times X \to X,$$

$$\overline{H}(\sigma, u) := u - K((1 - \sigma) h),$$

does not vanish for $(\sigma, u) \in [0, 1] \times \partial B_r(0)$. Note that $\overline{H}(0, u) = H(0, u)$, for all $u \in X$. Hence (3.13) yields

$$\deg(H(1, u); B_r(0), 0) = \deg(\overline{H}(1, u); B_r(0), 0).$$

But $u \to \overline{H}(1, u)$ is a linear one-to-one map and so we have

$$\deg(H(1, u); B_r(0), 0) \neq 0.$$

This means that

$$u = K(h - g(\cdot, u) + du)$$

has a solution which is a solution of (1.1) by a standard regularity argument. This proves the theorem.

Remark 3.1. Let us suppose (instead of (g)) that

(g')
$$g^{+\infty}(x) = \limsup_{s \to +\infty} g(x, s)$$
 and $g_{-\infty}(x) = \liminf_{s \to -\infty} g(x, s)$

are bounded from above and from below, respectively, a.e. in $[0, \pi]$.

Then

$$\limsup_{s \to \pm \infty} \frac{g(x,s)}{s} \leqslant 0 \quad \text{and} \quad \liminf_{s \to \pm \infty} \frac{g(x,s)}{s} \geqslant -p_2, \quad (3.14)$$

with respect to (3.1) for any function g satisfying (g'). Replacing $g^{-\infty}(x)$ and $g_{+\infty}(x)$ in (3.4) by $g^{+\infty}(x)$ and $g_{-\infty}(x)$, respectively, Theorem 3.1 will hold. Indeed, in this case the limit functions p_{\pm} (see the proof of Theorem 3.1) satisfy $-p_2 \leq p_{\pm} \leq 0$ because of (3.14). Choose d < 0 in the definition of K. Then g_{\pm} fulfil the hypotheses of Lemma 2.2 with an arbitrary a > 1, and the proof can be performed in an analogous way. It means that (3.4) is a sufficient condition for the solvability of (1.1) even if $g(\cdot, s)$ has an arbitrary rate of the linear growth at $\pm \infty$ (cf. [3]). Remark 3.2. As was already pointed out in the Introduction, [1] implies that the rate of the linear growth of g at $\pm \infty$ is related to the spectrum of (1.4) and hence to the nodal properties of the corresponding eigenfunctions. In this case (1.2) is a sufficient condition for the solvability of (1.1) since the nonlinearity g is not at resonance with the second eigenvalue of (1.4). Our result is exactly in the same spirit. Nonlinearity g is not at resonance with the second "generalized eigenvalue"

$$C_1 = \{(a, b) \in \mathbb{R}^2 : a > 1, b^{1/2} = \frac{a^{1/2}}{a^{1/2} - 1}\}$$

of (1.5).

Remark 3.3. Some nonresonance problems are studied in [2, 4] using the description of the "generalized spectrum" of BVPs of the type (1.5).

References

- 1. S. AHMAD, A resonance problem in which the nonlinearity may grow linearly, *Proc. Amer. Math. Soc.* 93, No. 3 (1984), 381-384.
- 2. L. BOCCARDO, P. DRÁBEK, D. GIACHETTI, AND M. KUČERA, Generalization of Fredholm alternative for nonlinear differential operators, *Nonlinear Anal.* 10 (1986), 1083–1103.
- 3. L. CESARI AND R. KANNAN, Existence of solutions of a nonlinear differential equation, *Proc. Amer. Math. Soc.* 88 (1983), 605–613.
- 4. P. DRÁBEK AND S. INVERNIZZI, On the periodic BVP for the forced Duffing equation with jumping nonlinearity, *Nonlinear Anal.* 10 (1986), 643–650.
- 5. N. DUNFORD AND J. T. SCHWARTZ, "Linear Operators, Part I," Interscience, New York, 1958.
- S. Fυčíκ, "Solvability of Nonlinear Equations and Boundary Value Problems," Riedel, Dordrecht, 1980.
- 7. E. M. LANDESMAN AND A. C. LAZER, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970), 609-623.
- 8. M. SCHECHTER, J. SHAPIRO, AND M. SNOW, Solutions of the nonlinear problem Au = N(u) in a Banach space, *Trans. Amer. Math. Soc.* 241 (1978), 69–78.