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Abstract

The graded Betti numbers of the minimal free resolution (and also therefore the Hilbert function) of the
ideal of a fat point subscheme Z of P2 are determined whenever Z is supported at any 6 or fewer distinct
points. All results hold over an algebraically closed field k of arbitrary characteristic.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We begin by describing the problem we solve here, using terminology familiar to experts.
Those readers not already familiar with the jargon can rest easy, since we will recall what the
terms mean in Section 2.

Given general points p1, . . . , pn of P2 and arbitrary positive integers mi , it is an open problem
to determine the graded Betti numbers for the minimal free resolution of the ideal I (Z) of the
fat point subscheme Z = m1p1 + · · · + mnpn. It is even an open problem to determine just
the Hilbert function of I (Z). Partly because of the difficulty of these problems and because
a standard approach to them involves considering special configurations of points, and partly
because of the intrinsic interest, there has been growing interest in these problems not only for
general points but also when the points need not be general, both in the plane and in higher
dimensions (see, for example, [BGV1,BGV2,C,FHL,Fr,GMS,GV1,GV2,H1,H2,H3,H4,HR]).
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In particular, [GMS] raises the question of finding all Hilbert functions and graded Betti num-
bers for ideals of double point subschemes of the plane; i.e., for 2p1 + · · · + 2pn ⊂ P2, for
all possible configurations of the points pi . As [GMS] discusses, the Hilbert functions which
occur for simple point subschemes Z = p1 + · · · + pn ⊂ P2 are known for all possible con-
figurations of the points pi ; one goal that [GMS] works toward is to find all Hilbert functions
occurring for double point subschemes 2Z = 2p1 +· · ·+2pn ⊂ P2 such that the support scheme
Z = p1 + · · · + pn ⊂ P2 has given Hilbert function. While [GMS] shows that for each Hilbert
function of simple points there is a Hilbert function which in each degree has minimal value,
it leaves unsolved the problem of how to actually find this minimal Hilbert function, even for
small values of n (such as n = 6), and it raises the question of whether there is also a maximal
Hilbert function. (It is worth mentioning that while we talk about the Hilbert function of the
ideal I (Z), [GMS] talks about the Hilbert function of the quotient ring R/I (Z), where R is the
homogeneous coordinate ring of P2. Thus what is for us a maximal Hilbert function is for [GMS]
a minimal Hilbert function.)

We answer all of these questions for the case of 6 points of P2 (see Section 3). Moreso,
we give a general approach for answering any problems of the kinds raised in [GMS], for any
fat point subschemes of P2 with support at 6 points, regardless of the multiplicities mi . More
precisely, define a configuration type of n points by requiring that sets {p1, . . . , pn} ⊂ P2 and
{p′

1, . . . , p
′
n} ⊂ P2 of distinct points have the same configuration type if and only if, after reorder-

ing the points p′
i if need be, the ideals of Z = m1p1 + · · · + mnpn and Z′ = m1p

′
1 + · · · + mnp

′
n

have the same Hilbert function for every choice of the nonnegative integers mi . We show not
only that the set of all configurations of 6 points of P2 fall into only 11 different types (see
Corollary 2.3 and Section 3), but that ideals of any two subschemes Z = m1p1 +· · ·+m6p6 and
Z′ = m1p

′
1 + · · ·+m6p

′
6 whose points have the same type also have the same graded Betti num-

bers (see Theorem 3.1 and Example 3.2). Our method also allows us to write down the Hilbert
function and graded Betti numbers for any Z = m1p1 + · · · + m6p6, given only the coefficients
mi and given the configuration type of the points with respect to a specific ordering of the points.
(Figure 1 shows the 11 different configuration types of 6 points. Thus type 1 consists of 6 general
points; for type 2, three of the points are collinear, etc. Type 11 has all six points on an irreducible
conic.)

What is new here is the explicit enumeration of the 11 types (this is easy), and the de-
termination of the graded Betti numbers (this is where most of the effort of this paper lies).
It follows from our main result, Theorem 3.1, that numerical Bezout considerations (as dis-
cussed in Remark 2.4 and demonstrated in Example 3.2) suffice to determine the graded Betti
numbers of a fat point ideal supported at any 6 distinct points of P2. (By numerical Bezout
considerations we are referring to the version of Bezout’s theorem that tells us that two ef-
fective divisors C and D on an algebraic surface must have a common component if their
intersection C · D is negative. We give a procedure for computing the graded Betti numbers that
depends only on computing intersections of divisor classes on a blow up of P2, which amounts
to taking dot products of integer entry vectors. This procedure is easy to carry out by hand,
as shown by Example 3.2. An awk script implementing it can be run over the web by visiting
http://www.math.unl.edu/~bharbour/6ptres/6reswebsite.html.)

The facts that, for any n � 8 points of the plane, numerical Bezout considerations determine
the Hilbert function of any fat point subscheme supported at those points, and that there are only
finitely many different configuration types of n � 8 points, follow from the main result of [H2].
However, these facts seem not to be widely recognized (the authors of [GMS], for example, were
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Fig. 1.

quite interested when we mentioned this to them), perhaps because the finite set of configurations
has never been explicitly written down.

Enumerating these finitely many types for 7 � n � 8 takes considerably more effort than
doing so for n = 6; in a not yet written preprint, Geramita, Harbourne and Migliore find 29
types of distinct points for n = 7 and 146 for n = 8. Determining how the graded Betti numbers
behave will be much more difficult, both because of the many cases that need to be considered,
and because the behavior of the graded Betti numbers is more subtle (see [H5,FHH], which work
out the graded Betti numbers for 7 and 8 general points respectively, versus [F1], which works
out the case of 6 general points). Moreover, for n > 8 points, the number of types is infinite. (For
example, just by taking points in various configurations on a smooth nonsupersingular plane
cubic curve, for any positive integer r one can by Proposition 1.2 of [H1] arrange for the Hilbert
function of I (mp1 + · · · + mp9) in degree t = 3m to be �m/r� + 1. Thus the number of Hilbert
functions increases with m, so for m large enough no given finite set of types will be sufficient
to encompass all of them.)

We now briefly discuss additional background for our work in this paper. The Hilbert func-
tion for ideals I (Z) of fat point subschemes Z ⊂ P2 supported at n � 9 general points is well
known; see, for example, Nagata [N], or, for n = 6, Giuffrida [Gf]. For n > 9 general points,
the problem of finding the Hilbert function of I (Z) has been solved only in special cases. As
mentioned above, the problem of finding the Hilbert function of I (Z) as long as Z has support
at n � 8 points, even possibly infinitely near, was solved, in principle, in [H2], without however
classifying the possible configuration types.

A logical next step is to determine the graded Betti numbers for minimal free resolutions of
ideals of fat point subschemes in P2 supported at any configuration of points. Previous results
have been given in various cases. The first results are due to Catalisano [C], who determined the
minimal free resolutions for fat point subschemes supported at distinct points on an irreducible
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plane conic. The case that the conic is not irreducible or the points are possibly infinitely near
was handled in [H4]. (Since a connected curve of degree at most 2 in any projective space lies
in a plane in that space, by applying [FHL] the results of [C,H4] actually also give the Hilbert
function and graded Betti numbers for fat points in projective space of any dimension, as long
as the support of the points is contained in a connected curve of degree at most 2.) Various cases
in which the points of the support are contained in complete intersections in P2 are studied in
[BGV1,BGV2,GV1,GV2]. Additional special configurations are handled in [GMS], but only in
case of points of multiplicity 2.

Since any five points lie on a smooth conic, Catalisano’s result handles the case of fat point
subschemes supported at five general points. The case of 6 general points was worked out by
Fitchett [F1]. For the case of seven general points, see [H5], and for eight general points, see
[FHH]. Numerous special cases for 9 or more general points have been done (for n � 9 general
points of multiplicity 1, 2 or 3, see [GGR,I,GI], respectively; for n general points of multiplicity
m when m is not too small and n is an even square, in light of [E], see [HHF]; additional cases
are handled by [HR]). The problem for general points is otherwise open. There is a conjecture for
the Hilbert function of the ideal of any fat point subscheme of P2 supported at general points (see
[H7] for a discussion), and there are conjectures in special cases for resolutions (see [H6,HHF]),
but so far no general conjecture for the resolution has been posed.

In this paper, we extend [C,H4] to the case of any 6 distinct points of P2. Our approach
involves a case by case analysis for the different configuration types of 6 points in P2, depending
on finding sets of generators of the cone of nef divisor classes on the surface X obtained by
blowing up the 6 points. At first glance verifying our result even for a single configuration of
points would seem to require checking an infinite number of cases, since there are infinitely
many nef divisor classes. The fact that our methods make the problem tractable is of interest in
its own right.

2. Background

We begin by discussing our methods in more detail. So let p1, . . . , pn be distinct points of P2.
Given nonnegative integers mi , the fat point subscheme Z = m1p1 + · · · + mnpn ⊂ P2 is, by
definition, defined by the ideal I (Z) = I (p1)

m1 ∩ · · · ∩ I (pn)
mn , where I (pi) ⊂ R = k[P2] is

the ideal generated by all forms (in the polynomial ring R in three variables over the field k)
vanishing at pi . The support of Z consists of the points pi for which mi is positive.

The minimal free resolution of I (Z) is an exact sequence of the form

0 → F1 → F0 → I (Z) → 0

where each Fi is a free graded R-module, where the grading is with respect to the usual
grading of R by degree, and all entries of the matrix defining the homomorphism F1 → F0
are homogeneous polynomials in R of degree at least 1. To determine F0 up to graded iso-
morphism, it is enough to determine the dimensions of the cokernels of the multiplication
maps μZ,i : I (Z)i ⊗ R1 → I (Z)i+1 for each i � 0, where, given a graded R-module M ,
Mt denotes the graded component of degree t . If we denote dim cok(μZ,i−1) by ti , then
F0 = ⊕

i>0 R[−i]ti , where R[−i] is the free graded R-module of rank 1 with a shift in degrees
given by R[−i]j = Rj−i . The Hilbert functions of I (Z) and F0 then determine F1 up to graded
isomorphism. In fact, if we denote the Hilbert function of Z by hZ (i.e., hZ(i) = dim I (Z)i ), and
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if � denotes the difference operator (i.e., �hZ(i) = hZ(i)−hZ(i−1)), then F1 = ⊕
i>0 R[−i]si ,

where si = ti − (�3hZ)(i) (see [FHH, p. 685]).
Thus to determine F0 and F1 it is enough to determine the Hilbert function of I (Z) and the

rank of μZ,i for each i. The Hilbert function of I (Z) can be obtained by applying the result
of [H2]. It follows from Theorem 3.1 that the ranks of the μ can be found by a maximal rank
criterion, as we now explain.

Given Z, let α(Z) be the least degree j such that hZ(j) > 0; i.e., such that I (Z)j 	= 0.
For each t � α(Z), let γ (Z, t) be the gcd of I (Z)t . Thus γ (Z, t) is a homogeneous form of
some degree dZ,t . If dZ,t = 0, it is convenient to set γ (Z, t) = 1, but if dZ,t > 0, then γ (Z, t)

defines a plane curve C = CZ,t of degree dZ,t . Let m′
i be the multiplicity multpi

(C) of the
curve at the point pi . Thus we get a fat points subscheme Z−

t = m′
1p1 + · · · + m′

npn. Let
Z+

t = (m1 − m′
1)+p1 + · · · + (mn − m′

n)+pn, where for any integer m, m+ = max(0,m). Then
clearly I (Z)t = γ (Z, t)I (Z+

t )t−dZ,t
.

For n � 8 and t � α(Z), it is known that

dim
(
I
(
Z+

t

)
t−dZ,t

) =
(

t − dZ,t + 2

2

)
−

∑
i

(
(mi − m′

i )+ + 1

2

)
,

as a consequence of the fact that a nef divisor F on a blow up X of P2 at n � 8 points has
h1(X,OX(F )) = 0 = h2(X,OX(F )) [H2]. For n � 8, as we discuss in more detail below in
Remark 2.4, one can determine α(Z) using purely numerical Bezout considerations, and for
each t � α(Z), one can also determine Z−

t = m′
1p1 + · · · + m′

npn and dZ,t purely numerically,
from Bezout considerations. (In order to determine these quantities in the case of n = 6 distinct
points, in addition to having the coefficients mi , one needs to know only the configuration type
with respect to a specific ordering of the points; i.e., one needs to know only whenever there is
a line going through three or more of the points pi , and which points those are, and if there is a
conic going through all 6 points.)

Given that we can determine the Hilbert function of the ideal I (Z), to determine the graded
Betti numbers ti and si of the resolution, therefore, it is enough to determine ti for each i. Since
we know the Hilbert function, we know α(Z) and clearly, ti = 0 for i < α(Z), and ti = hZ(α(Z))

for i = α(Z). If i is large enough, the Hilbert function and Hilbert polynomial coincide; i.e., we
will have dim(I (Z)i) = (

i+2
2

) − ∑
i

(
mi+1

2

)
. Let τ(Z) be the least i such that this holds, and let

σ(Z) = τ(Z) + 1. Regularity considerations [DGM] then imply that ti = 0 for i > σ(Z).
So assume α(Z) � i < σ(Z). Since I (Z)i = γ (Z, i)I (Z+

i )i−dZ,i
for i � α(Z), multiplying

by γ (Z, i) gives an inclusion I (Z+
i )i−dZ,i+1 ⊂ I (Z)i+1 and a vector space isomorphism between

the images of μZ+
i ,i−dZ,i

and μZ,i . From the inclusions Im(μZ+
i ,i−dZ,i

) ⊂ I (Z+
i )i−dZ,i+1 ⊂

I (Z)i+1 it now follows that

ti+1 = dim cok(μZ,i) = dim cok(μZ+
i ,i−dZ,i

) + (
hZ(i + 1) − hZ+

i
(i − dZ,i + 1)

)
.

Since γ (Z+
i , i−dZ,i) = 1, and assuming that we can determine Hilbert functions, this reduces

the problem of computing dim cok(μZ,i) for an arbitrary Z in degrees i � α(Z) to the problem of
computing dim cok(μZ,i) for an arbitrary Z but only in degrees i � α(Z) such that γ (Z, i) = 1.
This is what we do. Our main result, Theorem 3.1, essentially says that if Z has support at any
6 distinct points of P2, and if i � α(Z) is such that γ (Z, i) = 1, then μZ,i has maximal rank
(meaning that μZ,i is either injective or surjective and hence ti+1 is either hZ(i + 1) − 3hZ(i)
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or 0, respectively). Since γ (Z+
i , i − dZ,i) = 1, it follows that μZ+

i ,i−dZ,i
has maximal rank, and

hence everything on the right-hand side of the displayed formula above is in terms of Hilbert
functions of fat points supported at the given 6 points. Computing those Hilbert functions thus
computes dim cok(μZ,i).

In order to compute the graded Betti numbers for the minimal free resolution of fat point
subschemes Z with support at 6 points, we thus need to determine their Hilbert functions and,
for each degree i, we need to determine Z+

i and the degree of γ (Z, i). The easiest context in
which this can be done involves the intersection theory on the surface obtained by blowing up
the points. This will also be the context we use to study the rank of μZ,i .

Let π :X → P2 be the birational morphism obtained by blowing up distinct points p1, . . . , pn

of P2. Let Cl(X) be the divisor class group of X. Let E0 be the pullback to X of the class of
a line on P2, and let E1, . . . ,En be the classes of the exceptional divisors of the blow ups of
p1, . . . , pn. Then Cl(X) is formally just a free abelian group with a preferred orthogonal basis
E0, . . . ,En. This basis is called an exceptional configuration. (The bilinear form on Cl(X) is
given by Ei · Ej = 0 for all i 	= j , E2

0 = 1 and E2
i = −1 for i > 0.) We are mainly interested in

the case that n = 6; hereafter, we will often but not always assume that n = 6.
Problems involving fat points with support at points p1, . . . , pn on P2 can be translated to

problems involving divisors on X. Given Z and t , the vector space I (Z)t is a vector subspace
of the space of sections H 0(P2,OP2(t)). The latter is referred to as a complete linear system;
I (Z)t is typically a proper subspace, in which case it is referred to as an incomplete linear
system. However, we can associate to Z = m1p1 + · · · + mnpn and t the divisor class F(Z, t) =
tE0 − m1E1 − · · · − mnEn on X, in which case I (Z)t can be canonically identified (as a vector
space) with the complete linear system H 0(X,OX(F (Z, t))).

Given a divisor or divisor class F on X, it will be convenient to write hi(X,F ) in place of
hi(X,OX(F )), and we will refer to a divisor class F as effective if h0(X,F ) > 0; i.e., if it is the
class of an effective divisor. In particular, dim I (Z)t = h0(X,F (Z, t)) for all Z and t , and the
ranks of μZ,t and μF(Z,t) are equal, where

μF(Z,t) :H 0(X,F(Z, t)
) ⊗ H 0(X,E0) → H 0(X,F(Z, t) + E0

)

is the natural map given by multiplication.
Whenever N is a prime divisor (i.e., a reduced irreducible curve) such that F(Z, t) · N < 0,

we have h0(X,F (Z, t)) = h0(X,M), where M = F(Z, t) − N . Moreover, clearly the kernels of
μF(Z,t) and μM have the same dimension, so if we can compute h0 for arbitrary divisors on X,
finding the rank of μF(Z,t) is equivalent to doing so for μM . If we have a complete list of prime
divisors N of negative self-intersection, then whenever F(Z, t) is effective, we can subtract off
prime divisors of negative self-intersection to obtain an effective class M which is nef (meaning
that M · D � 0 for every effective divisor D), in which case h0(X,F (Z, t)) = h0(X,M) and the
kernels of μF(Z,t) and μM have the same dimension, thereby reducing the problem to the case
of computing h0(X,M) and ranks of μM only when M is nef.

This is very helpful, since for n � 8, h1(X,M) = 0 = h2(X,M) whenever M is nef [H2]
and hence h0(X,M) = (M2 − KX · M)/2 + 1 by Riemann–Roch. Thus for n � 8, the Hilbert
function of I (m1p1 +· · ·+mnpn) is completely determined by the coefficients mi and by the set
of classes of prime divisors of negative self-intersection on the surface X obtained by blowing
up the points pi . (For n � 9, this is no longer true. This is because h1(X,OX(F )) = 0 can fail
for nef divisors when n � 9, as shown by considering a general pencil of cubics.)
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But whereas μM is always surjective for nef divisors M for any n � 5 distinct (or even pos-
sibly infinitely near) points [H4], μM can fail to have maximal rank for nef divisors when n � 7
[H5], even for n general points. However, for n = 6 general points, μM always at least has max-
imal rank when M is nef [F1]. This leaves open the question of whether μM may fail to have
maximal rank for some nef M for some particular choice of n = 6 distinct points; we show that
μM has maximal rank for any nef M for all choices of the points pi .

We begin by determining the subset NEG(X) ⊂ Cl(X) of divisor classes of effective reduced
irreducible divisors of negative self-intersection. Among all 6 point blow ups X of P2, it turns out
there are only finitely many possible subsets NEG(X), and NEG(X) is itself always finite. (By
Corollary 2.3, up to reordering the points, the possible subsets NEG(X) correspond bijectively
with the configuration types of Fig. 1.) We can then obtain our result by an analysis for each
possible subset NEG(X). As a practical matter, it is easier to consider the subset

neg(X) = {
C ∈ NEG(X): C2 < −1

}
,

since neg(X) is a proper (and usually substantially smaller) subset of NEG(X), but neg(X) de-
termines NEG(X), by Remark 2.2. In fact, the elements of neg(X) correspond to the curves
displayed in Fig. 1. (For example, for configuration type 1, neg(X) is empty, for configuration
type 2, neg(X) consists of the divisor class of the proper transform of the line through the three
collinear points, etc.)

While NEG(X) and neg(X) depend on the particular points pi , we now define a fixed finite
subset of the divisor class group Cl(X) which contains them. Consider B ∪ L ∪ Q, where B =
{Ei : i > 0} (B here is for blow up of a point), L= {E0 − Ei1 − · · · − Eir : r � 2, 0 < i1 < · · · <
ir � 6} (L here is for points on a line), and Q = {2E0 − Ei1 − · · · − Eir : r � 5, 0 < i1 < · · · <
ir � 6} (Q here is for points on a conic, defined by a quadratic equation).

The next result, which is well known but hard to cite in the form we need, shows that there
are only finitely many possibilities for NEG(X), since it is a subset of B∪L∪Q. (The finiteness
remains true as long as n < 9 but can fail for n � 9. In addition, more possibilities occur than the
ones listed here if n is 7 or 8.)

Lemma 2.1. Let X be obtained by blowing up 6 distinct points of P2. Then the following hold:

(a) NEG(X) ⊂ B ∪L∪Q, and every class in NEG(X) is the class of a smooth rational curve;
(b) for any nef F ∈ Cl(X), F is effective (hence h2(X,F ) = 0), |F | is base point free,

h0(X,F ) = (F 2 − KX · F)/2 + 1 and h1(X,F ) = 0;
(c) NEG(X) generates the subsemigroup EFF(X) ⊂ Cl(X) of classes of effective divisors; and
(d) any class F is nef if and only if F · C � 0 for all C ∈ NEG(X).

Proof. Riemann–Roch for a smooth rational surface X states that h0(X,A) − h1(X,A) +
h2(X,A) = (A2 − KX · A)/2 + 1 holds for any divisor class A. Also, −KX = 3E0 − E1 −
· · ·−E6, so −KX ·E0 = 3. If F is effective, then F ·E0 � 0, since E0 is nef. (The reason E0 is nef
is that it is the class of an irreducible divisor of nonnegative self-intersection, hence any effective
divisor meets it nonnegatively. More generally, any effective divisor which meets each of its com-
ponents nonnegatively is nef.) By duality, h2(X,F ) = h0(X,KX − F), and h0(X,KX − F) = 0
since −KX · E0 = 3, hence (KX − F) · E0 < 0. This verifies the parenthetical remark in part (b).
Similarly, h2(X,−KX) = 0, so we have h0(X,−KX) = K2

X + 1 + h1(X,−KX), but for us
K2 = 3, so h0(X,−KX) = 4 + h1(X,−KX). Thus −KX is the class of an effective divisor,
X
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say D. Moreover, the subgroup K⊥
X ⊂ Cl(X) of all classes orthogonal to −KX is negative def-

inite. This is easy to see since the classes E1 − E2, E1 + E2 − 2E3, E1 + E2 + E3 − 3E4,
E1 + E2 + E3 + E4 − 4E5 and 2E0 − E1 − · · · − E6 have negative self-intersection but are
linearly independent and pairwise orthogonal, hence give an orthogonal basis of K⊥

X over the ra-
tionals. On the other hand, it is not hard to check that E0 −E1 −E2 −E3, E1 −E2, . . . ,E5 −E6
give a Z-basis for K⊥

X , and since each basis element has self-intersection −2, it follows that A2

is even for every A ∈ K⊥
X . I.e., K⊥

X is even and negative definite.
To justify (a), let C be the class of a reduced irreducible divisor on X, with C2 < 0. Since E0

is nef, we know C · E0 � 0. If C · E0 = 0, then C must be a component of one of the Ei , hence
C ∈ B, since each Ei is reduced and irreducible. If C · E0 = 1, then C is the proper transform
of a line in P2, so C ∈ L. If C · E0 = 2, then C is the proper transform of a smooth conic in P2,
so C ∈ Q. By explicitly applying adjunction C2 + C · KX = 2g − 2, where g is the (a priori
arithmetic) genus of C, any C ∈ B ∪ L ∪ Q which is the class of a prime divisor has g = 0 and
so is the class of a smooth rational curve.

Now it suffices to show that we cannot have C · E0 > 2. If C · D < 0, then C is the class
of an irreducible component of D, hence E0 · (−KX − C) � 0, so E0 · C � 3. If C · E0 = 3,
then C is the proper transform of an irreducible plane cubic. But an irreducible plane cubic
has at most one singular point, which must be of multiplicity 2. Thus its proper transform is
either 3E0 − Ei1 − · · · − Eir , with 0 < i1 < · · · < ir � 6, or 3E0 − 2Ei1 − Ei2 − · · · − Eir , with
0 < i2 < · · · < ir � 6 and 0 < i1 < 6 such that i1 	= ij for j > 1. But in neither case would we
have C2 < 0, so C · E0 � 3 cannot happen.

Now say C · D � 0. From adjunction, since 0 � C · D = −KX · C, we have −1 � C2 � −2,
with g = 0 in any case, hence C is a smooth rational curve. If C · D = 0, then C ∈ K⊥

X and
adjunction gives C2 = −2, but since K⊥

X is negative definite, it has only finitely many classes
of self-intersection −2. One can show that the only classes in K⊥

X of self-intersection −2 are
±Ei ±Ej , 0 < i < j � 6, ±E0 ±Ei ±Ej ±Ek , 0 < i < j < k � 6, and ±2E0 ±E1 ±· · ·±E6.
(To see this, assume that A = aE0 −b1E1 −· · ·−b6E6 ∈ K⊥

X . Thus 3a = b1 +· · ·+b6. Working
over Cl(X)⊗Z Q, let m = (b1 +· · ·+b6)/6, so a = 2m, and define B = aE0 −m(E1 +· · ·+E6).
Then B · KX = 0, but A2 � B2 = −2m2. If A2 = −2, then we must have a � 2, in order to have
m � 1. Thus a is either 0, 1 or 2, and now it is easy to enumerate solutions A2 = −2.) Among
these classes, only those in B ∪L∪Q can be classes of prime divisors. (This is because a prime
divisor must, first, meet E0 nonnegatively, and second, when expressed as a linear combination
a0E0 − ∑

aiEi , if aj < 0 for some j > 0, then it must be a component of Ej and thus must be
in B.)

If C · D > 0, then C2 = −1 = KX · C. Let Y → X be obtained by blowing up a seventh,
general point p7. This morphism induces an inclusion Cl(X) → Cl(Y ). Then, arguing as above,
K⊥

Y is even and negative definite, and the only solutions to A2 = −2 for A ∈ K⊥
Y are of the form

±Ei ±Ej , 0 < i < j � 7, ±E0 ±Ei ±Ej ±Ek , 0 < i < j < k � 7, and ±2E0 ±Ei1 ±· · ·±Ei6 ,
0 < i1 < · · · < i6 � 7. Thus C − E7 is in K⊥

Y , with (C − E7)
2 = −2, since C · E7 = 0, and

(keeping in mind that C is a prime divisor also on Y and that C · KX = −1) it follows that C is
among Ei , 0 < i � 6, E0 − Ei − Ej , 0 < i < j � 6, and 2E0 − Ei1 − · · · − Ei5 , 0 < i1 < · · · <
i5 � 6. This finishes the proof of (a).

To prove (b), we have h1(X,F ) = 0 and h2(X,F ) = 0 by Theorem 8 [H2]. Thus h0(X,F ) =
(F 2 −KX ·F)/2+1 follows by Riemann–Roch. But F 2 � 0 holds for nef divisors (Proposition 4
[H2]), so F is effective. To see that |F | is base point free, note that a nef divisor in K⊥

X must
be 0. Now apply Theorem III.1(a, b) of [H3] to see that |F | is fixed component free, and has a
base point only if −KX · F = 1, in which case, using Y as above, we see that F − E7 must be
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effective, but F −E7 ∈ K⊥
Y , so F 2 −1 = (F −E7)

2 � 0. But (F −E7)
2 = 0 implies F −E7 = 0,

which is impossible since then 0 = F ·E7 = E2
7 = −1. Thus 0 > (F −E7)

2 = F 2 −1, so F 2 = 0.
However, we also have −KX ·F = 1, which contradicts h0(X,F ) = (F 2 −KX ·F)/2 + 1, since
h0(X,F ) must be an integer. Thus we cannot have −KX · F = 1 if F is nef.

Consider (c). Let G be the class of an effective divisor. We can write G = N + F , where
N is the fixed part of |G|, and F is nef. Note that no component of N can be nef, since nef
divisors (in our situation) are base point free, whereas components of N are fixed. Thus the class
of every component of N is in NEG(X). Now, if a class F = a0E0 − a1E1 − · · · − a6E6 is nef
for a particular set of distinct points pi , then it remains nef when the points pi are general, and
if F is effective when the points are general, it was effective to begin with. (This is because by
semicontinuity the effective subsemigroup can never get smaller as the points are specialized,
so the nef cone can never enlarge.) And if the points pi are general, then NEG(X) consists of
the exceptional classes; i.e., the classes Ei , i > 0, E0 − Ei − Ej , 0 < i < j � 6, and 2E0 −
Ei1 − · · · − Ei5 , 0 < i1 < · · · < i5 � 6. It follows from [H1], that the class of every effective
divisor is a nonnegative sum of exceptional classes. (The results of [H1] show that it is enough
to show that E0, E0 − E1, 2E0 − E1 − E2, and 3E0 − E1 − · · · − Ej , 3 � j � 6 are, but
this is easy; for example, E0 = (E0 − E1 − E2) + E1 + E2.) Thus given a class F which is
nef for a given set of points pi , F − E is effective for some E among the classes Ei , i > 0,
E0 − Ei − Ej , 0 < i < j � 6, and 2E0 − Ei1 − · · · − Ei5 , 0 < i1 < · · · < i5 � 6. If E is a prime
divisor, then E ∈ NEG(X). If not, then E · N ′ < 0 for some N ′ ∈ NEG(X) (otherwise, E is
nef, hence h0(X,E) = (E2 − KX · E)/2 + 1 = 1, but also |E| must be base point free, hence
h0(X,E) > 1).

Thus either way there is an N ′ ∈ NEG(X) such that F − N ′ is effective. By replacing F by
F − N ′ and repeating the process, we eventually reach the case that F = 0, hence any effective
divisor is a sum of elements of NEG(X).

Finally, we prove (d). To show F is nef, we just need to show that F · C � 0 for each class
C of an effective divisor. But each such C is a nonnegative sum of classes in NEG(X) and any
class in NEG(X) is the class of an effective divisor. It follows that F · C � 0 for the class C of
an effective divisor if and only if F · C � 0 for every C ∈ NEG(X). �
Remark 2.2. We now show how neg(X) determines NEG(X). In fact,

NEG(X) = neg(X) ∪ {
C ∈ B ∪L∪Q

∣∣ C2 = −1, C · D � 0 ∀D ∈ neg(X)
}
.

The forward inclusion follows from Lemma 2.1(a). For the reverse, say C2 = −1 for some C ∈
B ∪ L ∪ Q. It is easy to check case by case that each such C is effective, hence C · C′ < 0 for
some C′ ∈ NEG(X). Given that C · D � 0 for all D ∈ neg(X), then C′ ∈ NEG(X) − neg(X).
But any two distinct elements of B ∪ L ∪ Q of self-intersection −1 meet nonnegatively, hence
C = C′ ∈ NEG(X).

By Lemma 2.1 and Remark 2.2 it follows that specifying neg(X) as a subset of L ∪ Q is
equivalent to specifying the configuration type of the six points blown up to obtain X:

Corollary 2.3. Let A and A′ be sets of six distinct points of P2. Then A and A′ have the same
configuration type if and only if, for some orderings A = {p1, . . . , p6} and A′ = {p′

1, . . . , p
′
6},

we have f (neg(X)) = neg(X′), where X is the surface obtained by blowing up the points pi , X′
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is the surface obtained by blowing up the points p′
i , E0, . . . ,E6 and E′

0, . . . ,E
′
6 are the corre-

sponding exceptional configurations and f : Cl(X) → Cl(X′) is the map defined by f (Ei) = E′
i

for all i.

Proof. If A and A′ have the same configuration type, then f (EFF(X)) = EFF(X′), hence
f (NEG(X)) = NEG(X′) (since NEG is the set of all C in EFF such that C2 < 0 but C is not the
sum of two nontrivial elements of EFF), so f (neg(X)) = neg(X′). Conversely, by Remark 2.2,
neg(X) determines NEG(X), and, by Lemma 2.1 (and the proof of Lemma 2.1(c)), NEG(X) de-
termines h0(X,G) for any class G. I.e., if f (neg(X)) = neg(X′), then h0(X,G) = h0(X′, f (G))

for every class G, hence A and A′ have the same configuration type. �
The next remark shows explicitly how to determine Hilbert functions, given NEG(X) (or,

equivalently by Remark 2.2, given neg(X)).

Remark 2.4. Given a fat points subscheme Z = m1p1 + · · · + m6p6 with support at 6 distinct
points, for each t consider the class F = F(Z, t) = tE0 − m1E1 − · · · − m6E6. For each C ∈
NEG(X), check F ·C. If F ·C < 0, then hZ(t) = h0(X,F ) = h0(X,F −C), so we can replace F

by F −C while preserving h0. Continue replacing the current F by F −C whenever the current
F meets some C ∈ NEG(X) negatively. Eventually we obtain an F such that either F · E0 < 0,
in which case 0 = h0(X,F ) = h0(X,F (Z, t)), or F · C � 0 for all C ∈ NEG(X), in which case
F is nef and hence h0(X,F (Z, t)) = h0(X,F ) is given by Lemma 2.1(b). This procedure thus
gives us a way to determine the value hZ(t) of the Hilbert function hZ for every t . Note that
determining hZ(t) involves nothing more than integer arithmetic and addition and subtraction in
the rank 7 free abelian group Cl(X). It requires only that we know NEG(X) (or even just neg(X))
and the multiplicities mi of the points of support of Z. We do not need to know the points pi

themselves.
When t � α(Z), we also want to know the multiplicity m′

i = multpi
(CZ,t ) and degree dZ,t

of the curve CZ,t defined by γ (Z, t), whenever γ (Z, t) has positive degree. But γ (Z, t) by
Lemma 2.1 just defines the fixed component of the linear system I (Z)t = H 0(X,F (Z, t)), and
hence if F is the nef divisor class obtained by successively subtracting from F(Z, t) classes in
NEG(X) as above, then F = F(Z+

t , t − dZ,t ) and F − F(Z+
t , t − dZ,t ) = dZ,tE0 − m′

1E1 −
· · · − m′

6E6, so knowing NEG(X) allows us to determine dZ,t and the m′
i , and Z+

t .

Although Lemma 2.1 gives us a criterion for a class being nef, our method of proof for The-
orem 3.1 requires explicit generators for the nef cone; i.e., for the cone NEF(X) of nef divisor
classes on a given X, which by Lemma 2.1 is just the cone of all F such that F · C � 0 for all
C ∈ NEG(X). Actually, it will turn out that we will need explicit generators only when the anti-
canonical class, −KX = 3E0 − E1 − · · · − E6, is nef. The problem of determining generators of
NEF(X) is an example of the general problem of finding generators for the dual of a nonnegative
subsemigroup whose generators are given (in this case EFF(X) is the subsemigroup, generated
by NEG(X)). This is not an easy computation in general, but in case −KX is nef the action of
the Weyl group, which we now recall, provides a significant simplification.

Let r0 = E0 − E1 − E2 − E3 and for 1 � i � 5, let ri = Ei − Ei+1. (These are the so-called
simple roots of the Lie-theoretic root system of type E6.) Each homomorphism si : Cl(X) →
Cl(X) defined for any x ∈ Cl(X) by the so-called reflection si(x) = x + (x · ri)ri through ri
preserves the intersection product, and moreover si(KX) = KX for all i. The subgroup of the
orthogonal group of Cl(X) generated by the si is called the Weyl group, denoted W6. Since the
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reflection si for i > 0 is just the transposition of Ei and Ei+1, we see that W6 contains the group
S6 of permutations of E1, . . . ,E6. The element s0 corresponds to a quadratic transformation.

The group W6 is a finite group of order 51,840. The W6 orbit of E0 is the following list and
those obtained from these by permuting the terms involving Ei with i > 0:

E0, 4E0 − 2E1 − 2E2 − 2E3 − E4 − E5 − E6,

2E0 − E1 − E2 − E3, 5E0 − 2E1 − 2E2 − 2E3 − 2E4 − 2E5 − 2E6.

3E0 − 2E1 − E2 − E3 − E4 − E5,

Similarly, the W6 orbit of E0 − E1, up to permutations, is:

E0 − E1, 3E0 − 2E1 − E2 − E3 − E4 − E5 − E6.

2E0 − E1 − E2 − E3 − E4,

And the W6 orbit of 2E0 − E1 − E2, up to permutations, is:

2E0 − E1 − E2, 4E0 − 3E1 − E2 − E3 − E4 − E5 − E6,

3E0 − 2E1 − E2 − E3 − E4, 5E0 − 3E1 − 2E2 − 2E3 − 2E4 − E5 − E6,

4E0 − 2E1 − 2E2 − 2E3 − E4 − E5, 6E0 − 3E1 − 3E2 − 2E3 − 2E4 − 2E5 − 2E6.

The W6 orbit of 3E0 − E1 − E2 − E3, up to permutations, is:

3E0 − E1 − E2 − E3, 6E0 − 4E1 − 2E2 − 2E3 − 2E4 − E5 − E6,

4E0 − 2E1 − 2E2 − E3 − E4, 7E0 − 4E1 − 3E2 − 3E3 − 2E4 − 2E5 − E6,

5E0 − 3E1 − 2E2 − 2E3 − E4 − E5, 8E0 − 4E1 − 4E2 − 3E3 − 3E4 − 2E5 − 2E6,

6E0 − 3E1 − 3E2 − 2E3 − 2E4 − 2E5, 9E0 − 4E1 − 4E2 − 4E3 − 3E4 − 3E5 − 3E6.

6E0 − 3E1 − 3E2 − 3E3 − E4 − E5 − E6,

The W6 orbit of 3E0 − E1 − E2 − E3 − E4, up to permutations, is:

3E0 − E1 − E2 − E3 − E4, 5E0 − 3E1 − 2E2 − 2E3 − E4 − E5 − E6,

4E0 − 2E1 − 2E2 − E3 − E4 − E5, 6E0 − 3E1 − 3E2 − 2E3 − 2E4 − 2E5 − E6,

5E0 − 2E1 − 2E2 − 2E3 − 2E4 − 2E5, 7E0 − 3E1 − 3E2 − 3E3 − 3E4 − 2E5 − 2E6.

The W6 orbit of 3E0 − E1 − E2 − E3 − E4 − E5, up to permutations, is:

3E0 − E1 − E2 − E3 − E4 − E5, 5E0 − 2E1 − 2E2 − 2E3 − 2E4 − 2E5 − E6.

4E0 − 2E1 − 2E2 − E3 − E4 − E5 − E6,

Finally, the W6 orbit of −KX = 3E0 − E1 − E2 − E3 − E4 − E5 − E6 is just itself. The union
of these orbits contains 1279 elements. The next lemma says that the nef elements among these
1279 generate the nef cone.

Lemma 2.5. Let X be a smooth projective rational surface with a birational morphism to P2

such that Cl(X) has rank 7. If −KX is nef, then the set Ω = {F ∈ W6G: F · C � 0 for all
C ∈ N } generates NEF(X) as a nonnegative subsemigroup of Cl(X), where N is the set of
classes of reduced irreducible curves with C2 = −2 (the so-called nodal roots) and G is the set
consisting of E0, E0 − E1, 2E0 − E1 − E2, 3E0 − E1 − E2 − E3, 3E0 − E1 − E2 − E3 − E4,
3E0 − E1 − E2 − E3 − E4 − E5, and 3E0 − E1 − E2 − E3 − E4 − E5 − E6.
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Proof. From the proof of Lemma 2.1, we know the complete list of classes C with C2 = −2
and C · KX = 0 and it is not hard to check that they are contained in (and, since W6 preserves
the intersection form, thus equal to) a single orbit of W6; note, for example, s3s0(E3 − E4) =
E0 − E1 − E2 − E3. This orbit is also known as the set of roots of the root system E6. It is
easy to verify that half of the roots are nonnegative integer linear combinations of the simple
roots r0, . . . , r5; the rest are the additive inverses of these. The former are called positive roots;
the latter are called negative roots. The class of a reduced irreducible curve C with C2 = −2 is
necessarily a positive root: it satisfies C2 = −2 and C · KX = 0, so it is a root. Also, since E0 is
nef, we have E0 · C � 0. If E0 · C > 0, C is clearly one of the positive roots. If E0 · C = 0, then
C is a component of one of the exceptional curves Ei , and thus of the form Ei − Ej for some
0 < i < j , which is a positive root. It is now not hard to check for any two positive roots that
r · r ′ � −2, with r · r ′ = −2 if and only if r = r ′.

Similarly, we also know the complete list of classes C with C2 = −1 and C · KX = −1, and
we can again check directly that they form a single orbit E of W6; note, for example, s0(E1) =
E0 − E2 − E3. Since E is preserved under the action of W6, so is the nonnegative subsemigroup
E∗ dual to E , consisting of all classes F such that F · C � 0 for all C ∈ E .

By direct check, G · C � 0 for all C ∈ E , so we have G ⊂ E∗, hence W6G ⊂ E∗. Since
NEG(X) = E ∪ N , it follows that Ω ⊂ NEF(X). Now we must see that Ω generates NEF(X).
Note that Ω is W6G ∩ E∗ ∩N ∗, hence it is precisely the set of nef elements in W6G.

Since W6 is finite, for each F ∈ E∗ there is some w ∈ W6 such that E0 · wF is as small as
possible. Let wF = a0E0 − a1E1 − · · · − a6E6. Since we can permute the ai with i > 0 by
applying sj with j > 0 and this does not affect E0 ·wF , we may assume that a1 � a2 � · · · � a6.
Since E6 ·wF � 0, we have a6 � 0. If r0 ·wF < 0, then we would have E0 · s0(wF) < E0 ·wF ,
so we also have r0 · wF � 0; i.e., a0 � a1 + a2 + a3.

This means the W6-orbit of every class F ∈ E∗ intersects the subsemigroup A of classes
H = b0E0 − b1E1 − · · · − b6E6 defined by the conditions b0 � b1 + b2 + b3 and b1 � · · · �
b6 � 0; i.e., by the conditions H · r0 � 0, . . . , H · r5 � 0. It is not hard to check that the set G

of classes E0, E0 − E1, 2E0 − E1 − E2, 3E0 − E1 − E2 − E3, 3E0 − E1 − E2 − E3 − E4,
3E0 − E1 − E2 − E3 − E4 − E5, 3E0 − E1 − E2 − E3 − E4 − E5 − E6 generates A (which in
fact turns out to be a fundamental domain for the action of W6 on E∗). It is easy to check directly
that, for every class F in A, F · C � 0 for every class C with C2 = −1 and C · KX = −1. Also,
F · ri � 0 holds for all i since F ∈ A, hence F ·C � 0 for the class C of every reduced irreducible
curve with C2 = −2, since each such C is a positive root. Thus A ⊂ NEF(X).

Now let F be any nef class. There is a sequence ri1 , . . . , ril of simple roots such that Fj ·C � 0
for all C ∈Nj , each element of Nj is a positive root, and Fl ∈ A, where F = F0, Fj = sij (Fj−1)

for 1 � j � l, N0 = N , and Nj = sij (Nj−1) for 1 � j � l. For each j , let ij be the largest i

such that Fj−1 · ri < 0. If none exist, then l = j − 1 and Fl ∈ A, by definition of A. Otherwise,
let Fj = sij (Fj−1). If F = a0E0 − a1E1 − · · · − a6E6, what the sequence of operations does
is to permute a1, . . . , a6 so that they are nondecreasing, and then to decrease a0 whenever s0
is applied. But the orbit W6F of F is contained in E∗, hence every element H of the orbit has
H · E0 = H · (E0 − E1 − E2) + H · E1 + H · E2 � 0; thus we cannot forever go on reducing the
coefficient of E0, so eventually we arrive at a class Fl for which Fl · ri � 0 for all i, and hence
Fl ∈ A. Now, F0 · C � 0 for all C ∈ N0 since F = F0 is nef. Also, wF · wC = F · C for all
w ∈ W6 since W6 preserves the intersection form. It follows that Fj · C � 0 for all C ∈ Nj for
all j . Moreover, rij is never an element of Nj−1, since Fj−1 · rij < 0. It is easy to check directly
that reflection by a simple root r takes every positive root r ′ 	= r to another positive root. Thus
each element of Nj is a positive root for each j .
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Since Fl ∈ A, Fl is a nonnegative integer linear combination of the classes in G. Moreover,
the intersection of each of these classes with every element of Nl is nonnegative, since every
element of Nl is a positive root. Now let w = sil · · · si1 ; then w−1Fl = F and w−1H meets every
element of w−1Nl = N nonnegatively for each H ∈ G. Thus each w−1H is nef, hence F is an
integer linear combination of nef elements in W6G, as claimed. �

Given a nef divisor F , we still need a way of verifying that μF has maximal rank. Our main
tools for doing so involve quantities

q(F ) = h0(X,F − E1) and l(F ) = h0(X,F − (E0 − E1)
)
,

and bounds on the dimension of the cokernel of μF , defined in terms of quantities q∗(F ) =
h1(X,F − E1) and l∗(F ) = h1(X,F − (E0 − E1)), introduced in [H6,FHH]. The following re-
sult is Lemma 2.2 of [FHH]. (There it is assumed that F · E1 � F · Ei for all i > 1, but that is
not needed in the proof.)

Lemma 2.6. Let X be obtained by blowing up distinct points pi ∈ P2, and let F be the class of
an effective divisor on X with h1(X,F ) = 0. Then dim kerμF � q(F )+ l(F ) and dim cokμF �
q∗(F ) + l∗(F ).

Remark 2.7. The quantities q(F ), l(F ), q∗(F ) and l∗(F ) are defined in terms of E1 and E0 −E1,
but in fact Ej , j > 0, can be used in place of j = 1, since one can reindex the points.

Corollary 2.8. Let F and G be nef divisors on a surface X obtained by blowing up 6 distinct
points of P2. If q(F ) > 0, l(F ) > 0 and q∗(F ) + l∗(F ) = 0, then dim cokμF+G = 0.

Proof. If more than three points are on a line, then the six points are contained in a conic, and
the result follows by Theorem 3.1.2 of [H4]. If at most three points lie on a line, then, since there
are at most six points and they are distinct, −KX is nef. So now we may assume −KX is nef.

That q(F ) > 0 implies q(F + G) > 0 and l(F ) > 0 implies l(F + G) > 0, are clear, since a
sum of effective divisors is effective. By Lemma 2.1, G + F is effective and h1(X,G + F) = 0,
so by Lemma 2.6 we have dim cokμF+G � q∗(F + G) + l∗(F + G). Thus it is enough to show
q∗(F + G) = 0 and l∗(F + G) = 0. By a direct check of the generators listed by Lemma 2.5,
G is a sum of prime divisors of arithmetic genus at most 1. Hence it is enough by induction to
show q∗(F + G) = 0 and l∗(F + G) = 0 when G is the class of such a curve A. But this follows
from 0 → OX(F −C) → OX(G+F −C) →OA(G+F −C) → 0, taking C to be E1 (for q∗)
or E0 − E1 (for l∗), since h1(X,F − C) = 0 by hypothesis, and h1(A,G + F − C) = 0. (We
have A · (G + F − C) � 0 since G is nef, hence h1(A,G + F − C) = 0 if A has genus 0, while
G2 > 0 holds in each case that A has genus 1. Thus A · (G + F − C) > 0 when the genus is 1,
hence again h1(A,G + F − C) = 0.) �

Given a nef divisor F , Corollary 2.8 often applies, in which case μF+G is surjective for all
nef G. However, not every nef class is an appropriate sum of the form F + G. In the situations
that we will need to deal with, the set of those classes which are not of the appropriate form turns
out to be the union of a finite set of exceptions (which we can handle by brute force) with sets of
strings of the form F + iC (which we can handle by induction on i).
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In order to set up the machinery to carry out the induction, define Γ (X) to be the set of all
nef classes which are not the sum of two nonzero nef classes. Then Γ (X) generates NEF(X)

as a subsemigroup (i.e., every element of NEF(X) is a nonnegative integer linear combination
of elements of Γ (X)). For i > 0, let Γi(X) be the set of all sums with exactly i terms, where
each term is an element of Γ (X). (So, for example, Γ1(X) = Γ (X).) Let S(X) be the set of
all nef classes F such that either q(F ) = 0, l(F ) = 0 or l∗(F ) + q∗(F ) > 0. Then let Si(X) =
S(X) ∩ Γi(X). By Corollary 2.8 we have Si+1(X) ⊂ Si(X) + S1(X).

Thus to show μF has maximal rank for every nef class F , it is enough by Lemma 2.6 to show
that μF has maximal rank for all F ∈ Si(X) for each i. One checks directly that μF has maximal
rank for all F ∈ Si(X) for small values of i. (It turns out that it is never necessary to do this for
i > 5.) For larger values of i, one applies Lemma 2.9 (the value of k in this lemma never ends
up needing to be bigger than 2, although this is not obvious until after the fact) and Lemma 2.10.
Also, it turns out that the inclusions Sj+i (X) ⊂ {F + iCF : F ∈ Sj (X)} in Lemma 2.9 can be
chosen to be equalities, but that is more than we will need.

Lemma 2.9. Suppose for some j there exists a k and for each F ∈ Sj (X) a CF ∈ S1(X) such
that Sj+i (X) ⊂ {F + iCF : F ∈ Sj (X)} for 0 � i � k and such that whenever C ∈ S1(X) but
C 	= CF , then F + kC /∈ Sj+k(X). Then Sj+i (X) ⊂ {F + iCF : F ∈ Sj (X)} holds for all i � 0.

Proof. By Corollary 2.8, if F + kC /∈ Sj+k(X), then F + (k + 1)C /∈ Sj+k+1(X). Thus it is
enough by induction to show Sj+k+1(X) ⊂ {F + (k + 1)CF : F ∈ Sj (X)}. Say G′ ∈ Sj+k+1(X).
Then G′ = G + C, where G ∈ Sj+k(X) and C ∈ S1(X). By hypothesis, G = F ′ + kCF ′ for
some F ′ ∈ Sj (X) and CF ′ ∈ S1(X). Since G + C ∈ Sj+k+1(X), it follows by Corollary 2.8 that
F ′ +C ∈ Sj+1(X). Let H = F ′ +C; then H = H ′ +CH ′ for some H ′ ∈ Sj (X) and CH ′ ∈ S1(X).
Now, H ′ + kCF ′ ∈ Sj+k(X) (since H + kCF ′ = G + C ∈ Sj+k+1(X)), but for D ∈ S1(X) we
have by hypothesis that H ′+kD /∈ Sj+k(X) unless D = CH ′ . Thus CF ′ = CH ′ , so G+C = H ′+
(k + 1)CH ′ ∈ {F + (k + 1)CF : F ∈ Sj (X)}, so Sj+k+1(X) ⊂ {F + (k + 1)CF : F ∈ Sj (X)}. �
Lemma 2.10. Let X be a blow up of P2 at 6 distinct points. Let F be a nef divisor such that
μF is surjective, and let C ⊂ X be the class of a smooth rational curve such that C2 � 0 and
(F + C) · C � max(C · E1,C · (E0 − E1)). Then μF+C is surjective.

Proof. Let Λ denote H 0(X,E0), and apply the snake lemma to:

0 H 0(X,F ) ⊗ Λ

μ1

H 0(X,F + C) ⊗ Λ

μ2

H 0(C,OX(F + C) ⊗OC) ⊗ Λ

μ3

0

0 H 0(X,F + E0) H 0(X,F + C + E0) H 0(C,OX(F + C + E0) ⊗OC) 0.

Since μF = μ1 is onto, it is enough to show μ3 is onto also, for which we apply (F + C) · C �
max(C · E1,C · (E0 − E1)), using the criterion given in [F2] (note also [F3]). �

We will be interested mostly in those X such that 2E0 − E1 − · · · − E6 is not the class of
an effective divisor, since otherwise (i.e., when the points pi lie on a conic, possibly reducible
or nonreduced) μF is surjective whenever F is nef by Theorem 3.1.2 of [H4], which in turn
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depends on Lemma 2.5 of [H4]. However, some details were left out of the published proof of
this lemma, so we present it here in full. The extra details are indicated by indentation.

Lemma 2.11. Let X be a smooth projective rational surface, and let N be the class of an
effective divisor N on X such that h0(X,N + KX) = 0. If F and G are the restrictions to
N of divisor classes F ′ and G′ on X which meet each component of N nonnegatively, then
S(F ,G) = 0, where S(F ,G) denotes the cokernel of the natural map H 0(N,F)⊗H 0(N,G) →
H 0(N,F + G).

Proof. To prove the lemma, induct on the sum n of the multiplicities of the components of N .
By Lemma II.9 of [H3], h1(N,ON) = 0 and every component of N is a smooth rational curve.
Thus the case n = 1 is trivial (since then N = P1, and the space of polynomials of degree f in
two variables tensor the space of polynomials of degree g in two variables maps onto the space
of polynomials of degree f + g). So say n > 1.

As in the proof of Theorem 1.7 of [A], N has a component C such that (N − C) · C � 1.
Let L be the effective divisor N − C and let L be its class. Thus we have an exact sequence
0 →OC ⊗ (−L) →ON → OL → 0.

To see this, apply the snake lemma to

0 OX(−N) OX ON 0

0 OX(−L) OX OL 0

to see that the kernel of ON → OL is just the cokernel of OX(−N) → OX(−L), which is
just OC ⊗OX(−L), which we may write as OC(−L).

Now, −L ·C � −1, and both F ′ and G′ meet C nonnegatively. We may assume F ′ ·C � G′ ·C,
otherwise reverse the roles of F ′ and G′. Since C = P1, we see that h1(C,OC ⊗ (F ′ − L)),
h1(C,OC ⊗ (G′ − L)) and h1(C,OC ⊗ (F ′ + G′ − L)) all vanish. An argument similar to that
used to prove Proposition II.3(a, b) of [H4] now shows that we have an exact sequence S(OC ⊗
(F ′ −L),OC ⊗ G′) → S(F ,G) → S(OL ⊗F ,OL ⊗ G) → 0.

What is actually clear here is that we have S(OC ⊗ (F ′ − L),G) → S(F ,G) → S(OL ⊗
F ,G) → 0. Since h1(C,OC ⊗ (G′ −L)) = 0, we know G → OL ⊗ G is surjective on global
sections, and hence that S(OL ⊗ F ,G) is the same as S(OL ⊗ F ,OL ⊗ G). What needs
additional justification here is that ON ⊗ G′ → OC ⊗ G′ is surjective on global sections, so
that we can conclude that S(OC ⊗ (F ′ −L),G) is the same as S(OC ⊗ (F ′ −L),OC ⊗ G′).

Now, N + KX is not the class of an effective divisor, and the same will remain true if we
replace N by any subscheme of N obtained by subtracting off irreducible components of N .
Thus any such resulting subscheme M of N has the property, like N itself, that there is a com-
ponent D of M such that (M − D) · D � 1. If M is just N with the reduced induced scheme
structure, then by induction on the number of components of M it follows (using Lemma II.9
of [H3]) that any two components of N are smooth rational curves that are either disjoint or
meet transversely at a single point, and no sequence B1, . . . , Bi of distinct components exists
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such that Bi ·B1 > 0 and Bj ·Bj+1 > 0 for 1 � j < i (in particular, no three components meet
at a single point, and the components of M form a disjoint union of trees).

First assume that N is reduced; i.e. that N = Nred. Then C is not a component of N − C.
Choose a section σC of OC ⊗ G′, and for each of the other components B of N , choose a
section σB of OB ⊗G′ such that σB does not vanish at any of the points where B meets another
component of N . (This is possible since B is smooth and rational, so OB ⊗ G′ is OP1(d) for
some d � 0, so a section can always be chosen which does not vanish at any of a given finite
set of points of B .) Since N has no cycles and the components meet transversely, it is clear
that starting from σC one can patch together appropriate scalar multiples of the sections σB to
get a section σ of G which restricts to σC . Thus ON ⊗ G′ → OC ⊗ G′ is surjective on global
sections.

Now assume that N is not reduced. Let M be the union of the components of N which have
multiplicity greater than 1 (taken with the same multiplicities as they have in N ) together with
those multiplicity 1 components of N that meet one of these. No multiplicity 1 component B

of M satisfies B · (M − B) � 1, so there must be a component B of multiplicity more than 1
that does, and hence we also have B · (N −B) � 1 for some component B of N of multiplicity
more than 1. Now from this and 0 → OB(−N +B)⊗G →ON ⊗G′ → OJ ⊗G′ → 0, where
J = N − B , we see h1(B,OB(−N + B) ⊗ G) = 0, so ON ⊗ G′ → OJ ⊗ G′ is surjective on
global sections. But J still has C as a component, because either C has multiplicity 1 in N

(and hence C 	= B), or C has multiplicity more than 1 in N (and so even if B = C, C remains
a component of N − B = J ). By induction on the number of components, we conclude that
ON ⊗G′ → ONred ⊗G′ is surjective on global sections. But C is still a component of Nred, and
ONred ⊗ G′ → OC ⊗ G′ is surjective on global sections from above, hence so is ON ⊗ G′ →
OC ⊗ G′.

Since S(OL ⊗ F ,OL ⊗ G) = 0 by induction, it suffices to show S(OC ⊗ (F ′ − L),OC ⊗
G′) = 0. If C ·(F ′ −L) � 0, then the latter is 0 (as in the previous paragraph). Otherwise, we must
have 0 = F ′ ·C = G′ ·C and C ·L = 1, so OC(−1) = OC ⊗ (F ′ −L) and OC = OC ⊗G′, which
means h0(OC,OC ⊗ (F ′ +G′ −L)) = 0 and hence again S(OC ⊗ (F ′ −L),OC ⊗G′) = 0. �
3. The main results

In this section we first determine, up to permuting E1, . . . ,E6, which subsets of L∪Q occur as
subsets of the form neg(X), which by Corollary 2.3 is equivalent to determining the configuration
types for six distinct points of P2. What we find is that the types are precisely those shown in
Fig. 1, where the classes of the proper transforms of the curves shown in a diagram of Fig. 1 give
the elements of neg(X) for the corresponding configuration type. We then prove our main result,
Theorem 3.1, and finish by explicitly answering, in the case of 6 points, the questions raised in
[GMS].

To begin, note that the elements C of neg(X) satisfy the following three conditions: (i) C ∈
L∪Q; (ii) C2 < −1; and (iii) C · D � 0 whenever C,D ∈ neg(X) with C 	= D.

First, if 2E0 − (E1 + · · · + E6) ∈ neg(X), then {2E0 − (E1 + · · · + E6)} = neg(X). (For if
C ∈ neg(X) but C 	= 2E0 − (E1 + · · · + E6), then C · (2E0 − (E1 + · · · + E6)) � 0 by (iii). But
by direct check, every element C ∈ L∪Q with C2 < −1 has C · (2E0 − (E1 + · · · + E6)) < 0.)
The case that {2E0 − (E1 + · · · + E6)} = neg(X) corresponds to configuration type 11 in Fig. 1.
It is clear that this possibility actually occurs, since blowing up any six points on a smooth conic
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results in 2E0 − (E1 +· · ·+E6) ∈ neg(X), and hence, as we just saw, {2E0 − (E1 +· · ·+E6)} =
neg(X).

We now classify sets M satisfying the conditions: (i) M ⊂ L; (ii) if C ∈ M , then C2 < −1;
and (iii) C · D � 0 whenever C,D ∈ M , C 	= D. For each such M , we also will show that there
is an X with M = neg(X).

In fact, such a subset M is just a matroid of rank 3 or less on a six point set, or, in the
terminology of [BCH], it is a plane 6 point combinatorial geometry. It is not hard to work them
all out, but [BCH] gives a complete list, saving us the trouble of doing so. The result corresponds
precisely with what we show as configuration types 1 through 10 in Fig. 1. So now we merely
need to see that they all arise.

To show configuration type 1 occurs, we just need to show that one can pick 6 points such
that no line passes through any 3 and no conic passes through all 6. Thus we can pick any two
distinct points to be p1 and p2. Then p3 can be any point not on the line through p1 and p2; p4

can be any point not on any line through two of the first three points, and p5 can be any point
not on any line through two of the first four points. Finally, p6 can be any point not on any line
through two of the first five points nor on the conic through the first five points (of which there
is only one). At each step we are allowed to choose any point avoiding a proper closed subset
of P2. There is no obstruction to doing this, so configuration type 1 occurs.

For configuration type 2, we proceed as before, but the last point must be on exactly one of
the lines through two of the previously chosen points. For example, we choose p6 to be on the
line L through p1 and p2, but not on any other line through two of the previously chosen points.
Thus the condition on our choice of p6 is that we avoid finitely many points of L, which clearly
we may do.

By similar reasoning, it is easy to check that each of the configurations 1 through 9 occur.
With configuration 10, the same reasoning works to choose points p1 through p5, but the choice
of p6 is forced, since p1, . . . , p5 uniquely determine p6. Since we have no freedom in our choice
of p6, our previous argument is invalid at the last step. Instead, we take our six points to be the
points of intersection of four general lines. Clearly, no four of the points can be collinear. So now
we must check that the four lines are the only lines through any three of the points. Suppose there
were a fifth line going through three of the points. Given any three of the six points of intersection
of four general lines, it is easy to check that one of the four lines passes through two of the three
points. So there can be no fifth line through any three of the points. Thus configuration type 10
also occurs.

(The foregoing justifications that the configurations actually occur may at first sight seem
unnecessary. To show that they are not, we mention a similar example involving seven points.
Suppose we want a configuration of six lines through seven points, arranged such that each line
passes through exactly 3 points. Intuitively, we get such a configuration by taking three of the
lines to be sides of an equilateral triangle, and the other three to be the angle bisectors. The seven
points are the points where any two of the lines meet. This configuration occurs if and only if
the ground field does not have characteristic 2. When the characteristic is 2, an additional line
through the midpoints on the sides of the triangle is forced.)

We now prove our main result:

Theorem 3.1. Let X be obtained by blowing up 6 distinct points of P2. Let E0,E1, . . . ,E6 be
the corresponding exceptional configuration. Let F be a nef divisor on X. Then μF has maximal
rank.



636 E. Guardo, B. Harbourne / Journal of Algebra 318 (2007) 619–640
Proof. We first consider the two extremes. If no line contains three of the points and no conic
contains all 6, then the result follows by [F1]. This is the case in which the points are general.
If all 6 points are on a conic, the result follows by Theorem 3.1.2 of [H4]. Note also that if 4 or
more of the points are on a line, then all 6 are on a conic.

So now we are reduced to considering the case that some line contains three points, but no
line contains 4 or more of the points and no conic contains all 6. Thus neg(X) consists only of
classes of the form L − Ei1 − Ei2 − Ei3 , hence neg(X) = N . If there is more than one line that
contains three of the points, then any two such lines must share a point (otherwise all 6 points
would lie on the two lines, which is a conic). It follows that the set N of nodal roots must, up to
indexation of the points pi , be one of the following:

(i) {r0}—i.e., the first three points are on a line and no other set of three points is on a line (this
case corresponds to configuration type 2);

(ii) {r0,E0 − E1 − E4 − E5}—i.e., two of the points are on one line, two on another, a fifth
point occurs where the two lines meet, and the sixth point is not on any line through any
two of the other points (this case corresponds to type 8);

(iii) {r0,E0 − E1 − E4 − E5,E0 − E3 − E5 − E6}—i.e., three lines form a triangle, with three
of the points at the vertices, with an additional point on each line, but these last three points
are not collinear (this case corresponds to type 9);

(iv) {r0,E0 − E1 − E4 − E5,E0 − E3 − E5 − E6,E0 − E2 − E4 − E6}—i.e., the 6 points are
the points of intersection of four lines, no three of which meet at a single point (this case
corresponds to type 10).

We now treat case (iv) in detail. The other cases (and the case that N is empty, which thereby
recovers the result of [F1]) are similar. Using Remark 2.2, from N = neg(X) we determine that
NEG(X) consists of the following classes (where we list only the coefficients, so, for example,
1 0 -1 0 -1 0 -1 denotes E0 − E2 − E4 − E6):

0 1 0 0 0 0 0 1 0 0 -1 -1 0 0 1 -1 -1 -1 0 0 0
0 0 1 0 0 0 0 1 0 -1 0 0 -1 0 1 -1 0 0 -1 -1 0
0 0 0 1 0 0 0 1 -1 0 0 0 0 -1 1 0 0 -1 0 -1 -1
0 0 0 0 1 0 0 1 0 -1 0 -1 0 -1
0 0 0 0 0 1 0
0 0 0 0 0 0 1

Next we need to determine generators for NEF(X). By Lemma 2.5, the set of all F ∈ W6G

such that F ·C � 0 for all C ∈ N = {r0,E0 −E1 −E4 −E5,E0 −E3 −E5 −E6,E0 −E2 −E4 −
E6} generates NEF(X), where W6G is the set of 1279 elements of the W6 orbits of the elements
of G from Lemma 2.5. A tedious but easily coded check results in 212 generators. Many of these
212 are a sum of two other classes among the 212. Removing all classes which occur as such
sums, we are left with 39, which therefore generate. Here is a list of these 39:

1 0 0 0 0 0 0 2 -1 0 -1 0 -1 0 3 0 0 -1 -2 -1 -1
2 0 -1 -1 -1 0 0 2 -1 0 0 -1 0 -1 3 -1 0 -2 -1 -1 0
2 0 0 -1 -1 -1 0 2 -1 -1 0 0 -1 0 3 0 -1 0 -1 -2 -1
2 0 0 0 -1 -1 -1 2 -1 0 -1 0 0 -1 3 -1 -1 -1 0 0 -2
2 -1 0 -1 -1 0 0 1 -1 0 0 0 0 0 3 -1 -1 -1 -2 0 0
2 0 -1 0 -1 -1 0 1 0 -1 0 0 0 0 3 -1 0 0 -1 -1 -2
2 0 0 -1 -1 0 -1 1 0 0 -1 0 0 0 3 0 -1 -2 -1 0 -1
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2 0 -1 0 0 -1 -1 1 0 0 0 -1 0 0 3 -1 -2 0 -1 -1 0
2 0 -1 -1 0 0 -1 1 0 0 0 0 -1 0 3 0 -2 -1 0 -1 -1
2 -1 0 0 0 -1 -1 1 0 0 0 0 0 -1 3 -1 -1 -1 0 -2 0
2 -1 -1 0 0 0 -1 2 0 -1 -1 -1 -1 0 3 -2 0 -1 0 -1 -1
2 -1 -1 0 -1 0 0 2 -1 -1 0 0 -1 -1 3 -2 -1 0 -1 0 -1
2 0 -1 -1 0 -1 0 2 -1 0 -1 -1 0 -1 3 -1 -1 -1 -1 -1 -1

For each of these classes F , we find (after reindexing if need be, as discussed in Remark 2.7,
but using the same indexing for q , l, q∗, and l∗) that q∗(F ) = 0 = l∗(F ), hence μF is surjective
by Lemma 2.6 and Remark 2.7. For example, to see how to compute these quantities, consider
q∗(F ) for F = 3E0 − E1 − 2E3 − E4 − E5 from the list above. Then, applying Remark 2.7,
we reindex so that q(F ) = h0(X,F − E3) and l(F ) = h0(X,F − (E0 − E3)), etc. Since r0 ∈
NEG(X) and r0 · (F −E3) < 0, we see h0(X,F −E3) = h0(X,F −E3 − r0). But now E2 · (F −
E3 − r0) < 0, so now h0(X,F − E3) = h0(X,F − E3 − r0 − E2). Continuing in this way we
eventually find that h0(X,F ) = · · · = h0(X,0) = 1, hence q(F ) = 1. Riemann–Roch now states
that q(F ) − q∗(F ) = ((F − E3)

2 − (F − E3) · KX)/2 + 1 = 1, so q∗(F ) = 0.
Of the 39, all but the following 9 have both q and l positive, and thus S1(X) is just the set of

these 9:

1 -1 0 0 0 0 0 1 0 0 0 -1 0 0 2 0 -1 -1 -1 -1 0
1 0 -1 0 0 0 0 1 0 0 0 0 -1 0 2 -1 -1 0 0 -1 -1
1 0 0 -1 0 0 0 1 0 0 0 0 0 -1 2 -1 0 -1 -1 0 -1

In each of these cases q = 0. By Corollary 2.8, μF is surjective for all nef F except possibly
those in the subsemigroup generated by these last 9. A direct check shows that the conditions of
Lemma 2.9 apply here with k = 2 and CF = F , so Si(X) ⊂ {iF : F ∈ S1(X)} for all i. Surjectiv-
ity for μiF for each F and i follows by direct check that q∗(iF ) = 0 = l∗(iF ) when i = 1 and 2,
and then for all i > 0 by applying Lemma 2.10.

Cases (i), (ii) and (iii) are handled the same way, thereby proving Theorem 3.1. For case (i),
S1(X) has 55 elements, S2(X) has 90 elements, and Si(X) has 93 elements for i > 2. Lemma 2.9
applies for j = 3 with k = 2, although this time it is not always true that F is a multiple of CF . For
example, F = 7E0 − 2E1 − · · ·− 2E5 − 5E6 ∈ S3(X), but CF = 3E0 − 1E1 − · · ·− 1E5 − 2E6.
For case (ii), S1(X) has 37 elements, Si(X) has 34 elements for i > 1 and Lemma 2.9 applies
for j = 2 with k = 2. For case (iii), S1(X) has 22 elements, Si(X) has 12 elements for i > 1 and
Lemma 2.9 applies for j = 2 with k = 2. (For the case that N is empty, S1(X) has 159 elements,
S2(X) has 301 elements, and Si(X) has 316 elements for i > 2. Lemma 2.9 applies for j = 3 with
k = 2. Lemma 2.10 then gives the result except for multiples of F = 5E0 −2E1 −· · ·−2E6, since
μF is injective, and l∗(mF) = 1 for m � 0. Thus one must show ad hoc that μ2F is surjective
(see [F1]); then Lemma 2.10 applies to show that μmF is surjective for all m > 2.) �
Example 3.2. We work out an example to show how to determine the Hilbert function and
graded Betti numbers of the ideal of a fat point subscheme. Assume the points are arranged
as in case (iv); that is, configuration type 10. Assume the points are indexed so that a line passes
through points 1, 2 and 3, and through 1, 4 and 5, and 2, 4 and 6 and 3, 5 and 6. Let Z = 2p1 +
2p2 +6p3 +2p4 +2p5 +2p6. The associated divisor class for degree i is F(Z, i) = iE0 −(2E1 +
2E2 + 6E3 + 2E4 + 2E5 + 2E6). Computing hZ(i) = h0(X,F (Z, i)) as in Remark 2.4, we find
hZ(5) = 0, hZ(6) = 1, hZ(7) = 4, hZ(8) = 11, hZ(9) = 19 and hZ(10) = 30, so α(Z) = 6. Also,
h1(X,F (Z,8)) > 0 but h1(X,F (Z,9)) = 0, hence the regularity σ(Z) is 10.
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Thus ti = 0 for i < α(Z) = 6 and for i > σ(Z) = 10, and since hZ(6) = 1, we see t6 = 1
and that μF(Z,6) is injective so t7 = hZ(7) − 3hZ(6) = 1. To find t8, note that: F(Z,7) · C1 < 0,
where C1 = E0 −E3 −E4; (F (Z,7)−C1) ·C2 < 0 for C2 = r0; (F (Z,7)−C1 −C2) ·C3 < 0 for
C3 = E0 −E3 −E4 −E5; (F (Z,7)−C1 −C2 −C3) ·C2 < 0; (F (Z,7)−C1 −2C2 −C3) ·C3 < 0;
and F(Z,7) − C1 − 2C2 − 2C3 is nef. Thus the divisor class of fixed components of F(Z,7) is
C1 +2C2 +2C3 = 5E0 −2E1 −2E2 −5E3 −E4 −2E5 −2E6, so Z−

7 = 2p1 +2p2 +5p3 +p4 +
2p5 + 2p6, dZ,7 = 5, and Z+

7 = p3 + p4. Now we have t8 = dim cok(μF(Z,7)−C1−2C2−2C3) +
(h0(X,E0 + F(Z,7)) − h0(X,E0 + F(Z,7) − C1 − 2C2 − 2C3)). But F(Z,7) − C1 − 2C2 −
2C3 is nef, its μ is onto by Theorem 3.1, and h0(X,E0 + F(Z,7)) − h0(X,E0 + F(Z,7) −
C1 − 2C2 − 2C3) = hZ(8) − h0(X,E0 + F(Z,7) − C1 − 2C2 − 2C3) = 11 − 8 = 3. Similarly,
t9 = 0 and t10 = 2. From the triple difference �3hZ , we find si = 0 except for s8 = 1, s9 = 3
and s11 = 2. Thus the minimal free resolution of IZ is 0 → F1 → F0 → IZ → 0 where F0 =
R[−6] ⊕ R[−7] ⊕ R[−8]3 ⊕ R[−10]2 and F1 = R[−8] ⊕ R[−9]3 ⊕ R[−11]2.

It is easy to implement the procedure demonstrated in Example 3.2 as, for example, an awk
script. We did so; the resulting script can be run over the web by visiting http://www.math.unl.
edu/~bharbour/6ptres/6reswebsite.html. We used it to determine the Hilbert functions and graded
Betti numbers for the ideals defining Z = p1 + · · · + p6 and for 2Z = 2p1 + · · · + 2p6 for each
of the 11 configuration types, thereby answering in the case of six points the questions raised
in [GMS]. We could just as easily run mZ for any m or for any multiplicities m1p1 + · · · +

Scheme Type(s) hR/I (Z)

Z 1, 2, 8, 9, 10 1, 3, 6, 6
2Z 1, 2, 8, 9 1, 3, 6, 10, 15, 18, 18
2Z 10 1, 3, 6, 10, 14, 18, 18

Z 3, 6, 7, 11 1, 3, 5, 6, 6
2Z 3, 6 1, 3, 6, 10, 14, 16, 17, 18, 18
2Z 7, 11 1, 3, 6, 10, 14, 17, 18, 18

Z 4 1, 3, 4, 5, 6, 6
2Z 4 1, 3, 6, 10, 12, 14, 15, 16, 17, 18, 18

Z 5 1, 2, 3, 4, 5, 6, 6
2Z 5 1, 3, 5, 7, 9, 11, 13, 14, 15, 16, 17, 18, 18

Scheme Type(s) F1 F0

Z 1, 2, 8, 9, 10 R[−4]3 R[−3]4
2Z 1, 2 R[−7]3 R[−6] ⊕ R[−5]3
2Z 8 R[−7]3 ⊕ R[−6] R[−6]2 ⊕ R[−5]3
2Z 9 R[−7]3 ⊕ R[−6]2 R[−6]3 ⊕ R[−5]3
2Z 10 R[−7]4 R[−6]4 ⊕ R[−4]
Z 3, 6 R[−5] ⊕ R[−4] R[−4] ⊕ R[−3] ⊕ R[−2]
2Z 3 R[−9] ⊕ R[−7] ⊕ R[−6] R[−8] ⊕ R[−5]2 ⊕ R[−4]
2Z 6 R[−9] ⊕ R[−7] ⊕ R[−6]2 R[−8] ⊕ R[−6] ⊕ R[−5]2 ⊕ R[−4]
Z 7, 11 R[−5] R[−3] ⊕ R[−2]
2Z 7, 11 R[−8] ⊕ R[−7] R[−6] ⊕ R[−5] ⊕ R[−4]
Z 4 R[−6] ⊕ R[−3] R[−5] ⊕ R[−2]2
2Z 4 R[−11] ⊕ R[−7] ⊕ R[−5]2 R[−10] ⊕ R[−6] ⊕ R[−4]3
Z 5 R[−7] R[−6] ⊕ R[−1]
2Z 5 R[−13] ⊕ R[−8] R[−12] ⊕ R[−7] ⊕ R[−2]
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m6p6, if we wished to answer the questions raised by [GMS] not only for double points but for
points of any given multiplicities. Note that for configuration types 5, 7 and 11, Z is a complete
intersection, and thus the Hilbert function and graded Betti numbers for mZ are already known
for all m (see, for example, [BGV1,BGV2]). Also, the Hilbert function and graded Betti numbers
for m1p1 + · · · + m6p6 for any mi are known by [F1] for configuration type 1, and by [H4]
for configurations 3, 4, 5, 6, 7 and 11 (since the points are contained in a conic). Results for
configuration types 2, 8, 9 and 10 are new.

For ease of comparison with results of [GMS], we give the Hilbert functions hR/I (Z) of
R/I (Z), rather than for I (Z). The Hilbert function of R/I (Z) in degree 0 is always 1, and
then it increases until it achieves the value deg(Z), at which point it becomes constant. In each
case we show the value hR/I (Z)(t) of the Hilbert function in each degree t � 0 until it becomes
constant.

Here are the results. There are four different Hilbert functions for Z, and all together there are
six different Hilbert functions for 2Z, two whose support has one Hilbert function, two whose
support has another, and one each for the remaining two cases. Note that for each Hilbert func-
tion for Z, there is among the Hilbert functions for 2Z both a maximum and minimum Hilbert
function.
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