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maging Cardiac Resynchronization Therapy
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lthough a prognostic benefit has been shown from cardiac resynchronization therapy, questions are

ften directed toward the prediction of symptomatic or functional benefit. Recent multicenter trials have

hown the pitfalls of current mechanical markers of left ventricular synchrony, but these negative trial

esults have not marked the conclusion of efforts to predict outcome. Potential new contributors to the

ssessment of mechanical synchrony include echocardiographic and magnetic resonance techniques for

he assessment of myocardial deformation. Nonsynchrony markers that seem promising include assess-

ent of the location and extent of myocardial scar and imaging of the coronary venous and phrenic nerve

natomy. (J Am Coll Cardiol Img 2009;2:486 –97) © 2009 by the American College of Cardiology
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n the last 2 years, 2 important multicenter
rials involving 172 (1) and nearly 500 (2)
atients showed failure of mechanical markers
f left ventricular (LV) synchrony to predict
utcome after cardiac resynchronization ther-
py (CRT). These findings contradicted a
umber of single center studies, reviewed else-
here (3), suggesting that mechanical markers
f LV synchrony could predict outcome after
RT. The negative trial results have not
arked the conclusion of efforts to predict

utcome from CRT, and indeed, a less well
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howing improvement in invasive hemodynamic
arameters (5) and echocardiographic manifesta-
ions of LV dyssynchrony and stroke volume (6).
fter encouraging studies of acute and longer-term

linical effects (7–9), several randomized controlled
rials involving �4,000 patients established the role
or CRT in heart failure (10–16). These results
ave given a strong mandate for the routine use of
RT in eligible heart failure patients (Table 1).
In the context of this evidence base, the need to

se imaging for the identification of mechanical
ynchrony might reasonably be questioned. How-
ver, the therapeutic expectations of patients in
dvanced heart failure are not restricted to sur-
ival but also functional status, which leads to the
ather controversial definition as to whether an
ndividual is a responder to CRT. Clinical end
oints (New York Heart Association functional
lass, quality of life score, exercise capacity ex-
ressed as 6-min walking distance), hemody-
amic response, and echocardiographic end
oints (improved LV systolic function or reverse
V remodeling) have been used to evaluate re-

ponse to CRT. Clinical assessment is subjective
nd unreliable given the placebo effect of CRT;
0% of patients randomized to no CRT experi-
nced a significant reduction in symptoms. Acute
emodynamic response may not be predictive of

ong-term response. Changes in ejection fraction
re modest, with most studies reporting an aver-
ge improvement of 4% to 5%. Evidence of
everse remodeling provides an objective means
f assessment of response to CRT—a 15% de-
rease in LV end-systolic volume (ESV) index
ith CRT has emerged as a consistent parameter
f reverse remodeling and predictive of long-term
linical outcomes (17)—this is attained in about

Table 1. Landmark Trials in CRT

Study (Ref. #) NYHA Functional Class

MIRACLE (16)* III, IV

MUSTIC SR (14) III

MUSTIC AF (15) III

CONTAK CD (18)‡ III to IV

MIRACLE ICD (17)§ III to IV

COMPANION (20) III, IV

CARE HF (19) III, IV

Left ventricular ejection fraction �35% for all trials. *Includes 71 patients enrolled
crossover phase. §Excludes class II patients. �Echo-based criteria for QRS �150
CARE-HF � Cardiac Resynchronization-Heart Failure; COMPANION � Comparis
CONTAK-Cardiac Defibrillator; CRT � cardiac resynchronization therapy; MIRACLE �
Randomized Clinical Evaluation Implantable Cardioverter Defibrillator trial; MUSTIC A

Stimulation in Cardiomyopathies–Sinus Rhythm; NYHA � New York Heart Association; 6 MH
0% of patients, in contrast with a clinical re-
ponse rate in around 70%.

The CRT-responder concept should be applied
ith caution. First, there is little evidence to justify

ts application to considerations of survival. Al-
hough reverse remodeling is an important media-
or of improved survival in heart failure, and seems
o be associated with the response to CRT (17,18),

9.5% reduction of ESV has a sensitivity and
pecificity of only 70% for prediction of mortality,
nd survival benefit from myocardial revasculariza-
ion has been documented in the absence of reverse
emodeling (19). Second, there are problems with
rying to make this distinction on the basis of
echanical markers of LV synchrony. Third, al-

hough changes in synchrony has been proposed as
he sine qua non of CRT response (20), the effect of
herapy could be mediated in other ways (21).

efinition of Dyssynchrony

lectrical dyssynchrony. The measurement
f electrical dyssynchrony has ranged from
he simple lumped QRS duration, used in
ll of the large multicenter trials of biven-
ricular pacing therapy, to more complex
lectrical activation maps. The latter show
arly right heart stimulation that rapidly
oves to the lateral free wall (this delay is

bout 70 ms in the canine heart). The
echanical map shows a slower spread of

ontraction but follows a similar pattern.
Electrical dyssynchrony involves the

rimary activation delay typically mani-
ested by a widened QRS complex. The
ransformation of electrical into mechanical dyssyn-
hrony is complex because the latter is not solely

QRS
(ms)

Follow-Up
(Months) End Points

130 6 NYHA, QoL, 6MHW

150 3 QoL, 6MHW, VO2

200† 3 QoL, 6MHW, VO2

120 6 Composite

130 6 NYHA, QoL, 6MHW, VO2

120 12 Morbidity � mortality

120� 29¶ Morbidity � mortality

-month pilot study. †RV-paced QRS. ‡Includes 248 patients enrolled in 3-month
¶Average.
f Medical Therapy, Pacing and Defibrillation in Heart Failure; CONTAK CD �
ticenter InSync Randomized Clinical Evaluation; MIRACLE ICD � Multicenter InSync
Multisite Stimulation in Cardiomyopathies–Atrial Fibrillation; MUSTIC SR � Multisite

A B B

A N D

2D �
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therap
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ICE �

echoc

LV �

RV �
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�

�

�

�

�

�

�

in 3
ms.
on o
Mul
F �
W � 6-min hall walking test; QoL � quality of life; VO2 � maximum oxygen
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etermined by when the tissue is excited. Rather,
echanical events require the cellular process of

xcitation–contraction coupling to generate myo-
yte force, and are thus influenced by processes that
ontrol calcium cycling, myofilament calcium inter-
ctions, regional loading, fibrosis, and other factors
22). Indeed, disparities in the timing of regional
echanical function may not be coupled to electri-

al stimulation delay. This might be caused by
egional loading differences, fibrosis, and contractile
trength of one part of the wall versus another.

echanical imaging methods detect motion of the
uscle but not its activation process, and so cannot

ecessarily delineate mechanisms for apparent dys-
ynchrony. This is important because dyssynchrony
aused by electrical delay can be targeted by CRT,
hereas that caused by regional properties and/or

oading disparities may not be.
echanical dyssynchrony. In left bundle branch
lock or right ventricular (RV) pacing, septal acti-
ation occurs first, and results in pre-stretch of the
till-quiescent lateral wall, which consequently re-
uces the peak rate of pressure increase (dP/dtmax).
he delayed lateral wall contraction generates sys-

olic forces that are also partly dissipated by re-
tretching the now-early-relaxing septal region,
owering net cardiac output. Discoordinate papillary

uscle activation can further compromise overall
V function by exacerbating mitral regurgitation

23) (Fig. 1). Disparities in wall stiffening that
enerate discoordinate motion are most marked
n early systole (isovolumic contraction, lowering
P/dtmax), and late systole as one territory enters
elaxation ahead of the other (24).

Mechanical dyssynchrony has been measured by
range of imaging modalities, with the largest

�

�

�

�

�

�

� Electrical Inhomog

Mechanical Ineffic
-Early septal motion
-Late lateral motion

LV systolic/diastolic 
LV enlargement
Mital regurgitation

Reduced Coronary
Flow Reserve

Inappropria
Neurohormonal R

Figure 1. Contributors to Electrical and Mechanical Dyssynchron

The contributors to mechanical delays include left ventricular (LV) r

coronary flow reserve, and neurohormonal changes. LVH � left ventricu
vidence base being accumulated with echocardiog-
aphy (3). Respectively, 30% and 40% of patients
ho fulfill eligibility criteria for CRT do not show
symptomatic response or reverse remodeling (18).
hus, electrical dyssynchrony alone, as detected by

lectrocardiography, may not be the optimal pre-
ictor of CRT response. The concept of disconcor-
ance between electrical and mechanical dyssyn-
hrony was supported by an experimental study that
howed improvement in ventricular hemodynamics
ith CRT despite no change in electrical dyssyn-

hrony (25).

maging Approaches to Mechanical Dyssynchrony

chocardiography. Standard echocardiographic
arkers of LV mechanical synchrony have been

ecently reviewed (3). The primary source of varia-
ion between these markers relates to how timing is
ssessed: the simplest are maximal time delays
etween early and late contracting or electrically
timulated regions, total number of regional areas
hat show delay, and variance in timing of motion
round the heart. However, this can miss critical
nformation regarding the geographic distribution
f delays that ultimately generate functional dyssyn-
hrony, and conversely, hearts with scattered het-
rogeneity of activation or contraction may not
ecessarily have much functional dyssynchrony.
he alternative to these segmental approaches are

arious approaches to index dyssynchrony, includ-
ng vector mapping that amplifies the index if the
elayed regions are clustered together, as well as the
o-called CURE (circumferential uniformity ratio

�
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stimate) index (26). These approaches can be
pplied to virtually any way of assessing electrical or
echanical dyssynchrony, and have the potential to

nhance its specificity for therapeutic responsive-
ess. The second important variation relates to the
rientation of the dyssynchrony measurements.
ost tissue Doppler echocardiography (TDE)

echniques provide data in the longitudinal orien-
ation of the myocardium. However, most fibers are
ircumferentially oriented, and deformation in this
imension seems to provide a more reliable and
tronger signal.

Despite a large evidence base with TDE, this
orm of analysis poses several problems. Signal
oise is common, and variability between observers,
ften caused by the presence of multiple systolic
eaks, seems to be a major problem (2). Second, the
easurement of TDE time delays is time consum-

ng, especially if multiple segments are interrogated.
he development of parametric imaging techniques

hat color-code the segments based on time delay
27) may reduce spatial variation as well as save time
Fig. 2). Third, TDE examines the timing of
ontraction in a longitudinal direction, which may
ot be the optimal orientation for discerning both
yssynchrony and the impact of CRT (28). Recent
ata obtained using angle-corrected TDE show
hat radial velocities can also detect dyssynchrony
nd predict acute response to CRT (29).

Tissue velocity measures tissue motion relative to
he transducer and is therefore susceptible to cardiac
ranslational motion and tethering artifacts. Strain

Figure 2. Parametric Display of Tissue Velocity

In this parametric display (often known by its proprietary name, tiss

wall is evidenced by red coloration of the lateral and yellow coloration
easurements are based on movement of tissue
elative to its neighbor and are therefore site specific
30). Unfortunately, TDE-based strain analysis
as not been shown to be superior to tissue
elocity (31), likely reflecting the angle depen-
ence of TDE analysis as well as signal-noise
elated problems. In contrast, speckle-tracking-
ased measurements of radial, circumferential,
nd longitudinal strain (32,33) seem to be both
easible and reliable (Fig. 3).

Quantitative analysis of dyssynchrony with
-dimensional (3D) echocardiography requires bor-
er detection in a number of 2-dimensional (2D)
lices, and creation of a 3D model from which
ime-volume data are obtained (34). The systolic
yssynchrony index, derived from the dispersion of
ime to minimum regional volume (Fig. 4), de-
reases after CRT. Unfortunately, the ability to
ompare timing of all myocardial segments with a
D echocardiography approach is probably out-
eighed by limitations in edge detection and frame

ates. This technique, speckle strain, and contrast
ariability imaging (35) are all the focus of current
esearch.
ardiac magnetic resonance (CMR). Potential advan-
ages of CMR-based techniques for dyssynchrony
ssessment include high reproducibility, high spa-
ial resolution, and the ability to obtain 3D infor-
ation including circumferential mechanics (36),
hich may be superior to that obtained in the

ongitudinal direction (28). Myocardial tagging al-
ows assessment of radial, longitudinal, and circum-

synchronization imaging), delayed activation of the posterolateral
ue

of the posterior walls.
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erential strain by measurements between dark lines
markers or tags) left in the myocardium by special
ncoding pulses (Fig. 5). Recent advances that have
rastically reduced analysis time include harmonic
hase analysis of tagged CMR and strain-encoded
MR (37).
Three CMR indices have been used for measur-

ng dyssynchrony. Regional variance is determined
rom the variance of strain magnitude in 28 radially
isplaced segments for each short-axis section (sim-

lar to the indices used in TDE), or the number of
egments with delayed shortening as a percent of
otal regions examined (38) (Fig. 6). The regional
ariance vector is based on the product of a radial
agnitude vector with a scalar representing time to

Figure 3. Assessment of Synchrony Using Tissue Doppler and S

Panel A shows synchronous septal (yellow) and lateral (blue) wall m
(green) and posterolateral walls (red and blue) using longitudinal s
tissue Doppler echocardiography.

Figure 4. Evaluation of Synchrony Using 3-Dimensional Echocar

Uniform times to minimum volume indicate synchrony (A). The dys

minimum volume (B).
aximal shortening (Fig. 6B). The resulting vector
um will only have significant magnitude if delayed
ersus early regions are geographically clustered
Fig. 6A, upper panel) (28). Lastly, regional strain
niformity is based on regional strain differences at
given moment in time. Time plots of strain

shortening/stretching) are generated at each of 28
venly distributed segments around a short-axis
lice (28). If segments shorten simultaneously (per-
ectly synchronous contraction), the plot appears as
straight line, whereas regionally clustered dyssyn-

hrony generates an undulating plot. The relative
atio of first/zero-order magnitudes derived by Fou-
ier analysis (Fig. 6C) generates an index known as
he circumferential uniformity ratio estimate (28).

le Strain

on with tissue Doppler. Panel B shows delay between the septal
kle strain, confirmed also with circumferential strain (C). TDE �

graphy

hronous left ventricle is characterized by variation in times to
peck

oti
pec
dio

sync
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Potential disadvantages of CMR include cost,
ong imaging time, availability, complex and long
nalysis times, and incompatibility with implanted
evices. These technical problems will likely be

Figure 5. Use of Tagged Cardiac Magnetic Resonance for the As

The progressive deformation of the grid (A) allows measurement of
ment (B). The parametric display (C) shows the time course of cont
synchronous (lower row). RV � right ventricle; other abbreviation a

Figure 6. Cardiac Magnetic Resonance Techniques for Strain Me

The regional variance of strain (A) cannot differentiate identical var
contraction clustered in 1 portion of the left ventricular wall (A, top
former displays dyssynchrony. The regional variance vector of princ
representing time at maximal shortening or instantaneous magnitu
ratio of first/zero-order magnitudes derived by Fourier analysis. The

sus the other so this plot appears sinusoidal. Hearts with more variabili
olved, and CMR may become safe in patients with
mplanted devices.
uclear medicine techniques. When phase imaging

s performed on perfusion scan data, segmental

sment of Synchrony

time course of deformation in the principal axes of each seg-
ion, which can be shown to be synchronous (upper row) or dys-
Figure 1.

rement

e of time to peak contraction between segments with delayed
ersus dispersion of delay through the heart (A, bottom); only the
strain (B) is based on the product of unit vectors with a scalar
f shortening. Regional strain uniformity (C) provides a relative
rt with clustered regions (A, top) shows delays in 1 territory ver-
ses

the
ract
asu

ianc
), v
ipal
de o
hea
ty (A, bottom) yield a higher frequency waveform.
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ounts are proportionate to thickening. Although
cquisitions are obtained at 8 frames/s, Fourier
ransformation of the data is believed to provide an
ffective temporal resolution of 75 frames/s. The
esults of nuclear imaging seem to correspond with
hose obtained with TDE (39), although the lim-
ted published data on CRT effectiveness indicate a
ensitivity and specificity �80% (40).

he Role of Imaging in the EP Laboratory

tandard imaging approaches offer limited value
uring CRT implantation. Transthoracic echocar-
iography may disturb the sterile field, and poor
coustic windows are likely when optimal position-
ng is not possible. Transesophageal echocardiogra-
hy requires a second operator.
Intracardiac echocardiography (ICE) is useful

uring implantation of biventricular devices, allows
rocedural sterility (the catheter is positioned in the
ight heart via a subclavian venous sheath), elimi-
ates the need for a second operator, and provides
xcellent target resolution because of its close prox-
mity (Fig. 7). Intraoperative ICE can facilitate
annulation of the coronary sinus (CS) by identify-
ng the ostium, quantify the degree of mechanical
yssynchrony at the time of the procedure, and

Figure 7. ICE

These typical intracardiac echocardiography (ICE) windows from cat
tative B-mode images in 2 different patients for short-axis (A) and l
ssess the acute response to CRT.
3D rotational angiography is an alternative that
llows 3D chamber reconstruction at the time of
ntervention (Fig. 8) (41). This technique can serve

r positions at the right ventricular base and apex show represen-
-axis (B) imaging. L � lateral wall, S � septum.

Figure 8. 3-Dimensional Rotational Angiography

This representative image from an electrocardiograph gated
3-dimensional rotational angiography show the coronary sinus
hete
and venous vasculature.
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s a helpful tool during the implant by providing: 1)
ccurate 3D CS reconstruction; 2) multiangle visu-
lization of the entire CS; 3) an endocardial view to
valuate branch take-off and valvular anatomy; and
) accurate final LV lead tip position in relation to
V anatomy.
Nonresponse to CRT may be multifactorial,

ut incorrect positioning of the LV lead appears
o be important; a lateral LV lead position may
ot be optimal for all patients. Intraoperative
CE can quantify the degree of mechanical dys-
ynchrony present at the time of the procedure,
nd with the use of additional echocardiographic
arameters such as tissue Doppler velocity or
train measurements, can provide real-time phys-
ologic information regarding CRT response (42)
Fig. 9).

Anatomical visualization and 3D reconstruction
f cardiac chambers during implantation of CRT
evices may be useful for facilitating lead localiza-
ion and assess response. As technology continues
o advance, cardiac imaging during EP interven-
ions will contribute to better procedural success,
educe complications, and aid in the understanding
f the interaction between electrical activation and
natomical substrates.

Figure 9. Use of On-Line Vector Velocity Imaging Analysis to Ex

In each state, velocity vectors are graphically represented in time a
plot of systole (red) and diastole (blue) is seen below this, and B-m
curve plotted for each (bottom). The left ventricular (LV) dyssynchr
and a lack of clear separation of contracting and relaxing elements
the LV lead in the anterior interventricular vein results to a significa

in a posterolateral vein (C), dyssynchrony does not seem to be improve
ost-Implantation Assessment in the CRT Patient

chocardiography is a useful tool for the evaluation of
herapeutic success during follow-up. Patients who do
ot show LV resynchronization do not show reverse
emodeling after CRT (20). However, reverse remod-
ling needs time to occur, and more immediate effects
f successful CRT include an improvement in LV
jection fraction and a reduction in mitral regurgita-
ion, related to both increased closing force and
mprovement in interpapillary muscle synchrony (43).
ate follow-up studies can be expected to show

mproved LV ejection fraction and reduced LVESV
nd LV end-diastolic volume, however, follow-up is
sually at 6 months post-implantation and improve-
ent may take up to 12 months, particularly in

schemic cardiomyopathy. Reverse remodeling is as-
ociated with a reduction in LV annular size and
ormalization of LV geometry, resulting in a further
eduction in mitral regurgitation (44). Other changes
nclude a reduction in RV size and decreases in
ricuspid regurgitation and pulmonary artery pressure.

Echocardiographic atrioventricular optimization
mproves LV dP/dtmax and stroke volume acutely,
nd was performed in many effectiveness studies
45). The iterative method uses pulsed-wave Dopp-

ne Synchrony in Short-Axis Images in Native and Paced States

agnitude in yellow/red in the upper right, a parametric M-mode
image is broken into 6 segments automatically and a strain
(A) is evidenced by nonalignment of strain and velocity vectors
the parametric M-mode plot. The biventricular (BiV) pacing with
eduction of dyssynchrony (B). During BiV pacing with the LV lead
ami

nd m
ode
ony
on
nt r
d.
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er imaging of mitral inflow (Fig. 10). Contempo-
ary CRT devices permit programming of the
entricular-ventricular (VV) interval, but the con-
ribution of VV optimization to improved systolic
erformance is controversial (45) (Fig. 11).

atient Selection for CRT:
linical Versus Imaging Criteria

urrent criteria for CRT implantation include
rug-refractory heart failure (New York Heart As-

Figure 10. The Iterative Method for Atrioventricular Optimizatio

The sequence starts at a long atrioventricular (AV) delay (180 ms, sh
ing by 20-ms increments, until A-wave truncation appears (80 ms).
A-wave truncation disappears and maximum E- and A-wave separa

Figure 11. LV Stroke Volume During VV Optimization

Using 20-ms increments (starting at the left ventricle [LV] activated 80

before the LV), the optimal ventricular-ventricular (VV) delay is the delay as
ociation functional class III to IV), LV ejection
raction �35%, and a wide QRS complex (46). In
he large CRT trials, Mollema et al. (47) showed
hat QRS duration alone yielded only a sensitivity
nd specificity of 53%, with an optimized cutoff
alue of 163 ms. Conversely, echocardiographic
tudies have shown that approximately 30% of
atients with a wide QRS complex do not have
vidence of LV dyssynchrony (as assessed by tissue
oppler imaging). As noted above, although single-

enter studies have shown a high accuracy of a variety

er than intrinsic PR interval to ensure capture) and then shorten-
atrioventricular delay is lengthened by 10-ms increments until

is provided.

before the right ventricle [RV], and ending at the RV activated 80 ms
n

ort
Then
ms

sociated with the largest LV outflow tract velocity time integral.
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f parameters to predict CRT response, reliable mea-
urement of LV dyssynchrony remains a work in
rogress. None of these different techniques was
efinitively superior in the PROSPECT (Predictors
f Response to CRT) trial (2). Indeed, the message of
his trial was that the reproducibility for these param-
ters was limited, and that both the sensitivity and the
pecificity of the echocardiographic techniques were
odest.
How should these observations be incorporated

nto decision making? Patients with heart failure
nd a wide left bundle branch block but no
echanical dyssynchrony should not be denied
RT (3), although it is reasonable to have a
ialog with the patient regarding the possibility
f symptomatic or functional nonresponse. In the
atient with congestive heart failure, systolic
ysfunction, mechanical dyssynchrony and a nar-
ow QRS, trial data do not currently justify the
se of CRT (1).
Perhaps the focus on mechanical synchrony has

een a distraction from more important contribu-
ions of imaging: the detection of scar, correspon-
ence of pacing site and maximum VV delay, and
V and LV status. The presence of scar tissue

n the target zone of the LV lead may limit response
o CRT (48), and the total scar burden is also
mportant (18). Contrast-enhanced CMR may pro-
ide delineation of scar tissue with the highest
patial resolution (Fig. 12). The LV lead is fre-
uently not positioned in the site of latest mechan-
cal activation, and patients with this lead posi-
ion show a worse outcome (49–51). Provision
f information on venous anatomy (Fig. 13) (52)
r the cardiophrenic bundle (e.g., with multislice
omputed tomography) is important before CRT

Figure 12. Contrast-Enhanced Cardiac Magnetic Resonance to Id

These examples of lateral scar show nontransmural (A) and transmu
mplantation.
onclusions

roblems with the reproducibility of the current
eneration of imaging techniques has led to a
egree of nihilism about imaging in resynchroni-
ation therapy. In fact, imaging has important

ify the Location and Thickness of Myocardial Scar

(B) scar thickness.

Figure 13. Use of Computed Tomographic Coronary Venograph
Lead Localization

This electrocardiograph-gated image shows the relationship of the
onary artery (RCA) and left circumflex artery (CX) to the coronary si
great cardiac vein (GCV) and superior cardiac vein (SCV), posterior i
tricular vein (PIV) and left marginal veins (LMV), and posterior vein
left ventricle (PVLV) and side branches (��). Reprinted with permissi
ent
y to Plan

right cor-
nus (CS),
nterven-
of the
on from
Van de Veire et al. (52).
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ontributions such as the characterization of LV
nd RV function and the assessment of myocar-
ial viability and atrioventricular delay. Robust
echniques of high temporal resolution are
eeded for the assessment of LV synchrony. At
resent, multiple imaging modalities contribute
1999;99:1567–73. Heart 2007;93:167–
ith this useful but not uniformly effective treat-
ent modality.
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