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Abstract

In this paper, we consider o,ine validation of hard real-time systems composed of both
periodic and sporadic tasks, embedded on centralized multi-processor architectures. To model
hard real-time systems, we use untimed /nite automata: each accepted word is a valid operational
behavior of the periodic component of the system. Then, by associating generating functions
with edges of the automaton, we give a modular decisional technique to decide the feasibility
of sporadic tasks.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Real-time systems

A real-time system is both reactive (it must react to ingoing events) and concurrent
(all scan and control operations must progress simultaneously). Then, it is composed of
a set of elementary tasks. Each task implements the reaction (or a part of the reaction)
corresponding to a given ingoing event.
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Fig. 1. Functional structure of a hard real-time system.

Some ingoing events follow regular ?ows: they are often transmitted from periodic
captors. Tasks designed both to read and to treat these events must be synchronized with
the corresponding captors. They are periodic tasks (see Fig. 1) we denote by (�i)i∈[1; n]
these tasks. Real-time systems contain also sporadic tasks, which are designed to react
to alarm signals. These tasks are denoted by (�i)i∈[1; p].

We consider systems composed of both periodic and sporadic tasks. Periodic tasks
can share resources and communicate. Sporadic tasks are independent from others
(excepting for processor sharing, of course).
Time speci/cations of real-time tasks have been de/ned in [16]. The operational

speci/cation of hard task � is composed of four characteristics:
• The /rst activation date (r�) is the date of creation of �.
• The critical delay (D�) is the delay between the activation date of an instance of �
and its deadline (later possible completion date).

• The CPU time (C�) of � is the total CPU owning time needed by each instance of
� to end its execution.

• When � is periodic, the period (T�) is the delay between the activation dates of two
successive instances of �. If � is not periodic, it is the minimal time delay between
the occurrences of two successive activation events of �.

1.2. Validation techniques

A software must be validated before being used, in order to guarantee that its be-
havior correspond to its speci/cations. For real-time systems, validation deals with two
aspects: functional validation and time validation. 1 One must guarantee that, whatever
be the process behavior and the incoming event ?ow, the real-time system is able to
react according to its time speci/cations.
As far as a real-time system is composed of tasks which have to progress simultane-

ously, both drive and validation processes depend on the used scheduling policies. Two
diFerent approaches are used: online and o,ine. An online scheduling algorithm selects
the task to activate from the knowledge of an instantaneous view of the system. On
the contrary, while using an o,ine approach, all valid sequences are produced. Then,
at time t, whatever be the future of the task system, we can decide the feasibility of
the system.

1 A valid result is wrong if it is obtained too late.
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Of course, the feasibility of the system depends on both the physical and software
con/gurations. Graham et al. [12] proposed a formal description for the scheduling
contexts and they have been extended and adapted in [4,13]. Here, we do not detail
these descriptions. The scheduling context concerned by our study is:
Hardware: One node, one clock, multi-processors, all processors follow the clock,
share memory.
Software: Periodic and sporadic tasks, there is resource sharing between periodic tasks,
message communication through memory sharing, processor sharing, /xed CPU load
for each task.

1.2.1. Optimal scheduling algorithms
Let us consider a scheduling context C and a task system S, to be scheduled under

context C. The set VC(S) collects all the valid scheduling sequences for con/guration
S in context C: they are sequences which can guarantee that whatever the life duration
of the application, no task misses its deadline. The predicate VC(S)= ∅ means that
con/guration S cannot be scheduled in context C. On the opposite, VC(S) �= ∅ means
that S can be scheduled. A scheduling algorithm A is a function that associates a
set VC;A(S) of scheduling sequences with a con/guration S, under context C. We get
VC;A(S)⊂VC(S).

De�nition 1. A is optimal in context C⇔{VC(S) �= ∅⇒VC;A(S) �= ∅}.

1.2.2. Online policies
Usually, real-time scheduling is based on preemptive priority-based policies. Schedul-

ing decisions are taken online by the scheduler: the higher the priority, the earlier the
task chosen. Priorities can be arbitrary integer constants. In this case, they are asso-
ciated with tasks during the software speci/cation process, and we deal with “static
online scheduling”. Priorities can also be de/ned from time characteristics of tasks
(e.g. priority is the relative deadline of the task). In this case, we deal with “dynamic
online scheduling”.
This approach has generated lot of work. It is often used, because of its ?exibility,

but it is limited because it is not optimal as soon as there are interdependent tasks (i.e.
in all real cases!).

1.2.3. O>ine policies
The hard real-time scheduling decision problem is NP-hard [3]. Then, there is no

optimal online strategy for general systems. This is why strategies based on the exhaus-
tive enumeration of valid scheduling sequences were found. They are o,ine strategies.
Grolleau [13] and Leung and Merill [15] give a minimal simulation duration value,
useful for the exhaustive enumeration process.
O,ine strategies are based on state models (automata, Petri nets, etc.). Some models

are explicit in time [1,10]. They are timed models. They support simulation techniques.
Some other models are implicit in time [13]. They support analysis techniques. In
both the two cases, a central class of studies addresses the problem of production of all
valid scheduling sequences. Moreover, as far as the complexity of feasibility decision
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problem is exponential, a major aim of the work is the research of improvement tech-
niques (often by early detection of branches corresponding to invalid sequences).

1.2.4. Validation
Validating a real-time system consists in proving that in the whole life of the soft-

ware, no deadline will be missed. If we plan to drive the process with an online
algorithm, the validation can be obtained both by simulation of the algorithm or by
model checking techniques, i.e. an o,ine strategy validates an online scheduling. We
can also produce a valid sequence, thanks to an o,ine strategy, and embed it in a
sequencer. But this approach is very in?exible.

1.3. Aim of this work

All these techniques are used to validate periodic systems where there are resource
sharing, task precedence and message communication, in mono-processor environment.
As far as we know, no work deals with sporadic tasks, and few work deal with multi-
processor scheduling validation.
Here, we use a model based on regular languages [11] to collect the valid behavior of

a real-time system. Each task (sporadic and periodic are concerned) is associated with
a regular language, which collects its timely correct behavior. Concurrency is modeled
by the homogeneous product of languages, and task interdependence (resource sharing,
for instance) is integrated, thanks to Arnold–Nivat’s technique [2].
First, we show how untimed /nite automata can be used to model operational behav-

ior. Then, we give a result useful to decide the validity of a task system in a speci/c
scheduling context. Next, we extend the model to give the feasibility decision of the
whole system by analyzing its periodic component.

2. Time valid behaviors

Our model is useful to address problems concerning operational behaviors (deadlines,
etc.), but not functional behaviors (what the program does, etc.). First, we present the
model for periodic tasks. Then, we show that sporadic tasks can be integrated in a
very easy way.

2.1. A regular language to model behaviors

Let us consider task �i, of parameters ri ∈N, Ci ∈N∗, Di ∈N∩ [Ci;+∞[ and Ti∈N∩
[Di;+∞[. From its activation date ri + k ×Ti, the kth instance of �i must own a CPU
resource for Ci time units on the time interval [ri + k ×Ti; ri + k ×Ti + Ti[. Let us
denote by ai the state �i owns a CPU, and by • the state �i does not own a CPU.

De�nition 2. Let L1 ⊂�∗
1 and L2 ⊂�∗

2 . The Shu>e operator, denoted W, is de/ned on
the following way: ∀a∈�1 ∪�2; aW�= {a} ∀(a; b; !; �)∈�1 ×�2 ×�∗

1 ×�∗
2 such that

(a!; b�)∈L1 ×L2; a!Wb�= a(!Wb�)∪ b(a!W�).



D. Geniet, J.-P. Dubernard / Theoretical Computer Science 313 (2004) 119–132 123

Every word of aCi
i W•Di−Ci corresponds, on any time interval of the form [ri +

k ×Ti; ri + k ×Ti + Di[, to a processor allocation con/guration compatible with the
time constraints of �i. This set is regular. If the scheduling con/guration is valid, �i
is inactive on every time interval of the form [ri + k ×Ti +Di; ri + (k + 1)×Ti[. This
inactivity is modeled by the word •Ti−Di . Then, every word of (aCi

i W•Di−Ci)•Ti−Di is a
correct CPU allocation con/guration for �i on any time interval of the form

[ri + k × Ti; ri + (k + 1)× Ti[:

On the operational plan, �i is de/ned as the sequence (�ij)j∈N of its instances. Then,
a processor allocation compatible with �i’s time constraints is a sequence of processor
allocations compatible with �i’s successive instances time contraints. Let (!j)j∈N ∈ ((aCi

i
W•Di−Ci)•Ti−Di)N. For each n∈N, the word !0!1 : : : !n models a valid 2 processor al-
location con/guration for any sequence of n+1 successive instances of �i. In a general
way, any word ! of ((aCi

i W•Di−Ci)•Ti−Di)∗ models a valid processor allocation con-
/guration for �i on any time interval of the form [ri + k ×Ti; ri + k ×Ti + |!|[, and
then on the time interval [ri; ri + |!|[. As far as �i is inactive on interval [0; ri[, the
word •ri! models a valid processor allocation on the time interval [0; ri + |!|[. ! can
be as long as we want. Then, the language •ri((aCi

i W•Di−Ci)•Ti−Di)
∗
collects all valid

processor allocations for �i.
The scheduling validation problem consists, at time t, in deciding the evolution

possibilities of �i in both the given hardware and software context. Of course, the
past of �i is known. Here, this past is the history of �i’s CPU allocations, that is a
/nite word ! of {ai; •}∗. During this past, some instances of �i were completed, and
the current instance is on (we can consider it even if it is just beginning). Then, by
construction, ! is of the form !1�, where !1 ∈ •ri ((aCi

i W•Di−Ci)•Ti−Di)
∗
(past instances

were valid), and ∃�∈{ai; •}∗ such that ��∈ ((aCi
i W•Di−Ci)•Ti−Di) (the current instance

can be completed according to the time constraints). Then, ! is a pre/x of a word
of •ri((aCi

i W•Di−Ci)•Ti−Di)
∗
. For any instant f belonging to ]t;+∞[ (the future), there

exists a word � in •ri((aCi
i W•Di−Ci)•Ti−Di)

∗
such that |!��|¿f. Recall that

De�nition 3. The center of language L is the set of pre/xes of L that can be inde/nitely
extended in L.

Remark. Algebraically, Center(L)=L∗:LeftFactors(L).

Then, the past ! of �i belongs to the center of •ri((aCi
i W•Di−Ci)•Ti−Di)

∗
. Reciprocally,

by de/nition, every word of this center language is the past of a valid processor
allocation con/guration.

De�nition 4. We call time valid behavior of task �i every word of the language
Center(•ri((aCi

i W•Di−Ci)•Ti−Di)
∗
).

2 I.E. compatible with �i’s time constraints.
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A time valid behavior of �i models a processor allocation con/guration such that, in
the future, the past of �i can eFectively be extended according to �i time constraints.
In the following, we denote by L(�i) this language.

2.2. Integrating sporadic tasks

We have seen in Section 1.1 that sporadic tasks are connected with alarm signals:
each occurrence of an alarm releases an instance of the task. This behavior leads /rstly
to the /rst occurrence date to be unknown, and secondly, the beginning of the task
to follow the occurrence of the alarm event: this occurrence is modeled by a Send
statement (the physical process is the sender), the code of the task begins with the
corresponding Receive statement, and the synchronization takes the delay into account
to decide the feasibility of the task.
The pre/x •ri that corresponds, for periodic tasks, to the inactivity delay before

the creation of the task is replaced, for sporadic tasks, by •∗: the delay can be any
positive duration. A similar analysis for the time interval that separates two successive
instances of the task leads us to replace the suPx •Ti−Di by the suPx •Ti−Di•∗: for
sporadic tasks, Ti is a ?oor value.
Then, the time model for �i, of characteristics ri =⊥, Di¿0, Ci ∈ [0; Di], and Ti¿Di,

is L(�i)=Center(•∗(((RAlarmi(ai)
Ci−1)W•Di−Ci) •Ti−Di •∗)∗).

2.3. Time valid behaviors for task systems

To model concurrency, we use the homogeneous product of regular languages, which
is de/ned in the following way:

De�nition 5. Let �1 and �2 be /nite alphabets, and L1 ⊂�∗
1 and L2 ⊂�∗

2 .
• Let �=(�i)i∈[1; |�|] ∈L1 and &=(&i)i∈[1; |&|] ∈L2. The homogeneous product of � and

& is the word �'&∈ (�1 ×�2)∗, de/ned in the following way: |�| �= |&|⇒ �'& is
not de/ned and

|�| = |&| ⇒ �'& =

(
�1
&1

)(
�2
&2

)
: : :
(

�|�|
&|&|

)
:

• The homogeneous product of L1 and L2 is L1'L2 = {�'&; �∈L1; &∈L2}.
' is a binary operator. Then, on an algebraic plan, ((a)'(b))'(c) is equal to

((ab)
c

)
,

and (a)'((b)'(c)) is equal to
( a
(bc)
)
. However, by using the equivalence




a

b

c


 ≡




a(
b

c

) ≡




a

b

c


 ;

we consider that ((a)'(b))'(c)= (a)'((b)'(c))= (a)'(b)'(c). This is why, in the
following, we consider that ' is associative, and we use the notation 'i=n

i=1 Li.
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Since L(�i) is a center of regular language, there is no task whose set of time valid
behaviors is reduced by the homogeneous product. This comes from the property 3

∀j∈ [1; n]; (j('i=n
i=1(L(�i)))=L(�j), which is valid for centers of regular languages. Note

that, since periodic and sporadic tasks are modeled by regular languages, this property
stands for the two classes of tasks.
To integrate task interdependence (communication, resource sharing) between

(�i)i∈[1; n] (since we only use properties of regular languages, �i can be periodic or
sporadic), we use Arnold–Nivat’s technique [2]: each resource (shared resource or com-
munication message) is modeled by a virtual task �R, used to trace its states (busy=idle,
for instance). ('i=n

i=1 L(�i))'L(�R) collects the behaviors of the system composed of both
the tasks (�i)i∈[1; n] and the resource R. Consider now the set S of the instantaneous
con/gurations compatible with the resource protocol. (('i=n

i=1 L(�i))'L(�R))∩ S∗ collects
the sole behaviors of (�i)i∈[1; n] compatible with the resource protocol management.
The class of regular languages centers is not closed by intersection. Here, this prop-

erty means that sharing a critical resource can lead a real-time task system to miss at
least one deadline. Since we are interested in the set of time valid behaviors, we only
consider the subset of (('i=n

i=1 L(�i))'L(�R))∩ S∗ that collects the time valid behaviors
(i.e. the scheduling sequences that can inde/nitely be extended according to the system
time contraints) for the whole task system. Following the same reasoning than for a
single task, we de/ne the set of time valid behaviors of a task system in the following
way:

De�nition 6. Let (�i)i∈[1; n] be a task system and (Rj)j∈[1; r] a set of synchronization
constraints. A time valid behavior of (�i)i∈[1; n] according to resources (Rj)j∈[1; r] is an
element of the language

L((�i)i∈[1;n]) = Center
(
([1;n]

(((
i=n
'
i=1

(L(�i))
)

'
(

i=r
'
i=1

(L(Ri))
))

∩ S∗
))

:

3. Time validation

By using our model we give here a predicate useful to decide the feasibility of a task
system. In this section, �i can be sporadic or periodic, since we only use properties of
regular languages. We denote by *1; r

1; n the synchronized product ([1; n]((('i=n
i=1(L(�i)))'

('i=r
i=1(L(Ri))))∩S∗). This language is partioned into Center(*1; r

1; n)∪(*1; r
1; n\Center(*1; r

1; n)).
Center(*1; r

1; n) collects the set of time valid behaviors, and *1; r
1; n\Center(*1; r

1; n) the set
of time unvalid behaviors: since they do not belong to the center of the language, they
model the CPU allocation sequences such that it is sure that, in the future, at least
one of the tasks will miss a deadline. Then, the center of *1; r

1; n exactly gives the set of
time valid behaviors. The decision predicate for the feasibility of a given task system
is then Center(*1; r

1; n) �= ∅.

3 (j is the projection (xi)i∈[1; n] → xj . This notation is naturally extended to intervals: ([a; b] is the projection
(xi)i∈[1; n] → (xi)i∈[Max(1; a); Min(b; n)].
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4. Using generating functions to decide feasibility of sporadic tasks

Our goal is to decide the feasibility of sporadic tasks from the sole knowledge of the
behaviors of the periodic component of the system. Then, when an alarm signal occurs,
we must decide from the knowledge of the current state of the periodic component if the
corresponding sporadic task � can be scheduled. Then, one must /nd a processor idle
for C� time units in the next D� time units. To answer to this question, we associate the
periodic component model (the /nite automaton) with additional informations, whose
role is to know a good approximation of the early future.
This additive information will be implemented in the model, thanks to generating

functions. In Section 4.1, we show that useful functions are multivariate generating
series. Then, in Section 4.2, we show how to use these functions to decide the feasibility
of sporadic tasks. Finally, in Section 4.3, we show that this technique is modular.

4.1. The used multivariate series and their semantics

Let us consider a task system 4 composed of n periodic tasks (�i)i∈[1; n] and p spo-
radic tasks (�i)i∈[n+1; n+p]. Periodic tasks share r critical resources. Each �j is inde-
pendant of any other task. We suppose that the periodic component of the system is
feasible, i.e. Center(*1; r

1; n) �= ∅. The whole system is feasible if

∀j ∈ [1; p]; ∀t ∈
[
min
i∈[1;n]

(rpi );+∞
[
∩
{

Possible activation

dates of �j

}
;

the activation of �j at time t does not induce a temporal fault.
We denote by -1; r

1; n the minimal deterministic automaton such that L(-1; r
1; n)=Center

(*1; r
1; n). A state i of -1; r

1; n models a state of the system (�i)i∈[1; n]. If an alarm event occurs
when -1; r

1; n is in state i, the corresponding sporadic task �i must be scheduled (according
to its time speci/cations) in the next Di time units. There are two possibilities: /rstly,
there is no edge issued from i compatible with the time speci/cations of �i; secondly,
there exists edges issued from i that are compatible with the time speci/cations of �i.
We must be able to decide if such outgoing edges exist and, if there exists at least one,
we must be able to select the good edges. To solve this problem, we must associate
to each edge e issued from i the information (Di; KDi)i∈[n+1; n+p], where KDi is the
maximal number of idleness instants of the processor in the Di next time units. With
these informations, for each e issued from i, we can decide if choosing e is compatible
with �i time speci/cations.
When the scheduling context concerns multi-processor architectures, other informa-

tions are needed: at time t, many tasks can be simultaneously active, and processors
can be idle. We must separate the simultaneous idle time units, that concern diFerent
processors, from consecutive idle time units, that concern any processor: since tasks
are sequential, two consecutive idle time units can be allocated to the same task, but
two simultaneous idle time units cannot be. To decide if an edge e is compatible with

4 Let us recall that tasks of the application cannot be parallelized.
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time speci/cations of �i, one must know if choosing e as /rst step is compatible with
the allocation to �i of Ci consecutive CPU time units in the next Di time units. Then, if
( is the number of processors, we associate with e the information (Di; (Kk;Di)k∈[0; (]),
where Kk;Di is the number of time units, in the next Di time units, where exactly k
processors are simultaneously idle. If k sporadic tasks are active, the feasibility of the
system comes from the predicate Kk;Di¿Ci. In the mono-processor case, this informa-
tion coincides with KDi . In both cases, if there are more sporadic tasks than processors,
they must be scheduled on the processors: this operation can be solved thanks to any
scheduling technique.
For a /nite automata family (Ai)i∈I the homogeneous product construction process

consists in computing an edge e of 'i∈I (Ai) from a family (ei)i∈I of edges of the
Ai’s. Let 0(e) be the information (Di; (Kk;Di)k∈[0; (]) that we associate with e, and let
us consider, for instance, on a 2-processor con/guration, edges e1 and e2, respectively
associated with the following informations:
e1 We dispose of in the three next time units, one processor idle for three time units,

and two processors simultaneously idle for two time units. The idleness con/gura-
tion belongs to

{(•
•
)(•

•
)(

•
)
;
(•
•
)(

•
)(•

•
)
;
(
•
)(•

•
)(•

•
)}

.
e2 In the next three time units, the processor—there is only one—is idle during one

time unit. The idleness con/guration belongs to {(•)()(); ()(•)(); ()()(•)}.
The product automaton contains an edge e, which models the simultaneity e1==e2. The
respective idleness con/gurations of e1 and e2 lead e idleness con/guration to belong
to 


( •

•
•

)(
•
•

)(
•

)
;
( •

•
•

)(
•

)(
•
•

)
;
(

•
•

)(
•
•

)(
•
•

)
;
(

•
•

)( •
•
•

)(
•

)
;(

•

)( •
•
•

)(
•
•

)
;
(

•
•

)(
•

)( •
•
•

)
;
(

•

)(
•
•

)( •
•
•

)

 :

One must remark that there are elements of this set that correspond to diFerent idleness
con/gurations (in terms of feasibility capacities for sporadic tasks). Then, knowing
0(e1) and 0(e2) is useless to build 0(e): the number of time units where there are
idle processors must be completed by the exhaustive description of each con/guration,
because 0(e) is permutation dependent.
To answer to this problem, we enrich 0(e1) by associating with each transition the

information (D; (Idlei)i∈[1; D]), where D= Max�∈{(�i)i∈[1; p]}(D�) is the maximal deadline
of the sporadic tasks, and Idlei ∈N is the number of idle processors in the next ith
time unit. This strategy leads 0(e) to be directly computable from 0(e1) and 0(e2)
and, more generally, to be computable from (0(ei))i∈I .
To implement 0(e) into generating series, we associate with each state s of -1; r

1; n the
function Fs(y)∈N�(pi)i∈[0; (]�[y], where
• ( is the number of available processors.
• y’s power collects deadlines (i.e., here, lengths of words). For instance, in y12p4

1p
7
2,

y12 means that we are looking forward the next 12 time units.
• In the same way, the pi’s are designed to implement the vector (Idlei)i∈[1; D]. For

instance, in p1p7p5p1p4, the predicate p5 appears in 3rd position means that dur-
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ing the next 3rd time unit, there will be exactly 5 processors simultaneously idle.
More generally, pi appearing in jth position in the sequence means that in the next
jth time unit, there will be exactly i processors simultaneously idle. Note that this
implementation of 0(e) imposes to consider non-commutative series. This is why
Fs(y)∈N�(pi)i∈[0; (]�[y].

-1; r
1; n is converted into a linear system M ×F =T by the use of Chomsky–

SchSutzenberger’s technique [6]. M and T are, respectively, a matrix and a vector
whose coePcients belong to N�(pi)i∈[0; (]�[y], and F the unknown vector. M and
T are obtained by the classical constructive technique.

4.2. Feasibility decision for sporadic tasks

In this section, we show how to use these generating functions, in order to decide
the feasibility of a given sporadic task.
Let � be a sporadic task of time characteristics (C�; D�; T�), whose activator alarm

event occurs when the periodic component of the system is in state i. We denote by Ei

the set of edges outgoing from i, and Fe the generating function associated with edge
e. � is feasible if there exists an edge e∈Ei compatible with �’s time characteristics.
[yD� ]Fe(y; (pk)k∈[1; (]) is a polynomial of N�(pk)k∈[1; (]�, that collects the words

which model the possible scheduling sequences for the next D� time units, when se-
lecting e as /rst step. � is feasible if one of its monomials corresponds to a sequence
with at least C� consecutive idle time units. The operational semantics associated
with the pi’s leads this property to stand as soon as there exists a monomial m in
[yD� ]Fe(y; (pk)k∈[1; (]) such that |4(m)|¿C�, where 4 is the morphism de/ned on the
pi’s on the following way: 4(p0)= � and i¿0⇒ 4(pi)= a. On the opposite—no e∈Ei

satis/es this property—� is not feasible, i.e. the system cannot accept the alarm signal
according to its time constraints: operational speci/cations and functional conception
of the system must be reviewed!
If there are many sporadic tasks concerned, the criterion is the conjunction, for all

tasks, of the existence of such sequences (because we assume sporadic tasks to be
independent from others). In this case, we must extend the criterion to words that
model valid scheduling sequences for all concerned sporadic tasks.

4.3. Modularity of the enriched model

In this section, we show that the computing of the generating series associated with
the edges of the automaton is modular.
The structure of -1; r

1; n [11] leads Fe’s to be of the form [7] N1(y)+N2(y)=(1−yPD),
where N1, N2 and D are polynomials of N�(pk)k∈[0; (]�[y] and P= lcmi∈[1; n](Ti)
is the lcm of the periods of the periodic tasks. We saw in Section 2.3 that *1;r

1;n is
computed by the homogeneous product operator. On an algorithmic plan, we built the
automaton -1; r

1; n, which accepts Center(*1; r
1; n).

Each edge e of -1; r
1; n is obtained from the sole n-uple (ei)i∈[1; n] of edges of the

automata (Ai)i∈[1; n] which accept the L(�i)’s. In this part, we show that this property



D. Geniet, J.-P. Dubernard / Theoretical Computer Science 313 (2004) 119–132 129

stands for the extended model: the generating function associated with e can be com-
puted from the sole generating functions associated with the (ei)i∈[1; n]. We map the
generating functions associated with edges (ei)i∈[1; n] to weighted automata, and we use
algebraic handlings on these automata to compute the generating function associated
with e.

4.3.1. Linear representation of weighted automata
For weighted automata [14], we follow the de/nition:

De�nition 7. Let K be a semiring. A K-automata is a 5-uple (�;Q; I; T; 8), where � is
an alphabet, Q a /nite set, I (the initial states) and T (the terminal states) K-subsets 5

of Q, and 8 a K-subset of Q×A×Q.

Such automata are usually presented under a linear form (4; �; 9), where 4∈K1×n,
�∈Kn×n and 9∈Kn×1 [5]. For each a∈�, we build a matrix �(a)∈MQ×Q(K) in the
following way: ∀(i; j)∈Q 2; �i; j(a)=E(i; a; j). In the K subset I (resp. T ), noninitial
(resp. terminal) states are characterized by a zero weight. Then, I and T can be viewed
as vectors 4=(41; : : : ; 4n) and 9=(91; : : : ; 9n) such that ∀s∈Q; 4s = I(s) and 9s =T (s).
Let B be a weighted automaton. For !∈A∗, IE(!)T! gives the acceptation value of
!. The behaviors of Bis the series C(B)= �!∈A∗ IE(!)T!. The 3-ple (4; �; 9) is called
linear representation of C(B). This notion coincides with the notion of language when
weights belong to {0; 1}.
A series S is recognizable if there exists a weighted automaton B(and then a linear

representation (4; �; 9)) such that C(B)= S [9]. In this paper, a recognizable series S
is denoted by (4; �; 9).

4.3.2. Series operators to model task composition
In this work, we deal with polynomials of N�(pk)k∈[0; (]��y�, that are associated

with states and edges of the automaton -1; r
1; n. Then, this set of polynomials is designed

to be our semi-ring K. To compose polynomials of this set, we use the two following
diFerent operators.
Let us de/ne the /rst operator. Let s1 =p1p3p0p2y4 and s2 =p3p1p2y3 be two

polynomials of K. Each of them models a speci/c CPU load con/guration, i.e. a
speci/c forward path in the automaton.
Outgoing from state i, we must select the best edge, in terms of CPU load, i.e.

de/ne a max operator, obviously based on an order. Many orders can be considered,
dependent on the criterion we search to optimize. We do not detail this point, and we
consider the order of maximal width. For instance, in the following example, we get

s1 = p1p3p0p2y4 indicals−−−−−→ (1; 3; 0; 2) min−−−−−→ 0;

s2 = p3p1p2y3 indicals−−−−−→ (3; 1; 2) min−−−−−→ 1:

Then, max(s1; s2)= s2. (K; max) has a structure of commutative monoid.

5 A K-subset S of E is a mapping E→K, where K is a semiring.



130 D. Geniet, J.-P. Dubernard / Theoretical Computer Science 313 (2004) 119–132

The second-operator models simultaneity of sequences. Since in pk , the number
of processors simultaneously idle is modeled by k, this simultaneity operator comes
from the addition of indicials. Let us denote by ⊗ this operator. For instance, we get
p1p3p0p2y4 ⊗p3p1p2y3 =p4p4p2p2y4. This operation is implemented in the follow-
ing way:

p1p3p0p2y4 (1; 3; 0; 2) + (4; 4; 2; 2)

p3p1p2y3 (3; 1; 2;⊥) p4p4p2p2y4

✲Indicials ✲ ✲

❄
✲Indicials

�
�
�
��✒

⊗ is internal and associative in K, and its zero element is 1: (K;⊗) is a monoid,
and then (K; max;⊗) is a semiring.

4.3.3. Weighted automata associated with generating functions
We consider now the state i of -1; r

1; n. We saw in Section 4.3 that the generating
function associated with i is F(y)=N (y)(yQ(y))∗ =N (y)=(1−yQ(y)), where N and
Q belong to N�(pk)k∈[0; (]�[y]. Let us denote by ni and qi the respective general
terms of the polynomials N and Q. We get N (y)=

∑i=m
i=0 niyi and Q(y)=

∑i=P
i=0 qiyi.

Note that P is the lcm of the periods of the periodic tasks: this is a property of Q
that comes from the cyclicity of scheduling sequences [13]. As N is obtained by a
reduction to the same denominator, we get P¡m.
The following result makes the model modular (we denote Max(x; y) by x ./ y):

Theorem 1. Let

F(y) =
∑i=P

i=0 niyi

1− y
∑i=m

i=0 qiyi
F(y)

is the 3-ple (4; �; 9), with

4 = ( n0 − nP; 01×((P./m)−P) )

9 =
(

1
0(P./m)×1

) � =


 0((P./m)−m)×(m+1)

0(m+1)×(m+1) 0((P./m)−m)×((P./m)−m)




Proof. We build the automaton accepting yQ(y)=y
∑k=m

k=0 qkyk . Note that each of the
monomials qkyk+1 labels a unique path which starts at state (ym−k+1=D). The linear
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representation of this automaton is

41 = (0; q0; : : : ; qm); 91 =

(
1

0(m+1)×1

)
and �1(y) = :

The linear representation of (yQ(y))∗ is obtained from (41; �1; 91) by using the results
of [8] (classical operators on series are expressed in term of weighted automata ‘linear
form’). From the automaton associated with S, the automaton associated with S∗ can be
computed if 49=0, which is the case in our study. We obtain the automaton (42; �2; 92),
where

42 = (01×(m+2); 1); 92 =




1

0(m+1)×1

1


 and �2 = :

Now, we make i the unique initial state of this automaton, weighted by m. Each
monomial accepted by the automaton y(Q(y))∗ is now accepted multiplied by myi:
the modi/ed automaton accepts myi=(1− yQ(y)).
This operation is performed for each i∈ [0; P]. The entry in state 1 is now valuated

by n0 and no more by 1. So, the obtained automaton accepts 1=(1−yQ(y))
∑i=P

i=0 niyi,
i.e. N (y)=(1 − yQ(y)). From the expression of the behavior of this automaton, we
obtain its linear form.

Duchamp et al. [8] shows that the Hadamard product r� s of functions r and s
can be computed through the linear form of the associated automata (4r; �r; 9r) and
(4s; �s; 9s). The series r� s is the behavior of (4r ⊗ 4s; �r ⊗ �s; 9r ⊗ 9s), where ⊗ is the
tensorial product, that is here the product operation of K.
In this way, we compute the generating function associated with a product edge

(e1; e2) from the sole knowledge of the generating functions associated with e1 and e2.
The enriched model is then modular.

5. Conclusion

The main contribution of this work is to give a constructive technique to decide
the feasibility of systems that contain sporadic tasks. If sporadic tasks have to be
synchronized with periodic, decision is given by using the basic model. If not, the
extended model gives a technique to avoid the construction of very expensive structures.
We give in Section 4.3 a constructive result that makes this extended model modular.
Many works are ongoing. Firstly, we intend to extend this result to the real case of
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sporadic tasks in which CPU load is not /xed (this case concerns the very frequent
case of tasks whose body contains if : : : then : : : else statements). Secondly, we are
improving the model by searching to avoid the eFective construction of some parts of
the automata. Finally, when a task con/guration is not feasible, we search a strategy to
give diagnostic informations to the user, to help him to review the time speci/cations
of the system, in order to make it feasible.
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