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SUMMARY

Enveloped viruses that rely on a low pH-dependent
step for entry initiate infection by fusing with acidic
endosomes, whereas the entry sites for pH-indepen-
dent viruses, such as HIV-1, have not been defined.
These viruses have long been assumed to fuse
directly with the plasma membrane. Here we used
population-based measurements of the viral content
delivery into the cytosol and time-resolved imaging
of single viruses to demonstrate that complete
HIV-1 fusion occurred in endosomes. In contrast,
viral fusion with the plasma membrane did not prog-
ress beyond the lipid mixing step. HIV-1 underwent
receptor-mediated internalization long before endo-
somal fusion, thus minimizing the surface exposure
of conserved viral epitopes during fusion and
reducing the efficacy of inhibitors targeting these
epitopes. We also show that, strikingly, endosomal
fusion is sensitive to a dynamin inhibitor, dynasore.
These findings imply that HIV-1 infects cells via endo-
cytosis and envelope glycoprotein- and dynamin-
dependent fusion with intracellular compartments.

INTRODUCTION

Endocytosis is an obligatory entry step for enveloped viruses

whose fusion proteins are activated by acidic pH (Marsh and

Helenius, 2006). In contrast, viruses that undergo fusion upon

interacting with cognate cellular receptors irrespective of the

pH are thought to fuse directly with a plasma membrane. For

instance, HIV-cell fusion initiated upon sequential interactions

of the envelope (Env) glycoprotein with CD4 and coreceptors

CCR5 or CXCR4 (e.g., Doms and Trono, 2000) has long been

assumed to occur at the cell surface, whereas internalized

virions were thought to be degraded by cells (Maddon et al.,

1988; McClure et al., 1988; Pelchen-Matthews et al., 1995; Stein

et al., 1987). This notion is supported by the fact that HIV can

mediate fusion between adjacent target cells (‘‘fusion from

without’’) and that HIV Env expressed on effector cells promotes

fusion with target cells at neutral pH. In addition, mutations in

CD4 or coreceptors (CR) that impair their ligand-induced inter-

nalization do not block HIV-1 infection (Brandt et al., 2002; Mad-
don et al., 1988). The fact that pseudotyping the HIV core with the

low pH-dependent G glycoprotein of Vesicular Stomatitis Virus

(VSV) eliminates the Nef requirement for optimal infectivity

(Aiken, 1997) is indicative of different entry routes for these and

HIV Env-bearing viruses. In addition, the restriction on HIV-1

infection in resting T cells imposed by the cortical actin is consis-

tent with fusion at the cell surface (Yoder et al., 2008).

On the other hand, several lines of evidence support the exis-

tence of an alternative endocytic pathway for HIV-1 entry. First,

HIV fusion with endosomes and micropinosomes has been

observed by electron microscopy (Marechal et al., 2001; Pauza

and Price, 1988). Second, blocking the acidification of endoso-

mal compartments can augment HIV infection, apparently by

sparing the virus from degradation in lysosomes (Fredericksen

et al., 2002; Schaeffer et al., 2004; Wei et al., 2005). Third, effi-

cient infection by HIV particles pseudotyped with VSV G (Aiken,

1997) shows that there are no apparent restrictions associated

with the endocytic entry pathway. Finally, inhibition of clathrin-

mediated endocytosis reduces the efficacy of HIV-cell fusion

and infection in HeLa-derived cells (Daecke et al., 2005).

However, this intervention perturbs important cellular functions

and may thus alter the sites of virus entry.

Here, we applied time-resolved single-virus imaging and

a virus population-based fusion assay to delineate the cellular

entry sites of HIV-1. These approaches have revealed that,

surprisingly, complete HIV-1 fusion occurred in endosomal

compartments but not at the plasma membrane of epithelial

and lymphoid cells. We found that endosomal fusion was de-

layed relative to HIV-1 uptake via CD4/CR-dependent endocy-

tosis and that the fusion step was enhanced by the large GTPase

dynamin. Methodologies developed in this work should help

define the entry pathways of other pH-independent viruses.

RESULTS

To elucidate the sites of virus entry, we first compared the effects

of fusion inhibitors blocking surface-accessible viruses and

universal inhibitors that block all viruses irrespective of their loca-

tion. If fusion is limited to the cell surface, these interventions

should yield identical results. However, the ability to enter into

and fuse with endosomes would result in the transient appear-

ance of viruses resistant to external inhibitors but sensitive to

inhibitors blocking endosomal fusion. The difference in virus

sensitivity to site-specific and universal inhibitors can thus be

used to deduce the entry sites of pH-independent viruses.
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Figure 1. Dissection of Surface and Endo-

somal HIV-1 Fusion

(A) Virus fusion with TZM-bl cells was stopped by

adding C52L after indicated times of incubation

at 37�C, and incubation was continued up to

90 min, at which point the cells were briefly placed

on ice and loaded with the BlaM substrate. Alter-

natively, fusion was stopped by placing cells on

ice after varied times of incubation at 37�C (TB).

After loading the substrate, cells were incubated

overnight at 13.5�C regardless of the fusion

protocol to allow the substrate cleavage. The red

and blue dashed lines were obtained by subtract-

ing the TB plot from the C52L escape plot for JRFL

and HXB2, respectively. Unless stated otherwise,

data points are means ± standard error of the

mean (SEM) from triplicate measurements.

(B) Fusion of VSV G pseudotypes with TZM-bl cells

was blocked at indicated times either by treating

cells with 2 mg/ml pronase on ice (10 min), adding

50 mM NH4Cl, or chilling the samples (TB). Cells

were then loaded with CCF2 and incubated over-

night at 12�C.

(C and D) After 20 min at 37�C, viruses remaining at

the surface of TZM-bl cells were rendered nonfu-

sogenic by adding C52L (arrow), and the extent

of fusion over time at 37�C was determined by

chilling cells either immediately or at indicated

time points (green squares).

(E) HXB2 virus escape from C52L and from the TB

in CEMss cells was measured as described above.

The dashed blue line represents the difference

between the C52L and TB curves. Error bars are

SEM (n = 4).
HIV-1 Fusion Is Delayed Relative to Its Escape
from a Membrane-Impermeant Fusion Inhibitor
Virus-cell fusion was directly quantified by measuring the

cytosolic activity of viral core-associated b-lactamase (BlaM)

(Cavrois et al., 2002). HIV-1 cores carrying a BlaM-Vpr chimera

were pseudotyped with Env from JRFL (CCR5-tropic) or HXB2

(CXCR4-tropic) HIV-1 strains. We first examined the HIV-1 entry

sites in HeLa-derived indicator cells expressing CD4, CCR5, and

CXCR4 (designated TZM-bl cells; Wei et al., 2002). Viruses were

allowed to bind to cells in the cold, and fusion was initiated by

shifting to 37�C and measured as the extent of cleavage of

a fluorogenic substrate by the cytosolic BlaM-Vpr. To determine

the kinetics of virus-cell fusion, we stopped the reaction after

varied times of incubation at 37�C by adding a recombinant

peptide derived from the C-terminal heptad repeat region of

HIV-1 gp41 (hereafter referred to as C52L; Deng et al., 2007).

C52L and other gp41-derived peptides inhibit fusion by binding

to intermediate gp41 conformations formed upon Env interac-

tions with CD4 and CR and preventing the formation of the final

6-helix bundle structure (reviewed in Eckert and Kim, 2001). The

time of C52L addition experiments revealed that the kinetics of

the JRFL and HXB2 escape from this membrane-impermeant

inhibitor was relatively fast, showing little or no lag and reaching

completion within �2 hr (Figure 1A).

To block HIV-1 fusion irrespective of its cellular location, we

took advantage of the steep temperature dependence of HIV-1

fusion (Frey et al., 1995; Mkrtchyan et al., 2005). JRFL and
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HXB2 fusion with TZM-bl cells exhibited a well-defined threshold

at�22�C (Figure S1A available online). By contrast, the cytosolic

BlaM was active at temperatures that were not permissive for

fusion (data not shown). This allowed kinetic measurements of

virus-cell fusion by quickly reducing the temperature after varied

times of incubation at 37�C, followed by an overnight incubation

at subthreshold temperature to permit substrate cleavage.

The temperature block (TB) protocol showed that, surprisingly,

the cytosolic BlaM delivery was greatly delayed compared to the

virus escape from C52L (Figure 1A). This delayed kinetics can

result from two principal mechanisms. Low temperature can

either block Env-mediated fusion or inhibit post-fusion steps

that may be required for the optimal activity of the viral core-

associated BlaM-Vpr. However, previous work (Cavrois et al.,

2004) and our data (Figure S1B) show that the post-fusion

uncoating step does not enhance the BlaM activity. We found

that this activity was not affected by inhibition of cellular prote-

ases or proteasomes and, importantly, was observed in vitro in

the absence of any cytosolic factors (Figures S1C–S1E). Thus,

the cleavage of BlaM substrate faithfully reports the extent of

virus-cell fusion.

Our experimental strategy to elucidate the sites of virus entry

was further validated using HIV particles pseudotyped with the

low pH-dependent VSV G. As expected for an endocytic entry

pathway, escape from the TB was delayed relative to the virus

uptake measured by the emergence of the BlaM signal resistant

to pronase (Figure 1B). The temperature-dependent steps of



VSV G fusion were completed soon after the completion of low

pH-dependent steps, as measured by the virus, escape from

the block imposed by NH4Cl. The quick appearance of the

TB-resistant BlaM signal after the low pH-induced fusion further

implies that temperature-dependent post-fusion steps are not

required to render BlaM-Vpr active.

HIV-1 Likely Enters Lymphoid Cells through
an Endocytic Pathway
To define the sites of HIV entry in more natural target cells, we

measured the rates of virus escape from C52L and from the

TB in lymphoid CEMss cells expressing CD4 and CXCR4. In

these cells, both rates were considerably faster than in TZM-bl

cells (Figure 1E versus Figure 1A). However, the loss of sensitivity

to C52L occurred much earlier than the progression beyond

temperature-dependent steps, suggesting that endosomal

fusion is the major HIV-1 entry route in T cells.

HIV-1 Associated with CD4 and Coreceptors Spends
Considerable Time in Endosomes prior to Fusion
The divergent rates of HIV-1 escape from C52L and the

TB demonstrate that the actual fusion is much slower than the

loss of sensitivity to the membrane-impermeant fusion inhibitor,

which has been customarily interpreted as fusion with the

plasma membrane. The difference between the C52L- and

TB-resistant BlaM signals should reflect the fraction of internal-

ized viruses that have not fused at that time point (Figure 1A,

dashed lines). Within the first 20 min of incubation, �40% of

viruses appeared in C52L-inaccessible compartments, while

only a small fraction acquired resistance to the TB. The high level

of internalized viruses was maintained during the next 20 min due

to the similar rates of escape from C52L (endocytosis) and the TB

(fusion). Likewise, nearly half of the viruses were protected from

C52L but did not fuse with CEMss cells within the first 10 min at

37�C (Figure 1E, dashed line). Collectively, these findings show

that HIV-1 fuses primarily, if not exclusively, with endosomes.

In order to separate plasma membrane entry from endosomal

entry, viruses were prebound to cells in the cold and incubated at

37�C for 20 min, at which point surface-accessible unfused

viruses were blocked by C52L. The BlaM signal was then chased

by dropping the temperature either immediately or after varied

times of incubation at 37�C in the presence of the inhibitor. Under

these conditions, any increase in the BlaM signal over time

should be exclusively due to viral content release from endo-

somes. The chase experiments revealed that endosomal fusion

progressed slowly (Figures 1C and 1D), reaching completion

within �1 hr at 37�C. As expected, the regular TB protocol

yielded much greater extents of fusion compared to the chase

protocol (red triangles versus green squares), which was most

likely due to the continued uptake and fusion of surface-

accessible viruses in the absence of the inhibitor. Thus, on

average, HIV-1 spent about 30 min in C52L-inaccessible

compartments prior to releasing its content.

In the absence of surface fusion, protection from C52L should

correspond to productive, CD4/CR-mediated HIV endocytosis.

This notion is supported by the ability of C52L to block fusion

when added at the beginning of incubation, demonstrating that

the gp41 coiled coils are exposed prior to virus uptake; this
exposure is known to occur upon Env binding to CD4 alone or

to CD4 and CR (Eckert and Kim, 2001 and references therein).

Accordingly, HIV-1 acquired resistance to inhibitors blocking

CD4 and CR binding before it escaped from C52L (Figure S1F).

Thus, HIV-1 particles internalized by pathways other than CD4/

CR-mediated endocytosis do not contribute to fusion. These

results and virus imaging data (see below) show that, surpris-

ingly, the major rate-limiting step of HIV-1 fusion occurs after

CR binding and virus endocytosis.

Single-Virus Imaging Distinguishes between Surface
and Endosomal Fusion
To unambiguously identify the sites of HIV-1 entry, we visualized

the fusion of viruses colabeled with the relatively small, diffusible

content marker (NC-GFP, Figures S2B, S2D, and S2E) and the

lipophilic dye DiD (Markosyan et al., 2005 and Experimental

Procedures). Fusion with the plasma membrane should lead to

the disappearance of the viral membrane and content markers

due to their virtually infinite dilution within the plasma membrane

and the cytosol, respectively (Figure 2A). In contrast, virus fusion

with a small intracellular organelle that is not continuous with the

plasma membrane should lead to the loss of viral content without

the disappearance of a membrane marker. Hence, the fusion

sites can be identified based on the dilution of viral markers.

We validated this strategy by imaging the fusion of pseudovi-

ruses bearing E1/E2 glycoproteins of the low pH-dependent

Semliki Forest Virus (SFV). Normally, SFV fuses with acidic

endosomes, but it can also be forced to fuse with the plasma

membrane by lowering the pH (Marsh and Bron, 1997). As ex-

pected, SFV fusion with endosomes resulted in the disappear-

ance of the viral content while the membrane marker remained

localized within an endosome (Figure S3A and Movie S1). In

contrast, exposure to low pH led to the quick redistribution of

viral lipids, but not of viral content (Figure S3B and Movie S2),

demonstrating the failure of SFV to undergo full fusion with the

plasma membrane.

HIV-1 Fusion with the Plasma Membrane Is Blocked
after the Lipid Mixing Stage
JRFL or HXB2 viruses were prebound to TZM-bl cells in the cold

and triggered to fuse by quickly shifting to 37�C. We observed

three principal outcomes of HIV-cell fusion. First, viruses

released their lipid marker, as seen by the disappearance of

the red signal, but retained their content for as long as we imaged

(Figure 2B and Movie S3). Particles undergoing this type of fusion

usually exhibited limited movement before and after the lipid

transfer (Figure 2C). These events were almost assuredly due

to the partial fusion at the cell surface that did not result in the

cytosolic delivery of viral content. Second, following the trans-

port of viruses toward the cell nucleus, typical for endosomal

trafficking (Lakadamyali et al., 2004), the viral content marker

disappeared while the lipid marker continued to move as

a distinct spot (Figures 2D–2G; Movies S4 and S5). These events

observed for both JRFL and HXB2 viruses were interpreted as

the cytosolic release of viral content through fusion with endo-

somes. Third, viral markers were released (disappeared)

sequentially, often exhibiting a considerable delay between lipid

and content transfer (see Figure 5 below). As discussed below,
Cell 137, 433–444, May 1, 2009 ª2009 Elsevier Inc. 435
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Figure 2. Identification of HIV-1 Fusion Sites by Single-Virus Imaging

(A) Schematic presentation of redistribution of viral lipid and content markers upon fusion with a plasma membrane (left) and with an endosome (right). Viruses

colabeled with membrane (red) and content (green) markers are pseudocolored yellow.
436 Cell 137, 433–444, May 1, 2009 ª2009 Elsevier Inc.



these events (hereafter dubbed the two-step fusion) likely reflect

the full fusion proceeding in two distinct temporally and, in most

cases, spatially separated steps.

JRFL and HXB2 pseudoviruses exhibited distinct fusion

phenotypes. The majority of JRFL particles exchanged lipids

with the plasma membrane, while the content release from endo-

somes was less frequent (Figure 3A). By comparison, most HXB2

particles underwent endosomal fusion, very few released the

lipid marker, and none exhibited the two-step phenotype seen

for JRFL viruses. The overall low probability of HIV-cell fusion

is in agreement with our previous data (Markosyan et al.,

2005). In control experiments, viral lipid and content transfer

was inhibited by a high concentration of C52L (Figure 3A),

demonstrating that the overwhelming majority of viral lipid and

content transfer events were mediated by HIV-1 Env. Viral

content release was not detected between JRFL pseudoviruses

and HeLa cells expressing CD4 but not CCR5 (Figure 3A). Thus,

under our experimental conditions, the deterioration of the GFP

signal caused by low pH in late endosomes/lysosomes was

negligible (see also Figure S2C).

The restriction on virus fusion at the cell surface was not

limited to HIV-1 and SFV pseudoviruses. We found that the

Env glycoprotein of pH-independent amphotropic Murine

Leukemia Virus (aMLV) also mediated virus fusion with endo-

somes. Out of 14 detected events, 11 released their content

from endosomes (Figures S3C and S3D), 2 transferred only the

lipid marker at the cell surface, and 1 exhibited sequential

(two-step) lipid and content release.

Endosomal Fusion Can Lead to Infection
To relate single-virus fusion to infectivity, we evaluated the frac-

tion of cells for which at least one content transfer event was

detected by imaging. Endosomal fusion was observed for

8.0% and 10.5% of cells incubated with JRFL and HXB2 parti-

cles, respectively (Figure 3B). Under identical conditions, 8.6%

of cells were infected by JRFL and 5.7% by HXB2 (i.e., multi-

plicity of infection [moi] was �0.1). The fraction of fusion-sup-

porting cells was clearly underestimated due to the missed

events. The relatively low fraction of double-labeled particles

produced by the labeling protocol and the relatively short

imaging time limited our ability to track all fusion events. None-

theless, comparable efficacies of viral content delivery and infec-

tion indicate that a significant fraction of endosomal fusion

established productive infection.

Infectious HIV-1 Fuses with an Endosome
but Not with the Plasma Membrane
To take advantage of the diffusible NC-GFP marker, our initial

imaging experiments employed MLV-based pseudoviruses. To

ensure adequate incorporation of HIV-1 Env into these particles,

we used the gp41 construct lacking the cytoplasmic domain
(Figures S2A and S2B and Markosyan et al., 2005). To rule out

the possibility that deletion of the cytoplasmic domain or pseu-

dotyping with the MLV core alters the virus entry sites, we

labeled infectious viruses by cotransfecting the cells with the

proviral HIV-1 R9 clone encoding a full-length CXCR4-tropic

Env (Gallay et al., 1997) and a new vector expressing GFP-

tagged HIV Gag. In this construct (referred to as MA-GFP-CA),

the EGFP coding sequence (flanked by the viral protease

cleavage sites) was inserted between the MA and CA sequences

of Gag polyprotein (see Supplemental Experimental Proce-

dures). Upon virus maturation, MA-GFP-CA is cleaved by viral

protease, yielding a free GFP (Figures S2F–S2I). These

viruses were colabeled with DiD and allowed to fuse with

TZM-bl cells.

Similar to pseudovirus fusion, infectious HIV-1 exhibited lipid

mixing at the cell surface and content transfer from endosomes

(Figures 3A and 3C–3F and Movie S6), whereas the sequential

lipid and content release (two-step events, see Figures 5E and

5F) was less frequent. All fusion-related activities were abro-

gated in the presence of C52L (n = 972). We observed the

same fusion phenotype for particles produced by pseudotyping

the HIV-1 core with the full-length Env (Figures 3A, S3E, and

S3F). Together, these results imply that, irrespective of the origin

of the viral core or the presence of the cytoplasmic domain,

HIV-1 Env-mediated content delivery into HeLa-derived target

cells occurs through fusion with endosomes. Moreover, in

CEMss cells, infectious HIV-1 also underwent partial fusion (lipid

transfer) with the plasma membrane and complete fusion with

endosomes (Figure S4).

Endosomal Fusion Is Delayed Relative to Lipid Transfer
at the Cell Surface
The kinetics of single HIV-1 pseudovirus fusion with the plasma

membrane and with endosomes was determined by measuring

the waiting time from raising the temperature to each lipid or

content transfer event, respectively (Figure 4A). Content release

from endosomes started after a considerable delay (�10 min),

whereas lipid transfer proceeded without an apparent lag. The

rates of surface and endosomal fusion differed markedly regard-

less of the virus tropism (JRFL versus HXB2) and regardless of

whether MLV core-based pseudoviruses or infectious HIV-1

viruses (Figure 4C) were imaged. The delayed release of the viral

content marker is consistent with the lag in the cytosolic BlaM

delivery measured by the TB protocol (Figure 1A). In fact, after

renormalization to correct for the shorter imaging time, the rates

of viral content delivery measured by single-virus and BlaM

assays were indistinguishable (Figure S5). This finding validates

the usage of the TB protocol for measuring the rate of formation

of relatively small fusion pores and implies that complete pore

dilation is not required for detecting the BlaM signal in the

cytosol.
(B and C) Partial fusion of JRFL with the plasma membrane of TZM-bl cells. The time from the beginning of imaging is shown. The two-dimensional projection of

the particle’s trajectory (cyan) is overlaid on the last image. Changes in fluorescence intensities (in arbitrary units) of membrane (red) and content (green) markers,

as well as the instantaneous velocity (blue trace) of the particle, are shown.

(D–G) Complete fusion of JRFL (D and E) and HXB2 (F and G) viruses following the fast retrograde movement from the cell periphery (cyan traces on last images).

Fusion is evident from the disappearance of GFP signal. Graphs (E and G) show changes in fluorescence of membrane and content markers (smoothed for visual

clarity) and 3D trajectories for the viruses marked by arrows in (D) and (F). See Movies S3–S5.
Cell 137, 433–444, May 1, 2009 ª2009 Elsevier Inc. 437
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Figure 3. Fusion of HIV Core-Based Pseudoviruses and of Infectious HIV-1 with TZM-bl Cells

(A) The efficiency of lipid mixing with the plasma membrane, the viral content release from endosomes, and the sequential two-step fusion events mediated by

JRFL Env (pseudotyped with MLV or HIV core), HXB2 Env, and infectious R9 viruses. The first row is the negative control for JRFL fusion using HeLa-CD4 cells

lacking CCR5. The number of respective fusion-related events was normalized to the total number of cell-associated double-labeled virions at the beginning of

the experiment. The extents of viral lipid and content mixing in the presence of 4 mM C52L are shown in parentheses. The rare false-positive events in the presence

of C52L were usually delayed relative to those in the absence of the inhibitor (data not shown) and were minimized by limiting the duration of imaging experiments.

ND, not determined.

(B) The fraction of cells supporting viral content release was measured by imaging (orange bars), and the fraction of infected cells in the same sample was deter-

mined by a b-gal assay (black bars) after an additional 48 hr cultivation in the presence of C52L. The somewhat larger fraction of cells supporting HXB2 fusion was

due to a more efficient binding of HXB2 to target cells compared to JRFL viruses (data not shown). Error bars are SEM (n = 3).

(C and D) Lipid transfer initiated by the infectious R9 HIV-1 labeled with DiD and MA-GFP-CA at the surface of the TZM-bl cell.

(E and F) Complete endosomal fusion of the infectious R9 particle. See Movie S6.
HIV-1 Fusion May Proceed through a Stable
Hemifusion-like Intermediate
Even though the loss of a lipid marker during the two-step

fusion precludes unambiguous determination of the site of

subsequent content release, the latter step appears to occur

in endosomes. First, the rates of sequential lipid and content

transfer for the two-step fusion were statistically indistinguish-

able (p > 0.180 and p > 0.594, respectively) from the respective

rates of separate surface and endosomal fusion events
438 Cell 137, 433–444, May 1, 2009 ª2009 Elsevier Inc.
(Figure 4B). Hence, by analogy to endosomal fusion, the

content release through the two-step events likely occurs in en-

dosomes. This result also implies that the two-step events are

a subset of ‘‘regular’’ fusion events, in which lipid transfer

occurred prior to virus uptake. Second, the pronounced delay

between lipid and content transfer during the two-step events

(half-time of about 10 min, Figure 4B) was sufficiently long to

permit virus endocytosis (t1/2 = 13.5 min, Figure 1A) prior to

content release.



Third, by tracking the two-step fusion events, we found that

viruses tended to accelerate (>0.2 mm/s) prior to or at the time

of content release (Figures 5A and 5B). These particles were

thus judged to have entered an endocytic pathway and fused

with endosomes. Only 1 out of 22 particles released approxi-

mately half of its content (Figures 5C and 5D, arrow) without

a significant prior displacement. However, the incomplete

release of viral content shows that, even if this fusion pore was

formed at the cell surface, it closed soon after opening (schemat-

ically shown by the thick line above Figure 5D). Importantly, viral

content release did not resume until after the onset of fast move-

ment (double arrow and Movie S7) associated with virus uptake.

We also found that the content release during the two-step

A
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C

Figure 4. Lipid Mixing at the Cell Surface Precedes the Content

Release from Endosomes

(A) The kinetics of JRFL (circles) and HXB2 (triangles) fusion with TZM-bl cells.

Waiting times from the shift to 37�C to the point of lipid (red symbols) or content

(green symbols) transfer were measured, rank ordered, and plotted as cumu-

lative distributions of the fraction of fused viruses over time.

(B) Comparative kinetics of partial fusion at the cell surface (red circles), endo-

somal fusion (green circles), and sequential lipid and content transfer exhibited

during the two-step events (red and green triangles, respectively). The time

intervals between sequential lipid (TL) and content (TC) transfer were ranked

and plotted as cumulative distribution (crosses).

(C) The kinetics of lipid and content mixing during fusion of infectious R9 HIV-1

viruses with TZM-bl cells.
events exhibited by infectious HIV-1 usually coincided with the

fast particle movement (Figures 5E and 5F).

These data imply that, even when HIV-1 establishes lipid

continuity with the plasma membrane, it fails to form a fusion

pore that permits the transfer of a content marker. This fusion

phenotype is operationally defined as membrane hemifusion

(Chernomordik and Kozlov, 2005). The temporal separation of

lipid and content transfer events suggests that the two-step

fusion proceeds through a remarkably long-lived hemifusion

intermediate. We cannot rule out the possibility that the lipid

mixing at the cell surface represents a nonproductive pathway,

in which case, distinct Env trimers would be responsible for

subsequent endosomal fusion. However, given the paucity of

Env trimers in HIV-1 particles (Zhu et al., 2006), formation of

more than one fusion complex per virion appears unlikely,

suggesting that hemifusion is a bona fide intermediate of HIV

entry.

Clathrin- and Dynamin-Dependent Endocytosis
Is a Prerequisite for HIV-1 Fusion
To obtain further evidence that HIV-1 is internalized prior to

fusion, we blocked clathrin- and caveolin-mediated endocytosis

by pretreating the TZM-bl cells with dynasore, a small-molecule

inhibitor of the dynamin GTPase activity that prevents the scis-

sion of clathrin-coated pits from the plasma membrane (Macia

et al., 2006). At a concentration that blocked transferrin uptake

(Figure S7A), dynasore diminished virus internalization and

strongly inhibited HIV-1 infection and fusion with TZM-bl and

CEMss cells (Figures 6A and 6B, respectively). As expected for

viruses entering cells via a clathrin-dependent pathway (Sun

et al., 2005), fusion and infection by VSV G pseudoviruses

were suppressed by the drug. The diminished HIV-1 fusion

was not caused by the downregulation of CD4 or CR expression,

reduction of virus binding, or the compromised ability of Env to

promote fusion in the presence of dynasore (Figures S7B–S7D).

To control against possible adverse effects of dynasore, we

assessed the effect of MiTMAB, a surface-active inhibitor that

blocks dynamin’s interactions with phospholipids (Quan et al.,

2007). The diminished HIV-1 fusion in cells pretreated with

MiTMAB (Figure 6C) supported the essential role of dynamin in

virus entry. By comparison, the small-molecule inhibitor of

Cdc42 GTPase, secramine A (Pelish et al., 2006), augmented

HIV-1 fusion. The specificity of small-molecule dynamin inhibi-

tors was further verified by showing that HIV-1 fusion was sup-

pressed in cells overexpressing the dominant-negative K44A

mutant of dynamin (Damke et al., 1994) (Figure S8). These

results, along with the inhibition of HIV-1 fusion by a hypertonic

medium (Figure 6C) known to inhibit clathrin-mediated endocy-

tosis, suggest that HIV-1 is internalized via a clathrin-dependent

pathway prior to undergoing fusion.

To determine which step of HIV fusion is blocked by dynasore,

we performed single-virus imaging experiments. Viruses bound

to cells pretreated with the drug exhibited highly restricted

mobility compared to control experiments (data not shown),

consistent with inhibited virus endocytosis. Most importantly,

dynasore abolished the viral content release but permitted the

lipid transfer to the plasma membrane (Figure 6G). In the

absence of virus uptake, partial fusion at the cell surface led to
Cell 137, 433–444, May 1, 2009 ª2009 Elsevier Inc. 439



A C

B D

E F

Figure 5. Sequential Lipid and Content Transfer Events Exhibited by HIV-1

(A and B) A two-step fusion event exhibiting a short delay between lipid and content transfer.

(C and D) A rare two-step event characterized by stepwise release of viral content. Complete content discharge (double arrow) occurs after the onset of quick

movement (see Movie S7). The predicted dynamics of a fusion pore (D) is shown by a thick line above the panel. The initial and final coordinates of particles on 3D

plots are marked by pink crosses and stars, respectively.

(E and F) The two-step fusion of infectious R9 HIV-1 colabeled with DiD and MA-GFP-CA. Changes in fluorescence intensities of viral lipid and content markers

upon incubation with TZM-bl cells at 37�C are smoothed for visual clarity.
440 Cell 137, 433–444, May 1, 2009 ª2009 Elsevier Inc.



HIV inactivation, as evidenced by the lack of recovery of the

BlaM signal after the removal of dynasore (Figure S7E). These

results confirm that HIV-1 is unable to fuse at the cell surface

and that the fusion block occurs after the lipid mixing stage.

Endocytosis Reduces the Window of Opportunity
for the Inhibitory Peptide to Bind to Intermediate
Conformations of gp41
Clearance from the cell surface prior to the completion of fusion

can protect HIV-1 against antibodies and inhibitors targeting Env

epitopes that are exposed during the slow fusion reaction. To

test this notion, we sought to reversibly slow down virus uptake

while permitting its interactions with CD4 and CR. After unsuc-

cessful attempts to reversibly arrest virus uptake using different

intervention strategies, we chose to create a temperature-ar-

rested stage (TAS) that has been described before (Henderson

and Hope, 2006; Mkrtchyan et al., 2005). After binding to cells

in the cold, the viruses/cells were incubated for several hours

at a temperature that minimized productive endocytosis and

virus-cell fusion (for details, see the legend to Figure S6). This

intermediate stage was reversible, as fusion quickly ensued

upon raising the temperature (Figures S6A and S6C). At this

A

D

G

E F

B C Figure 6. Blocking the Dynamin Function

Inhibits HIV-1 Uptake, Fusion, and Infection

(A) TZM-bl cells were pretreated with 80 mM dynasore

and allowed to bind viruses in the cold. Virus uptake

after a 1 hr incubation at 37�C was measured by the

accumulation of intracellular p24 (black bars, n = 6),

as described in the Supplemental Experimental Proce-

dures. The extent of fusion was quantified by the BlaM

assay (dark cyan bars, n = 4), and single-cycle infection

was measured by a b-gal assay (orange bars, n = 6).

(B) Inhibition of HXB2 fusion with CEMss cells pre-

treated with dynasore.

(C) Inhibition of HXB2 fusion in TZM-bl cells pretreated

with 0.45 M sucrose, 80 mM MiTMAB, and 15 mM secr-

amine A.

(D) The kinetics of HXB2 escape from 80 mM dynasore

added at indicated times of incubation at 37�C. The

background fusion (�20% of total) in the presence

of dynasore was subtracted from the dynasore curve

to ease the comparison with the C52L and TB curves.

(E) Fusion of wild-type (WT) and Nef-deficient (DNef)

viruses bearing HXB2 Env with TZM-bl cells.

(F) Kinetics of fusion mediated by the wild-type and

cytoplasmic tail-deleted (DCT) JRFL Env.

(G) Pretreatment of TZM-bl cells with dynasore blocks

the HXB2 content (NC-GFP) transfer but permits lipid

transfer (disappearance of DiD) to the plasma

membrane. The loss of the red signal was due in

part (�50%) to dynasore directly quenching the DiD

fluorescence (data not shown).

Unless indicated otherwise, error bars are SEM (n R 3).

stage, a fraction of fusion events became

resistant to CD4- and CR-binding inhibitors,

demonstrating the formation of ternary

complexes, which in turn resulted in the

exposure of the gp41 coiled-coil regions tar-

geted by inhibitory peptides, such as T20

and C34 (Eckert and Kim, 2001). We were thus able to control

the exposure of pretriggered gp41 to C34 by varying the interval

between adding this peptide at the TAS and inducing endocy-

tosis (and fusion) by shifting to 37�C. The longer exposure to

C34 enhanced its inhibitory activity (Figures S6B and S6D),

consistent with the notion that endocytic entry of HIV-1 might

attenuate the potency of this class of fusion inhibitors.

HIV-Endosome Fusion Does Not Rely on an Intact
Cytoskeleton but Depends on Dynamin Activity
The reliance of HIV-1 fusion on endosomal pathways prompted

us to examine the effects of actin- and microtubule-disrupting

agents also known to interfere with endosomal trafficking and

maturation (Bayer et al., 1998). Pretreatment of cells with latrun-

culin A or nocodazole led to a modest reduction of the extent but

not the rate of HIV-1 fusion (Figure S9). This finding indicates that

the BlaM signal is not critically affected by actin- and microtu-

bule-dependent processes, in agreement with the previous

work (Campbell et al., 2004).

Dynasore’s ability to quickly block endocytosis (Macia et al.,

2006 and Figure S7F) permitted us to perform time-of-addition

experiments and delineate the step(s) of HIV-1 fusion sensitive
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to this compound. Dynasore was added after varied times of

virus-cell incubation, and the drug-resistant fusion was

compared to that obtained by the C52L and TB protocols. The

loss of sensitivity to inhibitors of virus endocytosis is expected

to occur at the time of the virus’ escape from C52L. Remarkably,

however, HIV-1 escape from dynasore was markedly delayed

and was indistinguishable from its escape from the TB

(Figure 6D). This finding indicates that dynamin plays a role

both in HIV-1 uptake and in virus-endosome fusion.

Next, we asked whether dynamin-2 could augment Env-

mediated fusion with endosomes through its specific binding

to the accessory HIV-1 Nef protein (Pizzato et al., 2007) exposed

to the cytosol as a result of fusion. However, the identical rates

(Figure 6E) and extents (data not shown) of fusion of wild-type

and Nef-deficient viruses did not support this possibility. Thus

dynamin appears to promote HIV-1 fusion indirectly, perhaps

by interacting with effector protein(s) involved in a variety of

cellular processes, such as cytokinesis, membrane trafficking,

cell migration, and adhesion (Kim and Chang, 2006; Kruchten

and McNiven, 2006; Peters et al., 2004). We also tested whether

the unusually long cytoplasmic domain of gp41 is involved in

pore formation or dilation either directly or by interacting with

its cellular partners. Deletion of the cytoplasmic domain did not

considerably alter the kinetics of viral escape from the TB relative

to its escape from C52L (Figure 6F), implying that this domain is

not essential for HIV-1 fusion.

DISCUSSION

Time-resolved imaging of single viruses and differential blocking

of fusion by site-specific and universal inhibitors revealed that

HIV-1 co-opts the endocytic machinery to enter into and fuse

with target cells. By contrast, fusion with the plasma membrane

did not progress beyond the lipid mixing step, suggesting that

endosomal entry is the pathway that leads to productive infec-

tion. Endocytic entry offers several advantages, including the

sheltering of HIV-1 from antibodies and inhibitors targeting inter-

mediate conformations of Env during the unusually slow fusion

reaction. Indeed we found that the delayed virus uptake

increased the potency of the inhibitory C34 peptide. Thus, in

order to efficiently block intracellular fusion events, the next

generation of HIV entry inhibitors must be able to permeate the

cell membrane.

The failure of HIV to fuse with the plasma membrane is in stark

contrast to cell-cell fusion mediated by Env glycoproteins of this

and other pH-independent viruses. While the basis for this

discrepancy is unclear, the much larger number of Env involved

in cell-cell contact compared to a few Env responsible for virus

entry could increase the likelihood of fusion at the cell surface.

Another manifestation of differences between these experi-

mental systems is the prolonged lag between CD4/CR-mediated

HIV-1 uptake and endosomal fusion. By comparison, the forma-

tion of ternary Env-CD4-CR complexes abrogated the lag before

cell-cell fusion (Melikyan et al., 2000; Mkrtchyan et al., 2005). The

delayed endosomal fusion of HIV-1 is indicative of a rate-limiting

step downstream of coreceptor-dependent steps and down-

stream of a hemifusion-like intermediate. Slow pore enlargement

is unlikely to contribute to this delay because both single-virus
442 Cell 137, 433–444, May 1, 2009 ª2009 Elsevier Inc.
imaging and the BlaM assay appear to detect relatively small

pores. It is thus possible that the formation of higher-order Env

oligomers and/or gp41 folding into the 6-helix bundle are rate-

limiting for HIV-cell fusion. Alternatively, the lag before fusion

could reflect the time required for HIV-1 delivery into permissive

intracellular compartments, such as late endosomes.

Accumulating evidence suggests that entry of viruses other

than HIV-1 by direct fusion with the plasma membrane is also

disfavored. For instance, pH-independent MLV and respiratory

syncytial virus appear to utilize an endocytic pathway for infection

(Beer et al., 2005; Katen et al., 2001; Kolokoltsov et al., 2007).

Infection by several low pH-dependent viruses can be hindered

when fusion with a plasma membrane is forced by acidic pH

(Marsh and Bron, 1997; Matlin et al., 1982; Mothes et al., 2000).

The failure of HIV-1, aMLV, and SFV to progress beyond the lipid

mixing step at the cell surface (Figures 2, 3, and S3) shows that

the block for pH-dependent and pH-independent infection is at

the stage of formation and/or dilation of a fusion pore. The lack

of complete fusion at the cell surface could be due to restrictions

imposed by the cortical actin or other factors present in or around

the plasma membrane. However, the modest effect of actin

depolymerization on viral content delivery (Figure S9) does not

support this notion. An alternative possibility discussed below

is that viruses rely on yet unidentified endosomal factors to

promote complete fusion.

Our data revealed a novel role for dynamins in HIV-1 content

release from endosomes. Why would HIV-1 need cellular factors

to promote fusion? Several lines of evidence suggest that the

formation and enlargement of a fusion pore are the most

energy-intensive steps (reviewed in Melikyan, 2008) that require

the concerted action of several viral proteins. Considering the

low number of Env per virion (Zhu et al., 2006), HIV-1 may not

be able to sustain a fusion pore on its own without cellular

partners. The ability of dynamin to regulate actin remodeling

and/or to associate with membrane-bending proteins (Kruchten

and McNiven, 2006) could provide an additional driving force to

expand pores and permit the release of the HIV-1 core. It is thus

possible that cellular factors involved in membrane trafficking

are responsible for the virus’ strong preference for endocytic

entry.

EXPERIMENTAL PROCEDURES

BlaM Assay for Virus-Cell Fusion

TZM-bl cells (4$104 cells/well) were grown overnight in 96-well plates in a

phenol red-free growth medium. Viruses were added to cells at moi 0.7–1.0

and centrifuged at 2095 g, 4�C for 30 min. The cells were washed with

a cold medium to remove free viruses, and fusion was initiated by shifting to

37�C. After an indicated time at 37�C, fusion was stopped by adding C52L

(1 mM) or other fusion inhibitors. All samples were maintained at 37�C for a total

of 90 min (unless indicated otherwise), chilled by briefly placing on ice, loaded

with the CCF2-AM substrate (GeneBLAzer in vivo Detection Kit, Invitrogen),

and incubated overnight at 13.5�C (or as indicated). In the temperature block

protocol, cells were placed on ice until the end of the experiment and then

loaded with the BlaM substrate. Fusion of HIV-1 pseudotyped with VSV G

was carried out as described above but stopped at indicated times by either

treating cells with pronase, placing cells on ice (TB), or adding 50 mM

NH4Cl. The temperature chase experiments were carried out by introducing

C52L peptide after 20 min of incubation, as in the standard fusion protocol.

The BlaM signal was then chased by placing cells on ice either immediately



or at the indicated times of incubation at 37�C in the presence of C52L. The

BlaM activity was quantified using Synergy HT fluorescence plate reader

(Bio-Tek Instr., Germany). The extent of virus-cell fusion was determined

from the ratio of blue (440–480 nm) and green (518–538 nm) emission upon

exciting the cells at 405–415 nm. HIV-1 fusion with CEMss cells was carried

out by resuspending the cells in media containing HXB2 pseudoviruses (moi

1–1.5) and centrifuging at 2095 g, 4�C for 30 min. The free viruses were washed

off, and fusion was initiated by shifting to 37�C and stopped after indicated

times either by adding C52L peptide or by placing cells on ice. The cells

were then loaded with the CCF2-AM substrate and transferred into a 96-well

plate (1$105 cells/well), and the BlaM activity was determined as described

above.

Single-Particle Imaging and Analysis

Viruses were centrifuged onto TZM-bl cells cultured on a cover glass (2095 g

for 1 hr at 12�C). The cells were washed to remove unbound viruses and trans-

ferred into an imaging chamber. Virus-cell fusion was triggered by quickly and

locally raising the temperature to 37�C using a home-built temperature-jump

setup (Melikyan et al., 2000) and visualized using a Zeiss LSM 510 Meta

confocal microscope. Unless noted otherwise, samples were simultaneously

excited at 488 and 633 nm, and the emitted light was collected by a C-Apo

403/1.2 water immersion or a Neofluar 403/1.3 oil immersion objective, split,

and passed through 505–550 nm band-pass and 650 nm long-pass filters. To

minimize photobleaching, only 3–4 Z stacks spaced by 2.5 mm were acquired

every 6–7 s for 35–40 min. Single-particle tracking was performed using Voloc-

ity image analysis software (Improvision, Perkin Elmer). Briefly, the total

number of cell-associated viruses containing detectable amounts of DiD

and GFP-based content marker was determined by identifying contiguous

pixels with fluorescence intensity at least 3-fold greater than background.

The waiting times for fusion were estimated as the time interval from raising

the temperature to 37�C to the point when the signal from either the membrane

or content marker dropped to the background level. Three-dimensional

tracking of particles over time was performed by adjusting the intensity

threshold and the maximal particle displacement between consecutive

frames.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, nine

figures, and seven movies and can be found with this article online at http://

www.cell.com/supplemental/S0092-8674(09)00268-2.

ACKNOWLEDGMENTS

The authors are grateful to Dr. T. Kirchhausen for dynasore and to Drs. C.

Aiken, M. Alizon, J. Binley, J. Cunningham, M. Kielian, G. Lewis, M. Lu, W.

Mothes, J. Strizki, L. Wang, and J. Young, as well as the NIH AIDS Research

and Reference Reagent Program for reagents, expression vectors, and cell

lines. We thank Dr. M. Reitz for his help in designing the MA-GFP-CA construct

and Drs. L. Chernomordik and R. Dutch for stimulating discussions. This work

was supported by NIH R01 GM054787 and AI053668 grants to G.B.M. Y.K.

was partially supported by the SDG from the American Heart Association.

Received: October 17, 2008

Revised: January 3, 2009

Accepted: February 25, 2009

Published: April 30, 2009

REFERENCES

Aiken, C. (1997). Pseudotyping human immunodeficiency virus type 1 (HIV-1)

by the glycoprotein of vesicular stomatitis virus targets HIV-1 entry to an endo-

cytic pathway and suppresses both the requirement for Nef and the sensitivity

to cyclosporin A. J. Virol. 71, 5871–5877.

Bayer, N., Schober, D., Prchla, E., Murphy, R.F., Blaas, D., and Fuchs, R.

(1998). Effect of bafilomycin A1 and nocodazole on endocytic transport in
HeLa cells: implications for viral uncoating and infection. J. Virol. 72,

9645–9655.

Beer, C., Andersen, D.S., Rojek, A., and Pedersen, L. (2005). Caveola-depen-

dent endocytic entry of amphotropic murine leukemia virus. J. Virol. 79,

10776–10787.

Brandt, S.M., Mariani, R., Holland, A.U., Hope, T.J., and Landau, N.R. (2002).

Association of chemokine-mediated block to HIV entry with coreceptor inter-

nalization. J. Biol. Chem. 277, 17291–17299.

Campbell, E.M., Nunez, R., and Hope, T.J. (2004). Disruption of the actin

cytoskeleton can complement the ability of Nef to enhance human immunode-

ficiency virus type 1 infectivity. J. Virol. 78, 5745–5755.

Cavrois, M., De Noronha, C., and Greene, W.C. (2002). A sensitive and specific

enzyme-based assay detecting HIV-1 virion fusion in primary T lymphocytes.

Nat. Biotechnol. 20, 1151–1154.

Cavrois, M., Neidleman, J., Yonemoto, W., Fenard, D., and Greene, W.C.

(2004). HIV-1 virion fusion assay: uncoating not required and no effect of Nef

on fusion. Virology 328, 36–44.

Chernomordik, L.V., and Kozlov, M.M. (2005). Membrane hemifusion: crossing

a chasm in two leaps. Cell 123, 375–382.

Daecke, J., Fackler, O.T., Dittmar, M.T., and Krausslich, H.G. (2005). Involve-

ment of clathrin-mediated endocytosis in human immunodeficiency virus type

1 entry. J. Virol. 79, 1581–1594.

Damke, H., Baba, T., Warnock, D.E., and Schmid, S.L. (1994). Induction

of mutant dynamin specifically blocks endocytic coated vesicle formation.

J. Cell Biol. 127, 915–934.

Deng, Y., Zheng, Q., Ketas, T.J., Moore, J.P., and Lu, M. (2007). Protein design

of a bacterially expressed HIV-1 gp41 fusion inhibitor. Biochemistry 46,

4360–4369.

Doms, R.W., and Trono, D. (2000). The plasma membrane as a combat zone in

the HIV battlefield. Genes Dev. 14, 2677–2688.

Eckert, D.M., and Kim, P.S. (2001). Mechanisms of viral membrane fusion and

its inhibition. Annu. Rev. Biochem. 70, 777–810.

Fredericksen, B.L., Wei, B.L., Yao, J., Luo, T., and Garcia, J.V. (2002). Inhibi-

tion of endosomal/lysosomal degradation increases the infectivity of human

immunodeficiency virus. J. Virol. 76, 11440–11446.

Frey, S., Marsh, M., Gunther, S., Pelchen-Matthews, A., Stephens, P., Ortlepp,S.,

and Stegmann, T. (1995). Temperature dependence of cell-cell fusion induced by

the envelope glycoprotein of human immunodeficiency virus type 1. J. Virol. 69,

1462–1472.

Gallay, P., Hope, T., Chin, D., and Trono, D. (1997). HIV-1 infection of nondi-

viding cells through the recognition of integrase by the importin/karyopherin

pathway. Proc. Natl. Acad. Sci. USA 94, 9825–9830.

Henderson, H.I., and Hope, T.J. (2006). The temperature arrested intermediate

of virus-cell fusion is a functional step in HIV infection. Virol. J. 3, 36.

Katen,L.J., Januszeski, M.M., Anderson,W.F.,Hasenkrug,K.J., andEvans,L.H.

(2001). Infectious entry by amphotropic as well as ecotropic murine leukemia

viruses occurs through an endocytic pathway. J. Virol. 75, 5018–5026.

Kim, Y., and Chang, S. (2006). Ever-expanding network of dynamin-interacting

proteins. Mol. Neurobiol. 34, 129–136.

Kolokoltsov, A.A., Deniger, D., Fleming, E.H., Roberts, N.J., Jr., Karpilow, J.M.,

and Davey, R.A. (2007). Small interfering RNA profiling reveals key role of

clathrin-mediated endocytosis and early endosome formation for infection

by respiratory syncytial virus. J. Virol. 81, 7786–7800.

Kruchten, A.E., and McNiven, M.A. (2006). Dynamin as a mover and pincher

during cell migration and invasion. J. Cell Sci. 119, 1683–1690.

Lakadamyali, M., Rust, M.J., and Zhuang, X. (2004). Endocytosis of influenza

viruses. Microbes Infect. 6, 929–936.

Macia, E., Ehrlich, M., Massol, R., Boucrot, E., Brunner, C., and Kirchhausen, T.

(2006). Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 10, 839–850.

Maddon, P.J., McDougal, J.S., Clapham, P.R., Dalgleish, A.G., Jamal, S.,

Weiss, R.A., and Axel, R. (1988). HIV infection does not require endocytosis

of its receptor, CD4. Cell 54, 865–874.
Cell 137, 433–444, May 1, 2009 ª2009 Elsevier Inc. 443

http://www.cell.com/supplemental/S0092-8674(09)00268-2
http://www.cell.com/supplemental/S0092-8674(09)00268-2


Marechal, V., Prevost, M.C., Petit, C., Perret, E., Heard, J.M., and Schwartz, O.

(2001). Human immunodeficiency virus type 1 entry into macrophages medi-

ated by macropinocytosis. J. Virol. 75, 11166–11177.

Markosyan, R.M., Cohen, F.S., and Melikyan, G.B. (2005). Time-resolved

imaging of HIV-1 Env-mediated lipid and content mixing between a single

virion and cell membrane. Mol. Biol. Cell 16, 5502–5513.

Marsh, M., and Bron, R. (1997). SFV infection in CHO cells: cell-type specific

restrictions to productive virus entry at the cell surface. J. Cell Sci. 110, 95–103.

Marsh, M., and Helenius, A. (2006). Virus entry: open sesame. Cell 124,

729–740.

Matlin, K.S., Reggio, H., Helenius, A., and Simons, K. (1982). Pathway of vesi-

cular stomatitis virus entry leading to infection. J. Mol. Biol. 156, 609–631.

McClure, M.O., Marsh, M., and Weiss, R.A. (1988). Human immunodeficiency

virus infection of CD4-bearing cells occurs by a pH-independent mechanism.

EMBO J. 7, 513–518.

Melikyan, G.B. (2008). Common principles and intermediates of viral protein-

mediated fusion: the HIV-1 paradigm. Retrovirology 5, 111.

Melikyan, G.B., Markosyan, R.M., Hemmati,H., Delmedico,M.K., Lambert, D.M.,

and Cohen, F.S. (2000). Evidence that the transition of HIV-1 gp41 into a six-helix

bundle, not the bundle configuration, induces membrane fusion. J. Cell Biol. 151,

413–424.

Mkrtchyan, S.R., Markosyan, R.M., Eadon, M.T., Moore, J.P., Melikyan, G.B.,

and Cohen, F.S. (2005). Ternary complex formation of human immunodefi-

ciency virus type 1 Env, CD4, and chemokine receptor captured as an interme-

diate of membrane fusion. J. Virol. 79, 11161–11169.

Mothes, W., Boerger, A.L., Narayan, S., Cunningham, J.M., and Young, J.A.T.

(2000). Retroviral entry mediated by receptor priming and low pH triggering of

an envelope glycoprotein. Cell 103, 679–689.

Pauza, C.D., and Price, T.M. (1988). Human immunodeficiency virus infection

of T cells and monocytes proceeds via receptor-mediated endocytosis. J. Cell

Biol. 107, 959–968.

Pelchen-Matthews, A., Clapham, P., and Marsh, M. (1995). Role of CD4 endo-

cytosis in human immunodeficiency virus infection. J. Virol. 69, 8164–8168.

Pelish, H.E., Peterson, J.R., Salvarezza, S.B., Rodriguez-Boulan, E., Chen, J.L.,

Stamnes, M., Macia, E., Feng, Y., Shair, M.D., and Kirchhausen, T. (2006). Secr-
444 Cell 137, 433–444, May 1, 2009 ª2009 Elsevier Inc.
amine inhibits Cdc42-dependent functions in cells and Cdc42 activation

in vitro. Nat. Chem. Biol. 2, 39–46.

Peters, C., Baars, T.L., Buhler, S., and Mayer, A. (2004). Mutual control of

membrane fission and fusion proteins. Cell 119, 667–678.

Pizzato, M., Helander, A., Popova, E., Calistri, A., Zamborlini, A., Palu, G., and

Gottlinger, H.G. (2007). Dynamin 2 is required for the enhancement of HIV-1

infectivity by Nef. Proc. Natl. Acad. Sci. USA 104, 6812–6817.

Quan, A., McGeachie, A.B., Keating, D.J., van Dam, E.M., Rusak, J., Chau, N.,

Malladi, C.S., Chen, C., McCluskey, A., Cousin, M.A., and Robinson, P.J.

(2007). Myristyl trimethyl ammonium bromide and octadecyl trimethyl

ammonium bromide are surface-active small molecule dynamin inhibitors

that block endocytosis mediated by dynamin I or dynamin II. Mol. Pharmacol.

72, 1425–1439.

Schaeffer, E., Soros, V.B., and Greene, W.C. (2004). Compensatory link

between fusion and endocytosis of human immunodeficiency virus type 1 in

human CD4 T lymphocytes. J. Virol. 78, 1375–1383.

Stein, B.S., Gowda, S.D., Lifson, J.D., Penhallow, R.C., Bensch, K.G., and

Engleman, E.G. (1987). pH-independent HIV entry into CD4-positive T cells

via virus envelope fusion to the plasma membrane. Cell 49, 659–668.

Sun, X., Yau, V.K., Briggs, B.J., and Whittaker, G.R. (2005). Role of clathrin-

mediated endocytosis during vesicular stomatitis virus entry into host cells.

Virology 338, 53–60.

Wei, B.L., Denton, P.W., O’Neill, E., Luo, T., Foster, J.L., and Garcia, J.V.

(2005). Inhibition of lysosome and proteasome function enhances human

immunodeficiency virus type 1 infection. J. Virol. 79, 5705–5712.

Wei, X., Decker, J.M., Liu, H., Zhang, Z., Arani, R.B., Kilby, J.M., Saag, M.S.,

Wu, X., Shaw, G.M., and Kappes, J.C. (2002). Emergence of resistant human

immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20)

monotherapy. Antimicrob. Agents Chemother. 46, 1896–1905.

Yoder, A., Yu, D., Dong, L., Iyer, S.R., Xu, X., Kelly, J., Liu, J., Wang, W.,

Vorster, P.J., Agulto, L., et al. (2008). HIV envelope-CXCR4 signaling activates

cofilin to overcome cortical actin restriction in resting CD4 T cells. Cell 134,

782–792.

Zhu, P., Liu, J., Bess, J., Jr., Chertova, E., Lifson, J.D., Grise, H., Ofek, G.A.,

Taylor, K.A., and Roux, K.H. (2006). Distribution and three-dimensional struc-

ture of AIDS virus envelope spikes. Nature 441, 847–852.


	HIV Enters Cells via Endocytosis and Dynamin-Dependent Fusion with Endosomes
	Introduction
	Results
	HIV-1 Fusion Is Delayed Relative to Its Escape from a Membrane-Impermeant Fusion Inhibitor
	HIV-1 Likely Enters Lymphoid Cells through an Endocytic Pathway
	HIV-1 Associated with CD4 and Coreceptors Spends Considerable Time in Endosomes prior to Fusion
	Single-Virus Imaging Distinguishes between Surface and Endosomal Fusion
	HIV-1 Fusion with the Plasma Membrane Is Blocked after the Lipid Mixing Stage
	Endosomal Fusion Can Lead to Infection
	Infectious HIV-1 Fuses with an Endosome but Not with the Plasma Membrane
	Endosomal Fusion Is Delayed Relative to Lipid Transfer at the Cell Surface
	HIV-1 Fusion May Proceed through a Stable Hemifusion-like Intermediate
	Clathrin- and Dynamin-Dependent Endocytosis Is a Prerequisite for HIV-1 Fusion
	Endocytosis Reduces the Window of Opportunity for the Inhibitory Peptide to Bind to Intermediate Conformations of gp41
	HIV-Endosome Fusion Does Not Rely on an Intact Cytoskeleton but Depends on Dynamin Activity

	Discussion
	Experimental Procedures
	BlaM Assay for Virus-Cell Fusion
	Single-Particle Imaging and Analysis

	Supplemental Data
	Acknowledgments
	References


