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Abstract

In this paper, based on Lagrange–Germanian theory of elastic thin plates, applying the method in Hamiltonian state
space, the elastic waves and vibrations when the boundary of the two lateral sides of the strip plate are free of traction
are investigated, and the process of analysis and solution are proposed. The existence of all kinds of vibration modes
and wave propagation modes is also analyzed. By using eigenfunction expansion method, the dispersion relations of wave-
guide modes in the strip plate are derived, and the comparisons with the dispersion relations directly obtained by the clas-
sical theory of thin plates are also presented. At last, the results are analyzed and discussed.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The classical theory of thin plates was deduced by Lagrange–German in the 19th century. Because of the
simplicity of governing equations, it was widely applied to analyze engineering structures. In the past, semi-
inverse method was always applied to solve flexural vibration in plates as well as elastodynamics. Rytwinska
and Kwiecinski (1983) applied a semi-inverse method to obtain exact solutions to thin, rigid-ideally plastic
plates resting on beams that are capable of deflecting together with the edges of plates. Using the semi-inverse
method, Levinson (1985) gave the three-dimensional solution of the free vibration for the free vibration of
simply supported, rectangular plates of arbitrary thickness within the linear theory of elastodynamics. Because
this method has many limitations, it is difficult to analyze complex boundary problems. However, Hamilto-
nian systems can solve many boundary problems which cannot be solved by the classical methods.
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There are two frames in mechanical analysis. One is analyzed in the tangent bundles; the other is in the
cotangent bundles. The former is the Lagrangian systems, the latter is the Hamiltonian systems. Feng Kang
ever suggested applying Hamiltonian formalism when investigating the Finite Element Method in early stage.
As strip plate structures are widely used in aerospace and civil engineering, Xu and Datta (1990) analyzed elas-
tic waveguide in these structures. With regard to the problems of elastodynamics and static mechanics in
plates, Zhong (1995) and Zhong and Yao (1999) studied them by making use of the method of state space
in Hamiltonian systems, and gave many analytical results. Based on Hamiltonian systems, Yao and Yang
(2001) presented Saint Venant solutions for the problem of multi-layered composite plane anisotropic plates,
a mixed energy variational principle was proposed, and dual equations were also derived in the symplectic
space. Applying the dynamical viewpoints and plate theory, Andrew (2003) analyzed the accommodated con-
ditions of beam theory.

In this paper, based on the theory of elastic thin plates of Lagrange–German, applying the solving method
in Hamiltonian state space, the solutions of elastic vibrations and waveguide when the boundary of the two
lateral sides of strip plate are free of traction are investigated. The existence conditions of vibration modes and
waveguide modes are studied. The dispersion relations of waveguide modes are analyzed. At last, the results
are analyzed and discussed.

2. Hamiltonian formulas of elastic waves in plates and its solutions

According to the theory of Lagrange–Germanian plates, in the orthogonal coordinates, the expressions of
bending moment, torsional moment and shearing force in plates are written as
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where D is the bending stiffness of plates, D = Eh3/12(1 � m2), w is the lateral displacement of plates.
The density function of strain complementary energy in flexural plates is expressed as
U �0 ¼
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2
x þM2

y � 2vMxMy þ 2ð1þ vÞM2
xy �. ð2Þ
Applying the generalized variational principles of two kinds of variables, the functional of the hybrid
energy variational principle of Hellinger–Reissner in flexural thin plates is (see Hu, 1981)
dP2 ¼ d
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¼ 0; ð3Þ
here B is the function about boundary, C is the density function of hybrid energy, and its expression is
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According to the variational of dP2/dMy = 0, one can obtain
My ¼ �Dð1� v2Þ o
2w

oy2
þ vMx; V x ¼ Qx þ

oMxy

oy
. ð5Þ
To apply the Hamiltonian systems, coordinate x is simulated by time variable. Thus, in the state space we
can let the generalized displacement variables be (see Greenberg and Marletta, 2000)
q ¼ ðq1; q2Þ
T ¼ ðw; ow=oxÞT ¼ ðw;uxÞ

T. ð6Þ
So, the generalized velocity is _q ¼ oq
ox ¼ ð _q1; _q2ÞT ¼ ð _w; _uxÞT. And that in the phase space, we can let the gen-

eralized displacement and the generalized momentum be q = (q1,q2)T and p = (p1,p2)T = (Vx,�Mx)T,
respectively.
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Substituting Eq. (5) into Eq. (3), the original variational principle can be changed into generalized varia-
tional principle in Hamiltonian system
dPH
2 ¼ d

Z
D

CH dy þ
Z

S
B ds

� �
¼ 0; ð7Þ
here superscript H denotes the Hamiltonian systems, CH is the density function of hybrid energy in Hamilto-
nian systems, and is written as
CH ¼ pT _q� Hðq; pÞ; ð8Þ

where H(q,p) is the Hamiltonian density function of Lagrange–German plate, and is calculated as
Hðq; pÞ ¼ p1q2 þ
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Thus, the Lagrangian density function of flexural waves in plate structure is
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From variational dPH
2 =dq ¼ 0 and dPH

2 =dp ¼ 0, the following equations can be obtained:
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According to Eqs. (11), in phase space, the equation of flexural waves in plates can be derived (see Zhong,
1995)
_v ¼ Hv ¼ lv; ð12Þ

where v is the state vector of the dynamical systems, and v = [qT,pT]T, H is the Hamiltonian operator matrix of
4 · 4, and is expressed as
H ¼

0 1 0 0

�mo2=oy2 0 0 1=D

Dð1� m2Þo4=oy4 � qhx2 0 0 mo2=oy2
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7775.
The relation between transverse eigenvalue k and the longitudinal eigenvalue l is
ðl2 þ k2Þ2 � k4 ¼ ðl2 þ k2 þ k2Þðl2 þ k2 � k2Þ ¼ 0; ð13Þ
here k is elastic wave number, and k = (qhx2/D)1/4.

2.1. Determination of zero eigensolution

Zero eigenvalue plays an important role in mechanics of elasticity. To the elastodynamics in the strip plate,
when the two lateral sides are free of traction, there will be eigensolution corresponding to zero eigenvalue.
Then the equation is
Hwð0Þ ¼ 0; wð0Þ ¼ ½w;ux; V x;�Mx�T ¼ wð1Þ0 þ wð2Þ0 . ð14Þ
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When the two lateral sides are free of traction, the expressions of boundary conditions are
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From analysis, one can obtain that the basal eigensolutions which are linear independent can be presented
as
wð1Þ0 ¼ ðw; 0; 0;�MxÞT; wð2Þ0 ¼ ð0;ux; V x; 0ÞT, ð16Þ

here w ¼ wð1Þ0 ¼ cosðkyÞ þ d coshðkyÞ, d = d(ka) = cos(ka)/cosh(ka), ux ¼ uð1Þx0 ¼ 0, V x ¼ V ð1Þx0 ¼ 0, Mx ¼M ð1Þ

x0 ¼
mDk2½cosðkyÞ � d coshðkyÞ�.

Then, the existence condition of transverse vibration modes is to ensure the periodicity in space, namely, the
elastic wave number should satisfy the following expression:
tanðkaÞ þ tanhðkaÞ ¼ 0. ð17Þ
Thus, the eigenvector of zero order in Jordan form is
m0 ¼ v
ð1Þ
0 þ v

ð2Þ
0 ¼ wð1Þ0 þ wð2Þ0 . ð18Þ
The physical meanings of v
ð1Þ
0 ; v

ð2Þ
0 denote a kind of vibration modes which do not propagate in the x-direction,

namely, they are homogeneous in the x-direction, and oscillatory standing waves in the y-direction. The trans-
verse displacement and bending moment of wð1Þ0 are w and Mx, respectively. And that the rotor angle and
shearing force of wð2Þ0 are u and Vx, respectively. The value of wð2Þ0 is zero.

Solving the zero eigenvector of the first order wð1Þ1
Hwð1Þ1 ¼ wð1Þ0 ; ð19Þ
wð1Þ1 ¼ ð0;ux; V x; 0ÞT; ð20Þ
here w ¼ wð1Þ1 ¼ 0;ux ¼ uð1Þx1 ¼ cosðkyÞ þ d coshðkyÞ ¼ wð1Þ0 , Mx ¼ M ð1Þ
x1 ¼ 0, V x ¼ V ð1Þx1 ¼ Dð2� mÞk2½cosðkyÞ�

d coshðkyÞ� ¼ 2�m
m M ð1Þ

x0 .
The solution of Eq. (14) is
v
ð1Þ
1 ¼ wð1Þ1 þ xwð1Þ0 ð21Þ
namely,
v
ð1Þ
1 ¼ ½xwð1Þ0 ;uð1Þx1 ; V

ð1Þ
x1 ;�xM ð1Þ

x0 �
T. ð22Þ
v
ð1Þ
1 is a kind of vibration modes for non-propagation, whose physical meaning denotes the rotation of rigid

body in the xoz plane. After analyzing, one can know that the chain of other secondary eigensolutions breaks
off till wð1Þ2 .

Solving zero eigenvector of the first order wð2Þ1
Hwð2Þ1 ¼ wð2Þ0 ; ð23Þ
wð2Þ1 ¼ ðw; 0; 0;�MxÞT; ð24Þ
here w ¼ wð2Þ1 ¼ 0;Mx ¼ M ð2Þ
x1 ¼ 0.

It is obvious that the chain of other secondary eigensolutions breaks off till wð2Þ1 .
With respect to zero eigenvalue, the corresponding dynamical modes of it are vibration modes of several

orders of transverse vibration. However, the integrations along the y-axis of all mechanical variables are equal
to zero in this case.
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2.2. Determination of non-zero eigensolution

The symmetrical case is investigated, the eigensolution wn = (qn,pn)T of symmetrical case in flexural vibra-
tion of plates can be described as
w ¼ A11 coshðk1yÞ þ A12 coshðk2yÞ; ux ¼ A21 coshðk1yÞ þ A22 coshðk2yÞ;
V x ¼ A31 coshðk1yÞ þ A32 coshðk2yÞ; �Mx ¼ �A41 coshðk1yÞ � A42 coshðk2yÞ; ð25Þ
where k2
n ¼ �l2 � k2

n, k2
2 ¼ �k2

1 ¼ �k2, Amn (m = 1,2, . . .4, n = 1,2) are mode coefficients, and are not all inde-
pendent. After analyzing, one can find that only two of them are independent (see Zhong and Yao, 1999).

Substituting Eq. (25) into Eq. (12), the relations of mode coefficients can be obtained
A2n=A1n ¼ l; A3n=A1n ¼ Dðk4
n þ ml2k2

n � k4Þ=l;
A4n=A1n ¼ �Dðmk2

n þ l2Þ ðn ¼ 1; 2Þ. ð26Þ
By satisfying the free boundary condition of the strip plate, the equation that the eigenvalues should satisfy
is obtained
ðk2
1 þ ml2Þ½k3

2 þ ð2� mÞl2k2� tanhðk2aÞ � ðk2
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The case that wave-guide exists along the positive x-direction is considered. According to Eq. (27), let
l = ib, the dispersion equation in Hamiltonian systems can be derived
ðk2
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2 � mb2Þ½k3
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here b is the propagating wave number of elastic waves in plates.

Based on the theory of elastic thin plates, the dispersion equation of flexural waves in the strip plate is
ðk2
1 � mb2Þ½k3
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2 � mb2Þ½k3
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3. Analysis and discussion

Through analysis, one can see that in the research of elastodynamics in plates, the concepts such as trans-
lation and rotation of rigid body in statistics do not exist in plates, and the non-propagating modes, for exam-
ple the standing waves which distribute uniformly in the x-direction and oscillate in the y-direction, substitute
them. Applying the Hamiltonian formula, one can also obtain the localized vibration modes in plates besides
determining the extended modes along the x-direction. However, applying the theory of Lagrange–German
plates, we can only obtain the extended modes along the x-direction, and partial localized vibrations may
be missed.

Different from the classical analytical method of vibration modes, when applying the Hamiltonian formula,
through the dynamical models corresponding to the zero eigenvalue (longitudinal eigenvalue l = 0), we can
see that spatial vibration modes in the y-direction may exist in the strip plate. However, in the research of
the present paper, the integrations of all mechanical vector along the y-axis are equal to zero. Considering
the propagation of elastic waves, applying the semi-inverse method and the Hamiltonian formula, respec-
tively, the obtained dispersion relations are the same.

For non-zero eigenvalue, the main findings of this work are as follows:

(1) When the imaginary part of this eigenvalue is greater than zero, if the real part is less than zero, it
denotes the decay propagating mode in the positive x-direction; if the real part is greater than zero, it
denotes the unstable state with exponential increase; if the real part is equal to zero, it denotes the prop-
agating mode in the positive x-direction.

(2) When the imaginary part of this eigenvalue is less than zero, if the real part is less than zero, it denotes
the decay propagating mode in the negative x-direction; if the real part is greater than zero, it denotes the
state of energy accumulation; if the real part is equal to zero, it denotes the propagating mode in the
negative x-direction.
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(3) When the imaginary part of this eigenvalue is equal to zero, if the real part is less than zero, it denotes
localized vibration; if the real part is greater than zero, it denotes the state of instability.

Anyway, in any case of the above, the vibration frequency of structure and the wave number should satisfy
the dispersion relation, namely, the vibration frequency of structure, the wave number of incident waves and
the geometric parameters of structure should satisfy a certain relation.

The analytical methods and results of this paper can provide significant references for the analysis and
design of vibration control of the aerospace structures and the civil constructions.
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