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Abstract

The paper lists a number of problems that motivate consideration of special linear combin
of polynomials, orthogonal with the weightp(x) on the interval(a, b). We study properties of th
polynomials, as well as the necessary and sufficient conditions for their orthogonality. The spec
linear combinations of Chebyshev orthogonal polynomials of four kinds with absolutely con
coefficients hold a distinguished place in the class of such linear combinations.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let Pn(x) be an orthogonal system of polynomials with respect to the weightp(x) on
the interval(a, b). Consider the linear combination of these polynomials of the type

n+r∑
k=n−m

Cn,kPk(x),
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whereCn,k are real constants depending in general onn and k; m and r are absolute
constants,n > m. We shall call this linear combination a special linearcombination
of orthogonal polynomials (SLCOP). In particular, forr = 0 we shall call the SLCOP
m-incomplete special linear combination of orthogonal polynomials (m-ISLCOP).

Solutions of a large variety of problems lead to SLCOP. We shall list some of the
lems.

1.1. Christoffel’s problem

Given a sequencepn(x) of polynomials, orthogonal with the weightp(x) on the interval
(a, b), one has to construct a sequence of polynomialsqn(x), orthogonal with the weigh
p(x)σr(x) on (a, b), whereσr(x) = ∏s

j=1(x − xj )
mj is a positive on(a, b) polynomial of

degreer = ∑s
j=1 mj , xj ∈ (a, b).

Solution to this problem is Christoffel’s formula [1, p. 30] in the form of a determin
An expansion of this determinant is SLCOP

σr(x)qn(x) = cnpn(x) + cn+1pn+1(x) + · · · + cn+rpn+r (x), (1)

where the Fourier coefficientsCn are constants depending onn andr. Cristoffel’s formula
realizes the concrete representationσr(x)qn(x) as a special expansion with respect to
polynomialspn(x).

1.2. The Peebles–Korous problem

G. Peebles and J. Korous [2, pp. 75–76] introduced a positive rational multiplie
the weight function of orthogonals with the weightp(x) polynomials on(a, b). They
were interested in the boundedness properties of new orthogonal polynomials. Duri
study they obtained a representation of polynomialsqn(x), orthogonal with the weigh
p(x)/σr(x), through the linear combination of the polynomialsPn(x), orthogonal with the
weightp(x) on (a, b). The polynomialsqn(x) allow for representation as anr-ISLCOP

qn(x) = Cn−rPn−r (x) + Cn−r+1Pn−r+1(x) + · · · + CnPn(x).

Concrete realization of this representation in the form of a determinant is given b
Uvarov’s formula [3].

1.3. The problem of choosing nodal points (nodes) of quadrature formula

The interest in studying special linear combinations of orthogonal polynomials is
motivated by the fact that many authors (Giraud [4], Tchakaloff [5], Fejer [6], Shoha
studied mechanical quadratures of Gauss-type with nodes in zeros of such linear co
tions of orthogonal polynomials. Giraud constructed quadrature formulas with the no
the points related to the zeros ofPn+1(x) − Pn−1(x), wherePn(x) are the Legendre poly
nomials. Tchakaloff conducted similar study. While considering mechanical quadr
with positive coefficients, Fejer chose nodes to be zeros of linear combination of Leg
polynomials of typePn(x)+APn−1(x)+BPn−2(x), whereA andB are real numbers, an
B � 0. Shohat generalized Fejer’s results; he included into the construction of Gaus
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Φn(x) + A1Φn−1(x) + · · · + Ak−1Φn−k+1(x),

whereA1,A2, . . . ,Ak−1 are absolute constants.

1.4. Extrema problems of Zolotarev–Markov type

We assume the polynomialsΠn(x) of degreen to be normalized in such way that th
elder coefficient is equal to 1.�l(x) is a positive polynomial of degreel on the interval
(−1,1).

Problem 1.1. Among all the polynomialsΠn(x), find the one that deviates the least fro
zero in the uniform metrics with the weight 1/

√
�l(x) on the segment[−1,1]. That is, to

find the extrema polynomial that delivers

min
∀Πn(x)

max
x∈[−1,1]

|Πn(x)|√
�l(x)

.

Problem 1.2. Among all the polynomialsΠn(x), find the one that deviates the least fro
zero in the uniform metrics with the weight

√
(1− x2)/�l(x) on the segment[−1,1]. That

is, to find the extrema polynomial that delivers

min∀Πn(x)
max

x∈[−1,1]
|Πn(x)|√1− x2

√
�l(x)

.

Problem 1.3. Among all the polynomialsΠn(x), find the one that deviates the least fro
zero in the uniform metrics with the weight

√
(1− x)/�l(x) on the segment[−1,1]. That

is, to find the extrema polynomial that delivers

min
∀Πn(x)

max
x∈[−1,1]

|Πn(x)|√1− x√
�l(x)

.

Problem 1.4. Among all the polynomialsΠn(x), find the one that deviates the least fro
zero in the uniform metrics with the weight

√
(1+ x)/�l(x) on the segment[−1,1]. That

is, to find the extrema polynomial that delivers

min∀Πn(x)
max

x∈[−1,1]
|Πn(x)|√1+ x√

�l(x)
.

The solution to Problems 1.1 and 1.2 belongs to A.A. Markov and S.N. Bernstei
was improved by A.I. Achiezer [8]. These solutions are quite complex. Problems 1.3 a
1.4 were posed and solved by the author, as was the simpler and uniform solut
all the 4 problems by using Bernstein–Szegö orthogonal polynomials. These solutio
l-incomplete linear combinations of the corresponding Chebyshev orthogonal poly
als, as we shall prove in the present paper.
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1.5. A.O. Gelfond’s problem of the polynomials, least deviating from zero
with their derivatives

This problem is a natural generalization of the well-known problem of polynom
least deviating from zero, that was posed and solved by Chebyshev [8].

Consider the numbersσn,m, n � m + 2, m � 0,

σn,m = min∀Πn(x)
max

0�s�m
max

−1�x�1

|Π(s)
n (x)|

n(n − 1) . . . (n − s + 1)
,

where the minimum is taken over all the polynomials of degreen with real coefficients and
the elder coefficient equal to 1. Asymptotic solution to this problem of polynomials,
deviating from zero with their derivatives, led A.O. Gelfond [9] to polynomialsTn,k(x),
that can be represented as a special linear combination of Chebyshev orthogonal
mialsTn(x) of the first kind with the elder coefficient equal to 1,

Tn,k(x) = Tn(x) + Cn−2,kTn−2(x) + Cn−4,kTn−4(x) + · · · + Cn−2kTn−2k(x),

where the explicitly calculated coefficientsCn,k depend rationally onn andk.

1.6. The problem of approximate polynomial solution to differential equations

In the works of Dzyadyk, Ostrovetsky, Romanenko [10] the solutions to the Ca
problem for the ordinary differential equations is represented by the polynomials th
close to the best approximation. This approximate solution is a special linear combi
of the Chebyshev polynomials of the first kind

En(x) =
l∑

i=0

τiTn+i (x).

An algorithm for calculating the coefficientsτi is constructed. The method is expand
to the Goursa problem for hyperbolic-type equations, non-linear integral equatio
Volterra, Urison, Liapunov–Lichtenstein, and approximate solution to the non-l
Cauchy problem for the hyperbolic-type equations. The algorithm of the approximate so
tions to the aforementioned problems essentially uses thel-incomplete linear combinatio
of the orthogonal Chebyshev polynomials, as theapparatus for the efficient approximatio

1.7. The linearization problem for products of orthogonal polynomials

The formulas for transforming the product of trigonometric functions into their lin
combination are well known, for example,

cosmθ cosnθ = 1

2
cos(n + m)θ + 1

2
cos(n − m)θ.

The role of such formulas in the applications is well known.
Similarly important is the transformation of the product of orthogonal polynomials

their linear combination. Such formulas for particular classes of orthogonal polyno
were studied by various authors (Adams, Ferrer, Dougll, Hsu, Hylleraas, Vilenkin, B
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MacMahon, Gasper, Miller, Hirschman, Davis, Wainger, Askey, Gillis, Even). The su
of these works is given in the work of R. Askey [11]. For the generic classes of ortho
polynomialsPn(x), satisfying the recurrence relation

P1(x)Pn(x) = Pn+1(x) + anPn(x) + bnPn−1(x),

R. Askey proved the following linearization theorem:

Pm(x)Pn(x) =
n+m∑

k=|n−m|
a(k,m,n)Pk(x).

If an � 0, bn � 0, an+1 � an, bn+1 � bn, n = 1,2, . . . , thena(k,m,n) � 0.
Therefore, the linearization problem for the products of orthogonal polynomials

leads to the special linear combinations of orthogonal polynomials.
Here we consider the SLCOP as an independent object of study. This paper stud

properties of such linear combinations oforthogonal polynomials. We find the necess
and sufficient conditions for the linear combinations of orthogonal polynomials to b
thogonal polynomials themselves with respect to certain weight. This is important,
when being orthogonal, they become in certain sense optimal among others, similarl
case where the Gauss quadrature formula is optimal, if its nodes are zeros of orth
polynomials. Among the SLCOP we distinguish those that are generated by Bern
Szegö orthogonal polynomials (B-SOP). We consider the B-SOP of four kinds. The
distinguished by the fact that the coefficients of their expansion with respect to Cheb
orthogonal polynomials are absolute constants. Based upon the oscillatory propertie
B-SOP [12–14], we give a simple uniform solution to the Zolotarev–Markov probl
We prove the interpretation theorem, whichallows to recognize B-SOP according to co
ficients of the special linear combination of the Chebyshev polynomials.

2. Orthogonality conditions for the l-incomplete linear combinations
of orthogonal polynomials

The properties of linear combinations of orthogonal polynomials were studie
Shohat [7,12]. We complete this study by ascertaining the nature of the weight fun
with respect to which the linear combinations are orthogonal. Our study uses the fun
of the II kind as a tool.

Let ω̃n(x) be polynomials, orthogonal with respect to the weightp(x) on the in-
terval [a, b] and normalized in such way that the elder coefficient is equal to 1.
Cn = {C(n)

k }nk=n−l be an arbitrary sequence of(l + 1)-dimensional vectors, whereC(n)
n = 1

andC
(n)
k (k < n) are real numbers,l is a fixed non-negative integer(n = 0,1,2, . . .).

Consider the sequence of polynomialsΩ̃n(x) with elder coefficient equal to one, that
represented by the following linear combination of orthogonal polynomials:

Ω̃n(x) =
n∑

C
(n)
i ω̃i (x) (n = 0,1,2, . . .). (2)
i=n−l
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We assumẽω−k(x) ≡ 0 for each naturalk. Let the polynomialsΩ̃n(x) be orthogonal with
respect to the weightq(x) on the interval[a, b].

We introduce the following notations:

– Q
(ω)
n (z) is a function of the second kind, corresponding to the polynomialω̃n(x);

– Q
(Ω)
n (z) is a function of the second kind, corresponding to the polynomialΩ̃n(x),

namely

Q(ω)
n (z) =

b∫
a

p(x)ω̃n(x) dx

z − x
, (3)

Q(Ω)
n (z) =

b∫
a

q(x)Ω̃n(x) dx

z − x
(4)

for ∀z ∈ [a, b].

Theorem 2.1. For the equalityq(x) = p(x)/�l(x) is a non-negative on the interval[a, b]
polynomial of the degreel, it is necessary and sufficient that the following condition ho:

Q(ω)
n (z) =

n+l∑
i=n

d
(n)
i Q

(Ω)
i (z), (5)

whered
(n)
i are real constants depending onn, i andl.

Proof. Necessity. Let the polynomialsΩ̃n(x) be orthogonal on[a, b] with the weight
q(x) = p(x)/�l(x). Then the polynomials̃ωn(x) are orthogonal on[a, b] with weight
p(x) = �l(x)q(x). The Christoffel formula (1) implies

ω̃n(x) = 1

�l(x)

n+l∑
i=n

d
(n)
i Ω̃i(x).

Multiplying both sides of the equation byp(x)/(z − x) and integrating with respect tox
over[a, b] yields

b∫
a

ω̃n(x)p(x) dx

z − x
=

b∫
a

p(x) dx

�l(x)(z − x)

n+l∑
i=n

d
(n)
i Ω̃i(x) dx =

n+l∑
i=n

d
(n)
i

b∫
a

p(x)Ω̃i(x) dx

z − x
,

which yields the formula (5), by taking into account (3) and (4).
Sufficiency. The condition (5) and the formula (3) imply that∀z ∈ [a, b],

b∫
p(x)ω̃n(x) dx

z − x
=

n+l∑
i=n

d
(n)
i

b∫
q(x)Ω̃i(x) dx

z − x
=

b∫
q(x)

∑n+l
i=n d

(n)
i Ω̃i(x) dx

z − x
,

a a a
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b∫
a

[p(x)ω̃n(x) − q(x)
∑n+l

i=n d
(n)
i Ω̃i(x)]dx

z − x
≡ 0

for ∀z ∈ [a, b].
Settingϕ(x) = p(x)ω̃n(x) − q(x)

∑n+l
i=n d

(n)
i Ω̃i(x) yields

b∫
a

ϕ(x) dx

z − x
≡ 0 for ∀z ∈ [a, b].

We expand the Cauchy kernel into the series

1

z − x
= 1

z

1

1− x/z
= 1

z

∞∑
k=0

(
x

z

)k

=
∞∑

k=0

xk

zk+1 .

The series converges uniformly for allx ∈ [a, b] for |x| > max{|a|, |b|}. Multiplying both
sides of the obtained equality by the summable on[a, b] functionϕ(x) does not violate
uniform convergence of the series, and allows to integrate the series memberwise:

b∫
a

ϕ(x) dx

z − x
=

∞∑
k=0

1

zk+1

b∫
a

ϕ(x)xk dx.

Therefore the identity
∫ b

a
ϕ(x) dx

z−x
≡ 0 is equivalent to the conditions

b∫
a

ϕ(x)xk dx = 0 (k = 0,1,2, . . .).

Hence, the summability ofϕ(x) impliesϕ(x) ≡ 0 for all x ∈ [a, b] [2], therefore

p(x)ω̃n(x) − q(x)

n+l∑
i=n

d
(n)
i Ω̃i(x) ≡ 0

or

p(x)

q(x)
=

∑n+l
i=n d

(n)
i Ω̃i(x)

ω̃n(x)
.

The left side is independent ofn; thereforep(x)/q(x) = �l(x), where

�l(x) =
l∑

i=0

d
(0)
i Ω̃i(x)

is a non-negative polynomial of degreel. �



8 Z. Grinshpun / J. Math. Anal. Appl. 299 (2004) 1–18

g-

at
Theorem 2.2. If the sequence{Ω̃n(x)}∞n=0 is orthogonal with some weightq(x) on the
interval [a, b], then

Q(ω)
n (z) =

n+l∑
s=n

d(n)
s Q(Ω)

s (z), (6)

where

d(n)
s = anC

(s)
n

bs

, an =
b∫

a

[
ω̃n(x)

]2
p(x) dx, bs =

b∫
a

[
Ω̃s(x)

]2
q(x) dx. (7)

Proof. Expanding the Cauchy kernel formally to orthogonal polynomials yields

1

z − x
∼

∞∑
k=0

1

ak

ω̃k(x)Q
(ω)
k (z),

1

z − x
∼

∞∑
s=0

1

bs

Ω̃s(x)Q(Ω)
s (z),

wherex ∈ [a, b], z ∈ [a, b].
Irrespectively of the series convergence,the following integral equalities hold:

b∫
a

p(x)ω̃n(x) dx

z − x
=

∞∑
k=0

1

ak

Q
(ω)
k (z)

b∫
a

p(x)ω̃k(x)ω̃n(x) dx,

b∫
a

p(x)ω̃n(x) dx

z − x
=

∞∑
s=0

1

bs

Q(Ω)
s (z)

b∫
a

p(x)Ω̃s(x)ω̃n(x) dx.

Hence

Q(ω)
n (z) =

∞∑
s=0

1

bs

Q(Ω)
s (z)

s∑
i=s−l

C
(s)
i

b∫
a

ω̃i (x)ω̃n(x)p(x) dx

=
n+l∑
s=n

anc
(s)
n

bs

Q(Ω)
s (z). �

Theorem 2.3. In order for thel-incomplete linear combination of polynomials, ortho
onal with the weightp(x) on the segment[a, b], Ωn(x) = ∑n

i=n−l c
(n)
i ωi(x), to be or-

thogonal with the weightq(x) on the segment[a, b], it is necessary and sufficient th
q(x) = p(x)/�l(x), where�l(x) is a non-negative polynomial on[a, b] of degreel.
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Proof. Necessity. Let Ωn(x) be an orthogonall-incomplete linear combination of poly
nomialsωi(x), orthogonal with the weightp(x). Then by Theorem 2.2, the followin
condition holds:

Q(ω)
n (z) =

n+l∑
s=n

d(n)
s Q(Ω)

s (z), (8)

whered(n)
s are calculated by the formula (7). But, under condition (6), Theorem 2.1 implie

that the weight functionq(x) = p(x)/�l(x), where�l(x) is non-negative on the segme
[a, b] polynomial of degreel.

Sufficiency. Let the polynomialsΩn(x) of degreen be orthogonal with the weigh
p(x)/�l(x) on the segment[a, b]. We expand the polynomialΩn(x) with respect to the
polynomialsωk(x), orthogonal with the weightp(x) on the segment[a, b]:

Ωn(x) =
n∑

i=0

c
(n)
i ωi(x), (9)

where the Fourier expansion coefficients are calculated by the formula

c
(n)
i = 1

ai

b∫
a

Ωn(x)p(x)ωi(x) dx, whereai =
b∫

a

p(x)
[
ωi(x)

]2
dx.

Transform the formula forc(n)
i ,

c
(n)
i = 1

ai

b∫
a

Ωn(x)
p(x)

�l(x)
�l(x)ωi(x) dx.

Since the polynomialsΩn(x) are orthogonal on[a, b] with the weightp(x)/�l(x), Ωn(x)

are orthogonal with this weight to any polynomial of the degree less thann, that is for
l + i < n. Hence,c(n)

i = 0 for i < n − l. The polynomial (9) takes the forml-ISLCOP

Ωn(x) =
n∑

i=n−l

c
(n)
i ωi(x). �

3. Linearization of the Bernstein–Szegö orthogonal polynomials

Among the classic polynomials orthogonal on the interval[−1,1], a distinguished
place—due to their simplicity, depth of our knowledge about them, and wide applications—
is held by the Chebyshev polynomials of four kindsTn(x), Un(x), Vn(x), Wn(x), corre-
sponding to the weight functions

µ1(x) = 1√
2
, µ2(x) =

√
1− x2, µ3(x) =

√
1− x

, µ4(x) =
√

1+ x
.

1− x 1+ x 1− x
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We shall denote the Chebyshev polynomials of any definite kind byPn(x), and the ortho-
normal polynomials bŷPn(x), wherePn(x) = √

π/2P̂n(x). The Bernstein–Szegö ortho
onal polynomials (B-SOP) correspond to the weight functions

ωk(x) = µk(x)

�l(x)
(k = 1,2,3,4),

where�l(x) is a positive polynomial of degreel on (−1,1).
We shall differentiate between the B-SOP of four kinds. We shall denote respec

Pn(x) as the I kind,qn(x) as the II kind,Rn(x) as the III kind, andSn(x) as the IV kind.
We shall use the notationQn(x) for B-SOP of the same kind (irrespectively of which one)
Q̂n(x)—orthonormal B-SOP, whereQn(x) = √

π/2Q̂n(x). In that way for each kind o
the Chebyshev polynomials corresponds the same kind of the Bernstein–Szegö po
als. S.N. Bernstein and G. Szegö had pointed out explicit expressions for the polyn
corresponding to the weightsωk(x) (k = 1,2,3). Though S.N. Bernstein and G. Szegö d
not consider explicitly the polynomials, orthogonal on the interval[−1,1] with the weight
ω4(x), it is natural to consider the latter also as Bernstein–Szegö polynomials.

Further on we shall use the following Fejer representation [1] of the non-neg
trigonometric polynomial. Every non-negative trigonometric polynomialg(θ) of degree
l can be represented as a square of modulus of a certain polynomialh(z) of degreel, for
z = eiθ . If this polynomial does not vanish for|z| < 1 and is normalized in such a way th
h(0) > 0, then it is uniquely defined. Ifg(θ) is a trigonometric cosine-polynomial with re
coefficients, then the coefficients of the polynomialh(z) are real. Leth(z) = ∑l

j=0 hjz
j be

a polynomial that gives Fejer-normalized representation of the positive polynomial�l(x).
We expand the Bernstein–Szegö polynomials of each kind into Chebyshev polynomia

of the corresponding ‘same name’ kind. Assumingx = cosθ , we will start with the B-SOP
representation forn � l/2,

P̂n(cosθ) =
√

2

π
�[

einθh(eiθ )
]
,

q̂n(cosθ) =
√

2

π

1

sinθ
�[

ei(n+1)θh(eiθ )
]
,

R̂n(cosθ) = 1√
π

1

sin θ
2

�[
ei(n+1/2)θh(eiθ )

]
,

Ŝn(cosθ) = 1√
π

1

cosθ
2

�[
ei(n+1/2)θh(eiθ )

]
.

For the B-SOP of the first kind, we obtain

P̂n(cosθ) =
√

2

π
�[

einθh(eiθ )
] =

√
2

π
�

[
einθ

l∑
j=0

hjeiθj

]

=
√

2

π
�

[
einθ

l∑
hj e

−iθj

]
=

√
2

π
�

[
l∑

hj e
i(n−j)θ

]

j=0 j=0
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=
√

2

π

l∑
j=0

hj cos(n − j)θ.

Since the Chebyshev polynomials of the first kind on the interval[−1,1] can be represente
as T̂n(x) = √

2/π cosnθ , where cosθ = x, the following representation of the B-SOP
first kind holds:

P̂n(x) =
l∑

j=0

hj T̂n−j (x). (10)

For the B-SOP of the second kind, we obtain

q̂n(cosθ) =
√

2

π

1

sinθ
�[

ei(n+1)θh(eiθ )
] =

√
2

π

1

sinθ
�
[
ei(n+1)θ

l∑
j=0

hj eiθj

]

=
√

2

π

1

sinθ
�

l∑
j=0

hj e
(n+1−j)θ =

√
2

π

1

sinθ

l∑
j=0

hj sin(n + 1− j)θ.

Since the Chebyshev polynomials of the second kind on the interval[−1,1] can be repre
sented as

Ûn(x) =
√

2

π

sin(n + 1)θ

sinθ
,

the following representation holds for the B-SOP of the second kind:

q̂n(x) =
l∑

j=0

hj Ûn+1−j (x). (11)

For the B-SOP of the third kind, we obtain

R̂n(cosθ) = 1√
π

1

sin(θ/2)
�[

ei(n+1/2)θh(eiθ )
]

= 1√
π

1

sin(θ/2)
�
[
ei(n+1/2)θ

l∑
j=0

heiθj

]

= 1√
π

1

sin(θ/2)
�

l∑
j=0

hj e
i(n+1/2−j)θ

= 1√
π

1

sin(θ/2)

l∑
j=0

hj sin

(
n + 1

2
− j

)
θ.

Since the Chebyshev polynomials of the third kind on the interval[−1,1] can be repre
sented as

V̂n(x) = 1√ sin(n + 1/2)θ
,

π sin(θ/2)
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the following representation holds for the B-SOP of the third kind:

R̂n(x) =
l∑

j=0

hj V̂n−j (x). (12)

For the B-SOP of fourth kind, we obtain

Ŝn(cosθ) = 1√
π

1

cos(θ/2)
�[

ei(n+1/2)θh(eiθ )
]

= 1√
π

1

cos(θ/2)
�

[
ei(n+1/2)θ

l∑
j=0

heiθj

]

= 1√
π

1

cos(θ/2)
�

[
l∑

j=0

hj e
i(n+1/2−j)θ

]

= 1√
π

1

cos(θ/2)

l∑
j=0

hj cos

(
n + 1

2
− j

)
θ.

Since the Chebyshev polynomials of fourth kind on the interval[−1,1] can be represente
as

Ŵn(x) = 1√
π

cos(n + 1/2)θ

cos(θ/2)
,

the following representation holds for the B-SOP of the fourth kind:

Ŝn(x) =
l∑

j=0

hj Ŵn−j (x). (13)

Combining the formulas (10)–(13) yields that the B-SOP of any kind can be represen
a speciall-incomplete linear combination of the Chebyshev polynomials of the same
The special feature of this representation is that the expansion coefficients{hj }lj=0 do not
depend uponn, they are absolutely constant numbers. This situation is characterist
the B-SOP.

The following surprisingly simple theorem holds.

Theorem 3.1. The B-SOP of theith kind(i = 1,2,3,4), and only them, can be represent
as anl-incomplete linear combination of the Chebyshev polynomials of the correspo
ith kind with absolutely constant coefficients. Namely,

Q̂n(x) =
l∑

j=0

hj P̂n−j (x),

wherehj are independent ofn real coefficients of the polynomialh(z), which gives nor-
malized representation to the weight polynomial�l(x).
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Proof. Necessity. Follows from the consideration above, and the formulas (10)–(13).
Sufficiency. Let Ωn(x) = ∑l

k=0 hkP̂n−k(x) be an orthonormal on the interval[−1,1]
l-incomplete linear combination of the orthonormal on[−1,1] Chebyshev polynomial
of certainith kind. According to Theorem 2.3, the weight, with which these polynom
are orthogonal, isµj(x)/�l(x), whereµj(x) is the Chebyshev weight of theith kind.
The weight polynomial�l(x) is reconstructed by the coefficientshj (j = 0,1, . . . , l).
Namely, from these coefficients one can construct the Fejer-normalized polynomialh(z) =∑l

j=0 hj z
j , and�l(x) = |h(z)|2, wherez = eiθ , x = cosθ .

Thus, the given orthogonall-incomplete linear combination of Chebyshev polynom
of theith kind is a B-SOP of theith kind. �

4. B-SOP and localization of zeros of Fejer polynomial

Posing and solving many of the applied and theoretical problems leads tol-incomplete
linear combinations of Chebyshev polynomials. The results, obtained in terms of
linear combinations, allow for interpretation in terms of Bernstein–Szegö polynomia
the following theorem shows.

Theorem 4.1. Let the following assumptions hold:

(1) Pn(x) are classic Chebyshev polynomials of one of the four kinds, orthonormal o
interval [−1,1];

(2) ϕn(x) is anl-incomplete linear combination of the polynomialsPn(x) with absolutely
constant real coefficients

ϕn(x) = h0Pn(x) + h1Pn−1(x) + · · · + hlPn−l (x), (14)

∀l < n ∈ N, h0 	= 0 	= hl ;
(3) The coefficientshk (k = 0,1, . . . , l) are such that the polynomial of a complex va

ablez,

hl(z) = hlz
l + hl−1z

l−1 + · · · + h1z + h0,

either does not have any zeros for|z| < 1, or all its zeros are inside of the unit circle

Then, eitherϕn(x), or

ϕ∗
n(x) = hlPn(x) + hl−1Pn−1(x) + · · · + h0Pn−l (x) (15)

are Bernstein–Szegö polynomials of the corresponding kind.

Proof. If the polynomialhl(z) of degreel does not have zeros for|z| � 1, then it gives
Fejer-normalized representation of the positive on(−1,1) cosine-polynomial∣∣hl(e

iθ )
∣∣2 = �l(cosθ) = �l(x) for x = cosθ.

We construct the Bernstein–Szegö orthonormal polynomialsQn(x) of the corresponding
kind with respect to the weightωk(x) = µk(x)/�l(x). The coefficients of the polynomia
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hl(z) are the Fourier–Chebyshev coefficients of theQn(x) expansion by the Chebyshe
polynomials. TheQn(x) expansion coincides with the expansion of the polynomialϕn(x).
This impliesϕn(x) = Qn(x). If hl(z) has all its zeros inside the unit circle, then the po
nomialh∗

l (z) = ∑l
k=0 hl−kz

k does not have zeros for|z| � 1. Indeed assumingz = 1/ζ ,
all the zeros for|z| < 1 transform into the exterior of the unit circle|ζ | > 1. In addition,

hl(z) = h0 + h1z + · · · + hlz
l = zl

(
hl + hl−1

1

z
+ · · · + h0

1

zl

)

= 1

ζ l
(hl + hl−1ζ + · · · + h0ζ

l).

This shows that the polynomialh∗
l (z) = hl + hl−1z + · · · + h0z

l does not have zeros in
side |z| < 1. In addition,|hl(e

iθ )| = |h∗
l (e

−iθ )|. Therefore,h∗
l (z) gives Fejer-normalize

to the same positive polynomial�l(x) ashl(z) does. This reduces the consideration to
previous case. �
Corollary. Under the conditions(1)–(3)of Theorem4.1, thel-incomplete linear combina
tion of Chebyshev orthogonal polynomialsϕn(x) hasn simple zeros in the interior of th
interval (−1,1).

We apply Theorem 4.1 to the result of Galeev [15] on solving the Zolotarev’s prob
Among all the polynomials of degreen with given two elder coefficients 1 and−σ ,

find minimal in the normL[−1,1], that is, the one with minimal deviation from zero in t
L[−1,1] metrics. In other words, one is looking for

min
(a0,a1,...,an−2)∈Rn−1

1∫
−1

∣∣∣∣∣xn − σxn−1 +
n−2∑
k=0

akx
k

∣∣∣∣∣dx.

The extrema polynomial in this problem, which Galeev obtained, has the form

Zn(x,σ ) =
{

(x − σ)Un−1(x) for |σ | � 1,

Un(x) − σUn−1(x) + σ2

4 Un−2(x) for |σ | < 1,

whereUn(x) are Chebyshev polynomials of the second kind, orthogonal with the w√
1− x2 on the interval[−1,1].
For |σ | < 1, Zn(x,σ ) is a 2-incomplete linear combination of the polynomialsUn(x).

The polynomial

h2(z) = σ 2

4
z2 − σz + 1 =

(
σ

2
z − 1

)2

vanishes only forz0 = 2/σ . Since|σ | < 1, we have|z0| > 2; henceh2(z) does not have
zeros for|z| � 1 and gives a normalized representation to the polynomial

�2(x)
∣∣h2(e

iθ )
∣∣2 =

(
σx − σ 2

− 1

)2

.

4
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This implies that the extrema polynomial in the Zolotarev’s problem in the me
L[−1,1] for |σ | < 1 is a Bernstein–Szegö orthogonal polynomial of second kind,
responding to the weight function

ω(x) =
√

1− x2

(σx − σ 2/4− 1)2 .

In Theorem 4.1 (interpretation) the condition (3) (either the polynomialhl(z) does not
have zeros inside the circle|z| � 1, or all its zeros are inside the unit circle) is essen
We shall obtain a practical criterion for the condition (3) to hold. Such a criterion cou
obtained from the known criteria of Rauss–Horvitz, Nyqwist and others by transfor
the left semi-plane onto the unit circle.

Let hl(ζ ) be the polynomial

hl(ζ ) = hlζ
l + hl−1ζ

l−1 + · · · + h1ζ + h0, hl 	= 0 	= h0.

We transform conformally the left semi-plane�z < 0 onto the unit circle|z| < 1 with
help of the functionζ = z+1

z−1. The polynomialhl(ζ ) transforms into the rational functio

R(z) = hl

(
z+1
z−1

) = gl(z)

(z−1)l
, wheregl(z) = ∑l

k=0 hk(z + 1)k(z − 1)l−k. If ζs is a zero of the

polynomialhl(ζ ) of multiplicity αs , that is inside the unit circle so that|ζs | < 1, h
(r)
l (ζs)

= 0 for r = 0,1, . . . , αs − 1 andh
(αs)
l (ζs) 	= 0, thenζs is a zero of the polynomialgl(z) of

the same multiplicityαs , lying in the left semi-plane, so that�zs < 0 andg
(r)
l (zs) = 0 for

r = 0,1, . . . , αs −1 andg
(αs )
l (zs) 	= 0, whereζs = zs+1

zs−1. The total number of zeros ofhl(ζ )

inside the unit circle is equal to the total number of zeros ofgl(z) in the left semi-plane
We apply the argument principle when determining the number of zeros ofgl(z) in the left
semi-plane, hence also the number of zeros of the polynomialhl(z) inside the unit circle.

We introduce notations:

– nλ is the number of zeros (including multiplicities) of the polynomialgl(z) in the left
semi-plane.

– ν is the number of rotations around the origin of the image of the imaginary axis u
the mappingω = gl(z).

The argument principle implies

nλ = l

2
+ ν,

wherel is the degree of the polynomialsgl(z) andhl(ζ ).
Thus we arrive at the following results:

(1) The number of zeroshl(ζ ) inside the unit circle is equal to

nλ = l

2
+ ν.

(2) In order for the polynomialhl(ζ ) not to have zeros inside the unit circle, it is necess
and sufficient that

ν = − l
.

2
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(3) In order for the polynomialhl(ζ ) to have all its zeros inside the unit circle, it is nec
sary and sufficient that

ν = l

2
.

5. Solution to the Zolotarev–Markov problems

By using the B-SOP properties, we shall show elementary and uniform solution
aforementioned extrema problems of the Zolotarev–Markov type. We will need the fo
ing fundamental oscillatory properties of the B-SOP for this purpose that were fou
the author in [13,14]. We formulate these properties as four theorems.

Theorem 5.1. The B-SOP of the first kindPn(x) are the snakes for the pair of function
±√

��(x), with thee-points in zeros of the B-SOP of the second kindqn−1(x) and in±1,
namely,

Pn

[
x(n−1)
ν (q)

] = (−1)n−ν

√
��

[
x

(n−1)
ν (q)

]
, ν = 0,1,2, . . . , n. (16)

Theorem 5.2. The B-SOP of the second kind are the snakes for the pair of func
±√

��(x)/(1− x2), with the e-points in zeros of the B-SOP of the first kindPn+1(x),
namely,

qn

[
x(n+1)
ν (P )

] = (−1)n+1−ν

√
��(x)

1− x2

∣∣∣∣
x=x

(n+1)
ν (P )

, ν = 1,2, . . . , n + 1. (17)

Theorem 5.3. The B-SOP of the third kind are the snakes for the pair of funct
±√

��(x)/(1− x) with the e-points in zeros of the B-SOP of the fourth kindSn(x) and
in x = −1, namely,

Rn

[
x(n)
ν (S)

] = (−1)n−ν

√√√√��[x(n)
ν (S)]

1− x
(n)
ν (S)

, ν = 0,1,2, . . . , n. (18)

Theorem 5.4. The B-SOP of the fourth kindSn(x) are the snakes for the pair of function
±√

��(x)/(1+ x) with thee-points in zeros of the B-SOP of the third kindRn(x) and in
x = 1, namely,

Sn

[
x(n)
ν (R)

] = (−1)n+1−ν

√√√√��[x(n)
ν (R)]

1+ x
(n)
ν (R)

, ν = 1,2, . . . , n + 1. (19)

Complete proofs of these theorems are given in the author’s paper [14].
We prove that the solution to the Zolotarev–Markov extrema problem numberi (i =

1,2,3,4) is the B-SOP of the sameith kind.
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The equality (16) implies

min∀Πn(x)
max

−1�x�1

|Πn(x)|√
�l(x)

= max
−1�x�1

|Pn(x)|√
�l(x)

= |Pn(x)|√
�l(x)

∣∣∣∣
x=x

(n−1)
ν (q)

= 1.

The equality (17) implies

min∀Πn(x)
max

−1�x�1

∣∣Πn(x)
∣∣
√

1− x2

�l(x)
= max

−1�x�1

∣∣qn(x)
∣∣
√

1− x2

�l(x)

= ∣∣qn(x)
∣∣
√

1− x2

�l(x)

∣∣∣∣
x=x

(n+1)
ν (P )

= 1.

The equality (18) implies

min∀Πn(x)
max

−1�x�1

∣∣Πn(x)
∣∣
√

1− x

�l(x)
= max

−1�x�1

∣∣Rn(x)
∣∣
√

1− x

�l(x)

= ∣∣Rn(x)
∣∣
√

1− x

�l(x)

∣∣∣∣
x=x

(n)
ν (S)

= 1.

The equality (19) implies

min∀Πn(x)
max

−1�x�1

∣∣Πn(x)
∣∣
√

1+ x

�l(x)
= max

−1�x�1

∣∣Sn(x)
∣∣
√

1+ x

�l(x)

= ∣∣Sn(x)
∣∣
√

1+ x

�l(x)

∣∣∣∣
x=x

(n)
ν (R)

= 1.

These equalities together with the Theorems 5.1–5.4 show that the corresponding fun
tions

Pn(x)√
�l(x)

, qn(x)

√
1− x2

�l(x)
, Rn(x)

√
1− x

�l(x)
, Sn(x)

√
1+ x

�l(x)

have in then + 1 e-points of B-SOP of the corresponding kind on the interval[−1,1] the
same absolute deviations with alternating signs. Hence, thee-points constitute for them th
Chebyshev alternance. According to Chebyshev’s theorem [8], the B-SOP of theith kind
are the solutions to the correspondingith problem(i = 1,2,3,4) of Zolotarev–Markov.
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