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Abstract

We propose a multivariate method for combining results from independent studies about the same ‘large
scale’ multiple testing problem. The method works asymptotically in the number of hypotheses and consists
of applying the Benjamini–Hochberg procedure to the p-values of each study separately by determining
the ‘individual false discovery rates’ which maximize power subject to a restriction on the (global) false
discovery rate. We show how to obtain solutions to the associated optimization problem, provide both
theoretical and numerical examples, and compare the method with univariate ones.
c© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The development of methods for combining results of independent multiple testing studies
has been a subject of interest in recent years, especially in connection with the joint analysis
of several microarray experiments (e.g. [13,4]). Typically, a microarray experiment yields gene
expression measurements across a very large number of ‘genes’ under each of a couple of
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conditions (e.g. control and treatment), and the main purpose of a statistical analysis of such
data is to detect genes whose expression systematically differs under different conditions.
Since differences in gene expression are measured by test statistics and formally assessed by
means of associated p-values computed under a null hypothesis (e.g. equality of means in the
case of the two-sample t-statistic), the analysis of data from a microarray experiment usually
reduces to the computation of p-values – one p-value per gene/test statistic/hypothesis – and
to the application of the Benjamini–Hochberg [2] method, which declares as ‘differentially
expressive’/false those genes/hypotheses with p-values below a certain threshold or cut-off point.
(See, for example, [11].) If we thus regard the result of a multiple testing study as a list of
hypotheses rejected on the basis of a sample of p-values, then a method of combining results
from s multiple testing studies is, by definition, a rule for rejecting hypotheses on the basis of
s samples of p-values. In this article we adopt this point of view and introduce a multivariate
method for combining the outcomes of different homologous multiple testing studies—multiple
testing studies that, roughly speaking, address the same set of hypotheses. The method consists of
applying a version of the Benjamini–Hochberg procedure to the p-values of each study separately
by fixing their thresholds – their individual false discovery rates – and using these to construct a
list of rejections per study, and then declaring as false those hypotheses which belong to at least
one of the s lists, in such a way as to maximize average power subject to a restriction on the
(‘global’) false discovery rate (see Section 2 for the definition of these concepts).

The optimality of our method holds in an asymptotic sense as the number of hypotheses tends
to infinity and under rather general conditions (which allow for non-stationarity and dependence
in the sequence of p-values); it follows from certain results about an ‘adaptive form’ of the
Benjamini–Hochberg method which we review in Section 2 and require for the exposition of the
method in Section 3. Because the determination of the individual false discovery rates amounts
to solving numerically an optimization problem with one constraint, part of Section 3 is devoted
to the problem of obtaining solutions and to illustrating the workings of the method by means of
numerical examples.

A numerical comparison with univariate methods is given in Section 4. Univariate methods
consist of computing a single p-value or test statistic per hypothesis as a function (e.g. a
weighted average) of the homologous p-values or test statistics from the s different studies, and
then applying a multiple testing procedure to the resulting sample (e.g. [13,4]). The univariate
methods that we consider in Section 4 – the average method and Fisher’s method – are only
special cases of the methods of Rhodes et al. [13] and Choi et al. [4]; however, it will be seen that
the versions that we chose are fair (and probably even favourable) representatives of the possible
variants of these methods.

2. Some basic results

Before considering our problem proper we need to state certain results on the
Benjamini–Hochberg method whose proofs may be found in [5,6]. For each n let Z1, Z2, . . . , Zn
be random variables (r.v.’s) with values in [0, 1] representing the p-values associated with n
test statistics, n0 of which are computed under null (or true) hypotheses and the remaining
n1 = n − n0 under alternative (or false) hypotheses. We define γn by n0 = γnn, n1 = (1 − γn)n,
and consider the case where γn = n0/n → γ ∈ (0, 1) as n → ∞. We put Z j = X j for
j = 1, . . . , n0, and Zn0+ j = Y j for j = 1, . . . , n1. Throughout the paper, F will always denote
the distribution function (d.f.) of a standard uniform r.v.
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Let 0 ≤ Z1:n ≤ · · · ≤ Zn:n ≤ 1 be the order statistics of the sample of p-values. The
Benjamini–Hochberg procedure is this: Fix q ∈ [0, 1] and reject all hypotheses whose p-values
fall below the random threshold q Rn(q)/n, where

Rn(q) := max
{

i : Zi :n ≤ q
i

n

}
. (2.1)

The r.v.’s Rn(q) and Sn(q) =
∑n0

j=1 1
{X j ≤q Rn (q)

n }
give the number of rejected hypotheses and

the number of incorrectly rejected hypotheses, respectively. The r.v.’s Π1,n(q) = Sn(q)/(Rn(q)∨
1) and Π2,n(q) = (Rn(q)− Sn(q))/n1 are the proportion of incorrectly rejected hypotheses out
of all rejected hypotheses and the proportion of correctly rejected hypotheses; their expected
values are called false discovery rate (f.d.r.) and average power, respectively. When they exist,
the limits in probability of Π1,n(q) and Π2,n(q) are referred to as the asymptotic f.d.r. and
asymptotic (average) power. For brevity, and unless confusions may arise, we shall often drop
the qualification of ‘asymptotic’ and simply refer to the r.v.’s and their limits in probability by
the same name.

The limits exist and can be computed or estimated under the assumption (to be strengthened
later on so as to serve our present purpose) that

Fn0(u) :=
1
n0

n0∑
i=1

1{X i ≤u} →
P F(u) (2.2)

and

Gn1(u) :=
1
n1

n1∑
i=1

1{Yi ≤u} →
P G(u) (2.3)

uniformly in u, where G 6= F is some d.f. on [0, 1]. From (2.2) and (2.3) it follows that
supu |Hn(u) − H(u)| →P 0, where Hn is the empirical d.f. of {Z1, . . . , Zn} and H = γ F +

(1 − γ )G; moreover, if G is concave and such that G ′(0+) > (1 − qγ )/[q(1 − γ )] then

Rn(q)

n
→

P ρ(q), (2.4)

where qρ(q) is the unique u > 0 such that G(u) = u(1 − qγ )/[q(1 − γ )], and

Π1,n(q)→
P qγ, Π2,n(q)→

P ρ(q)
(1 − qγ )

(1 − γ )
. (2.5)

In multiple testing problems it can often be assumed that G ′(0+) = ∞, in which case the second
condition on G is automatically satisfied irrespective of the values of q and γ .

Although for definiteness G will be assumed concave throughout the paper, it should be
pointed out that ρ(q), and hence asymptotic average power, can be computed as we have just
indicated for a much more general G (see Theorem 3.1 and Corollary 3.3 of [6] for the general
expressions of ρ(q) and average power).

The results now stated imply that if G and γ are known then one can compute the
asymptotic f.d.r. and average power. However, G and γ are usually unknown in practice; then
the Benjamini–Hochberg approach assumes that γ can be anything from 0 to 1, and uses the
majorization of the first limit in (2.5) by q to impose a generally conservative bound on the f.d.r.
On the other hand, if γ̂n is an estimator of γ then it is advantageous to replace q by qn := δ/γ̂n ,
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where δ ∈ (0, γ ), in (2.1); the resulting procedure will be called an adaptive version of the
Benjamini–Hochberg method and is consistent in the sense that

Rn(qn)

n
→

P ρ

(
δ

γ

)
(2.6)

and

Π1,n(qn)→
P δ, Π2,n(qn)→

P ρ

(
δ

γ

)
(1 − δ)

(1 − γ )
, (2.7)

provided the assumptions stated earlier continue to hold and γ̂n is consistent.
Although the method proposed in this article depends crucially on the availability of consistent

estimates of γ and G, we will not consider here the problem of obtaining such estimates.
‘Storey-type’ estimators of γ such as those proposed by Benjamini and Hehberg [3], Storey
[15], Langaas, Lindqvist and Ferkingsland [10] and Ferreira and Zwinderman [5] are not
always consistent, sometimes yielding overestimates of γ . A consistent and easily implemented
estimator of γ which can be used in connection with t-tests and the like has been given by
Ferreira and Zwinderman [5]. Another method that is consistent under general conditions has
been recently proposed by [9]. If γ̂n is consistent, then Ĝn = (Hn − γ̂n F)/(1 − γ̂n) is obviously
consistent for G (under (2.2) and (2.3), as always), so a consistent estimator of γ̂n immediately
yields a consistent estimator of G. Apart from the essentially non-parametric estimators of γ
and G now mentioned, one useful class of estimators is obtained by fitting the mixture model
H = γ F + (1−γ )G, where G is a parametric family of d.f.’s, to the sample of p-values; Allison
et al. [1] and Xiang, Edwards and Gadbury [16], for example, following earlier work by Parker
and Rothenberg [12], advocate modelling G by a beta d.f. and study the problem of estimating γ
and the parameters of G from the sample of p-values. In the sequel we shall assume that in each
multiple testing problem considered one can apply the adaptive Benjamini–Hochberg method
consistently in the sense that consistent estimators of γ and G are available and (2.6) and (2.7)
hold.

For brevity, we shall sometimes refer to the d.f. of the p-values associated with the alternative
hypotheses (G, in this section) as the non-null d.f.

3. The multivariate method

In order to deal with s independent multiple testing studies we employ the obvious notation
X i j , Yi j , Zi j , F ( j), G( j), H ( j), qn, j , ρ j and δ j to denote items analogous to those introduced
earlier and corresponding to study j ( j = 1, . . . , s).

We assume that the s studies are homologous in the sense that γ , the proportion of null
hypotheses, is fixed and the same in each study, and F ( j)

= F for all j . However, we assume
nothing about G(1), . . . ,G(s): these d.f.’s may correspond to p-values computed from different
test statistics, or from the same statistic with different sample sizes, and hence can be very
different from each other.

The natural generalization of (2.2) and (2.3) to the multivariate case is the assumption that
they hold uniformly in u ∈ Rs with X i = (X i1, . . . , X is), Yi = (Yi1, . . . , Yis), F replaced by
the product of s standard uniform d.f.’s, G = G(1)

× · · · × G(s), and with the inequalities being
interpreted pointwise. If each G( j) satisfies the condition on G mentioned in the previous section
and if for each multiple testing problem j there is a consistent estimate γ̂n, j of γ , then these
multivariate versions of (2.2) and (2.3) ensure the validity of the convergence results that follow.
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The multivariate multiple testing procedure that we propose consists of rejecting those
hypotheses in the union of the s individual rejection lists, the latter being obtained from s
applications of the adapted Benjamini–Hochberg procedure at individual false discovery rates
δ1, . . . , δs to be determined so as to maximize average power subject to a f.d.r. of δ. Our problem,
therefore, is to find the δ j ’s that satisfy these two requirements.

The number of rejected hypotheses in the multivariate procedure – the number of hypotheses
rejected in at least one of the s applications of the adapted Benjamini–Hochberg procedure – is

Rn = n −

n∑
i=1

1{
Zi1>qn,1

Rn,1(qn,1)
n ,...,Zis>qn,s

Rn,s (qn,s )
n

},
and the number of incorrect rejections

Sn = n0 −

n0∑
i=1

1{
X i1>qn,1

Rn,1(qn,1)
n ,...,X is>qn,s

Rn,s (qn,s )
n

}.
It is then a consequence of our assumptions that

Rn

n
= 1 −

1
n

n∑
i=1

s∏
j=1

1{
Zi j>qn, j

Rn, j (qn, j )
n

}

= 1 −
n0

n

1
n0

n0∑
i=1

s∏
j=1

1{
X i j>qn, j

Rn, j (qn, j )
n

} −
n1

n

1
n1

n1∑
i=1

s∏
j=1

1{
Yi j>qn, j

Rn, j (qn, j )
n

}

→
P 1 − γ

s∏
j=1

{
1 −

δ j

γ
ρ j

(
δ j

γ

)}
− (1 − γ )

s∏
j=1

{
1 − G( j)

(
δ j

γ
ρ j

(
δ j

γ

))}
and

Sn

n
=

n0

n
−

n0

n

1
n0

n0∑
i=1

s∏
j=1

1{
X i j>qn, j

Rn, j (qn, j )
n

}

→
P γ

(
1 −

s∏
j=1

{
1 −

δ j

γ
ρ j

(
δ j

γ

)})
,

and hence that the f.d.r. and average power of our procedure satisfy

51,n :=
Sn

Rn ∨ 1
→

P γ (1 − A(d))

γ (1 − A(d))+ (1 − γ ) (1 − B(d))
(3.1)

and

52,n :=
Rn − Sn

n1
→

P 1 − B(d), (3.2)

where we set d j = δ j/γ , d = (d1, . . . , ds) ∈ [0, 1]
s , and

A(d) = Π s
j=1

{
1 − d jρ j (d j )

}
, B(d) = Π s

j=1

{
1 − G( j) (d jρ j (d j )

)}
.
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The problem of maximizing asymptotic average power subject to an asymptotic f.d.r. of δ can
now be formulated as the problem of finding the values of d ∈ [0, 1]

s which minimize

B(d) subject to
1 − A(d)

1 − B(d)
=
δ(1 − γ )

γ (1 − δ)
. (3.3)

(Since the constraint says 1 − A ∝ 1 − B, one can alternatively minimize A.)
Making use of the fact that d jρ j (d j ) is the unique u > 0 such that G( j)(u) = uγ (1 −

δ j )/[δ j (1 − γ )], we can also write B as

B(d) =

s∏
j=1

{
1 − (1 − γ d j )ρ j (d j )/(1 − γ )

}
.

It is then easy to see that each of the points (δ/γ, 0, . . . , 0), (0, δ/γ, 0, . . . , 0),
. . . , (0, . . . , 0, δ/γ ), is admissible (i.e. satisfies the restriction in (3.3) and belongs to [0, 1]

s);
and since B is bounded and continuous on [0, 1]

s , it follows that our problem has at least one
solution d∗ yielding a global minimum (which corresponds to a global maximum of average
power). Moreover, setting dk = δ/γ and d j = 0 for j 6= k we get

ρk(dk)
(1 − γ dk)

(1 − γ )
= 1 − B(d) ≤ 1 − B(d∗) ∀k, (3.4)

by definition of d∗, which simply means that the power attained by combining the information
on the s multiple testing procedures yields at least as much power as that obtained by applying
any of the s procedures separately.

Remark. Instead of maximizing power one might be interested in minimizing the asymptotic
false non-discovery rate of [7], namely the limit in probability of 53,n := 1 − (n0 − Sn)/[(n −

Rn) ∨ 1], the proportion of incorrect non-rejections among non-rejections. Because

53,n →
P (1 − γ )B(d)

γ A(d)+ (1 − γ )B(d)
=

(1 − γ )B(d)

γ (1 − r)+ (1 − γ (1 − r))B(d)

under the constraint in (3.3), where we wrote r = δ(1 − γ )/[γ (1 − δ)], and because the term on
the right here increases with B(d), our method yields both maximum power and minimum false
non-discovery rate. �

The rest of this section will be concerned with obtaining and interpreting solutions to the
optimization problem now formalized and with the analysis of some examples. We shall outline
a method for determining the δ j ’s – the individual f.d.r.’s – when γ and the G( j)’s (and hence the
ρ j ’s) are known. Recall that in practice these need to be estimated from data; what we propose
is to obtain a solution as indicated below with the theoretical items replaced by their estimates or
empirical counterparts.

3.1. Obtaining and interpreting solutions

In order to determine the optimal solution d∗ it seems best to change variables according to
x j = d jρ j (d j ) and solve the simpler problem of finding the points x = (x1, . . . , xs) ∈ [0, 1]

s

which minimize

B̃(x) subject to
1 − Ã(x)

1 − B̃(x)
=
δ(1 − γ )

γ (1 − δ)
, (3.5)
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where Ã(x) = Π s
j=1(1 − x j ) and B̃(x) = Π s

j=1

{
1 − G( j)(x j )

}
. Since d jρ j (d j ) is a strictly

increasing function of d j , it is a simple matter to obtain d j (hence δ j ) from x j once the latter has
been found.

With a view towards solving (3.5) by Lagrange’s method, let us observe the properties

Dk Ã(x)

Ã(x)
= −

1
1 − xk

and
Dk B̃(x)

B̃(x)
= −

g(k)(xk)

1 − G(k)(xk)
, (3.6)

where as usual Dk denotes differentiation with respect to the k-th variable. The Lagrangian
associated with (3.5) is

L(x, λ) = B̃(x)+ λ
{
γ − δ + δ(1 − γ )B̃(x)− γ (1 − δ) Ã(x)

}
,

and the s + 1 equations satisfied by any extremum are

[1 + λδ(1 − γ )] Dk B̃(x)− λγ (1 − δ)Dk Ã(x) = 0, k = 1, . . . , s,

γ − δ + δ(1 − γ )B̃(x)− γ (1 − δ) Ã(x) = 0. (3.7)

Using (3.6) in the first s equations in (3.7) we can eliminate λ and obtain the s(s −1)/2 equations

(1 − xk)g(k)(xk)

1 − G(k)(xk)
=
(1 − xl)g(l)(xl)

1 − G(l)(xl)
(k < l). (3.8)

Our problem now reduces to solving a system of s equations in s unknowns involving s − 1
of the equations in (3.8) and the last equation in (3.7). Although this can be done in a number
of ways, it seems particularly convenient to write the system in the form ψ(x) = x , where
ψ(x) = (ψ1, . . . , ψs),

ψk(x) =
1

Ck

{
1 − G(k+1)(xk+1)

(1 − xk+1)g(k+1)(xk+1)
−

1 − G(k)(xk)

(1 − xk)g(k)(xk)

}
+ xk

for k = 1, . . . , s − 1,

ψs(x) =
1

Cs

 δ(1 − γ ) Ã(x)

(γ − δ)+ δ(1 − γ ) Ã(x)C̃(x)
[

1−G(s)(xs )

(1−xs )g(s)(xs )

]s −
δ(1 − γ )

γ (1 − δ)

+ xs,

C̃(x) =
∏s

j=1 g( j)(x j ) and C1, . . . ,Cs are positive constants to be chosen, and then use the
method of successive approximations to find a fixed point ξ = ψ(ξ). More precisely, given a
starting point x (0), we successively obtain x (m+1) from x (m) by x (m+1)

= ψ(x (m)), m = 0, 1, . . ..
As is well known, if x (0) is not too far from ξ and maxu∈Rs ‖ψ ′(x)u‖/‖u‖ < 1 for x near ξ then
limm→∞ x (m) = ξ ; the constants Ck are introduced in order to temper the derivative of ψ . As
starting values one may take x (0)j = ρ j (δ/γ )δ/γ , which typically yield convergence unless the
studies have very different or very low power curves.

We shall not seek detailed conditions for convergence and optimality (which seem difficult to
obtain and would involve the derivatives of the densities) but note the following points: (i) The
presence of the densities in the denominator of ψk typically ensures that ψ ′ can be tempered (by
appropriate choice of the constants) if the densities are ∞ at zero. (ii) Obtaining convergence is
usually straightforward, though one may sometimes have to try different starting values and to
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increase the values of the constants. (iii) The optimality of the solution is usually obvious from
the context (see the examples below).

The following two examples illustrate the workings of the method and the kind of
improvement in power that it yields.

Example 3.1. We can get an idea of the effect of combining more or less equally powerful
studies by considering the case in which G( j)

= G for all j . By symmetry, the solution we
seek is of the form x = (ξ, . . . , ξ) for some ξ ∈ [0, 1]; we show that ξ is uniquely determined
by the constraint. The constraint can be written as

r−1
≡
γ (1 − δ)

δ(1 − γ )
=

1 − [1 − G(ξ)]s

1 − (1 − ξ)s
≡
ϕs(y)

y
, y = 1 − (1 − ξ)s, (3.9)

where ϕs(y) = 1 − [1 − G(1 − (1 − y)1/s)]s defines a d.f. on [0, 1]. Since ϕs is concave
(because y → [1 − G(1 − (1 − y)1/s)]s is a composition of convex functions), we see that Eq.
(3.9) has a positive solution ξ∗

= 1 − (1 − y∗)1/s – a unique positive solution – if and only if
ϕ′

s(0+) > 1/r , or equivalently, since y ↓ 0 ⇔ ξ ↓ 0, if and only if G ′(0+) > 1/r . It follows
that if G ′(0+) = ∞ then problem (3.5) always has a solution irrespective of the f.d.r. δ ∈ (0, γ )
chosen.

In order to interpret the workings of the method in this case, observe that (i) ϕs is uniform
if and only if G is; (ii) ϕs is the d.f. of min{U∗

1 , . . . ,U
∗
s }, where U∗

j = 1 − (1 − U j )
s and

(U1, . . . ,Us) is either a vector of independent standard uniform r.v.’s or a vector of independent
r.v.’s with d.f. G 6= F . Thus, under the assumption that the s p-values associated with each
hypothesis have the same joint distribution as (U1, . . . ,Us), our method is asymptotically
equivalent to transforming the s samples of p-values by u → 1 − (1 − u)s , taking the
minimum transformed p-value across the s studies for each hypothesis, and applying the
Benjamini–Hochberg method to the resulting sample. (In the most interesting situation where
the p-values computed under different alternative hypotheses are not identically distributed this
interpretation is obviously not valid.) �

Example 3.2. Let G( j)(x) = xα j for x ∈ [0, 1] and α j ∈ (0, 1), j = 1, . . . , s. Then

we have x j ≡ d jρ j (d j ) =
[
d j (1 − γ )/(1 − d jγ )

]1/(1−α j ) for d j ∈ [0, 1], and we may
first find the solution x of (3.5) and then determine the δ j ’s explicitly from δ j = d jγ and

d j = 1/(γ + (1 − γ )x
α j −1
j ).

Table 1 gives the solutions δ1, δ2 in the case s = 2 and for several values of γ , δ, α1 and α2,
and is intended to illustrate the basic workings of the method. For each δ, let Π ( j)(δ) represent the
power achieved by applying the adaptive Benjamini–Hochberg method to study j with a f.d.r. of
δ; we shall call it the baseline power (at δ) of study j . In order to express the gain in power
achieved by combining the results of the s studies by means of the multivariate method with the
same f.d.r., we give, in the last column of the table, the percentage of improvement in power
relative to what one would get by using the most powerful of the studies; since in our examples
the most powerful study is always the first, this is computed as [Π (δ) − Π (1)(δ)]/[Π (1)(δ)],
where Π (δ) is the power of the multivariate procedure.

The application of our method amounts to the determination of the δ j ’s which maximize
power subject to a f.d.r. of δ. The comparison of the baseline powers Π ( j)(δ) with the individual
powers Π ( j)(δ j ) suggests that, at least with this choice of G( j)’s, the method tends to work by
decreasing the power of the most powerful study and increasing the power of the weaker study
(cf. columns 3 and 4, columns 7 and 8), concurrently giving a greater value to δ2 than to δ1;
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Table 1
Solutions and powers pertaining to the combination of two studies

γ = 0.8, δ = 0.05

α1 α2 Π (1)(δ) Π (2)(δ) δ1 δ2 Π (1)(δ1) Π (2)(δ2) Π (δ) Gain (%)

0.1 0.15 0.6180 0.4657 0.0364 0.0397 0.5956 0.4463 0.7761 25.58
0.1 0.5 0.6180 0.0132 0.0472 0.0898 0.6139 0.0247 0.6234 0.86
0.5 0.55 0.0132 0.0050 0.0486 0.0528 0.0128 0.0054 0.0181 37.42

γ = 0.8, δ = 0.1

α1 α2 Π (1)(δ) Π (2)(δ) δ1 δ2 Π (1)(δ1) Π (2)(δ2) Π (δ) Gain (%)

0.1 0.15 0.6715 0.5313 0.0719 0.0770 0.6451 0.5052 0.8244 22.76
0.1 0.5 0.6715 0.0278 0.0922 0.1532 0.6649 0.0452 0.6800 1.26
0.5 0.55 0.0278 0.0125 0.0968 0.1042 0.0268 0.0132 0.0397 42.81

γ = 0.9, δ = 0.1

α1 α2 Π (1)(δ) Π (2)(δ) δ1 δ2 Π (1)(δ1) Π (2)(δ2) Π (δ) Gain (%)

0.1 0.15 0.6137 0.4605 0.0740 0.0806 0.5916 0.4417 0.7720 25.79
0.1 0.5 0.6137 0.0123 0.0948 0.1740 0.6097 0.0234 0.6188 0.84
0.5 0.55 0.0123 0.0046 0.0973 0.1053 0.0120 0.0050 0.0169 36.96

exceptions to this rule occur when both studies are very powerful (cf. the cases where α1 = 0.1,
α2 = 0.15). The gain in power is greater if the two studies have similar power (e.g. α1 = 0.1,
α2 = 0.15 compared with α1 = 0.1, α2 = 0.5); naturally, the weaker the studies are, the greater
the gain in power. If the studies are very unbalanced in terms of power (e.g. α1 = 0.1, α2 = 0.5)
then the gain in power is very small; what the method does is then to set δ1 very close to δ and
increase δ2 substantially, yielding a small improvement relative to what one would get by using
the most powerful study alone (which would formally correspond to taking δ1 = δ and δ2 = 0).
These trends change consistently as each one of γ and δ varies with the other held fixed (i.e. as
one passes from one panel of the table to the next).

To illustrate what happens with more than two studies we collect in Table 2 some results for
s = 3 in the case γ = 0.8, δ = 0.1, and for several choices of α1, α2, α3. The determination of
the δ j ’s follows the same principle as before: the method increases power by allowing somewhat
greater individual f.d.r.’s in the weaker studies. As the last two columns indicate, the gain in
power is greater when combining balanced studies; here, ‘Gain1’ is calculated as before (as the
increase in power relative to the power of the most powerful study), while ‘Gain2’ gives the
increase in power relative to the power achieved by combining the two most powerful studies
(e.g. those corresponding to α1 = 0.1 and α2 = 0.15 in the second row of numbers, whose
power in the combined procedure is given in the middle panel of Table 1) among the three.

In order to analyse the effects of passing from two to three studies we compare Table 2 with
the middle panel of Table 1. Naturally, the benefit of adding one extra study is more visible when
s = 2 (cf. ‘Gain’ in Table 1 and ‘Gain2’ in Table 2). The incorporation of a third study is achieved
by decreasing the individual f.d.r.’s in the two studies, and hence by decreasing their individual
powers (cf. the cases α1 = 0.1, α2 = 0.15 in Table 1 and α1 = 0.1, α2 = 0.12, α3 = 0.15 in
Table 2); if the third study is very weak, then δ1 and δ2 are set close to their values in the case
s = 2 (cf. the cases α1 = 0.1, α2 = 0.15 and α1 = 0.1, α2 = 0.15, α3 = 0.5). �
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Table 2
Solutions and powers pertaining to the combination of three studies

γ = 0.8, δ = 0.1

α1 α2 α3 δ1 δ2 δ3 Π (1)(δ1) Π (2)(δ2) Π (3)(δ3) Π (δ) Gain1 (%) Gain2 (%)

0.1 0.12 0.15 0.0559 0.0576 0.0604 0.6262 0.5655 0.4823 0.9159 36.39 7.45
0.1 0.15 0.5 0.0690 0.0741 0.1220 0.6420 0.5014 0.0347 0.8277 23.26 0.40
0.1 0.5 0.55 0.0884 0.1483 0.1581 0.6615 0.0435 0.0238 0.6839 1.84 0.57
0.5 0.52 0.55 0.0957 0.0986 0.1031 0.0265 0.0203 0.0131 0.0586 111.14 23.89

Our last example is somewhat artificial but serves to show on the one hand that Lagrange’s
method will not always yield the solution, and on the other that in some cases combining studies
simply fails to increase power.

Example 3.3. Take G( j)(x) = 1 − (1 − x)β j for x ∈ [0, 1] and β j > 1. Although G( j) is
concave, its right-hand derivative at zero is β j < ∞; hence for the basic consistency results (2.6)
and (2.7) to hold we need to restrict the choice of δ j by the condition β j > γ (1−δ j )/[δ j (1−γ )]

for all j . As pointed out in Section 2, practical problems typically give rise to densities that are
more peaked near zero than g( j)

= (G( j))′, whence the ‘artificial’.
Clearly, g( j)(x) = β j (1 − x)β j −1; hence (1 − x)g( j)(x)/[1 − G( j)(x)] = β j for all j and

all x , and Eq. (3.8) holds for some (and then for all) x if and only if β1 = β2 = · · · = βs
(a case covered by Example 3.1). (This class of G( j)’s is obviously the only one with this
property.) In other words, the Lagrange multiplier method fails. Since differentiability properties
are not at stake, and since the function x → γ − δ + δ(1 − γ )B̃(x) − γ (1 − δ) Ã(x) (which
corresponds to the constraint) has a non-vanishing derivative, we must conclude that if the β j ’s
are not all the same then the optimal solution is a boundary point of the unit cube. In fact, it is
easy to see that if all the β j ’s are different then the optimal solution must be one of the points
(δ/γ, 0, . . . , 0), . . . , (0, . . . , 0, δ/γ ), so that the maximum power equals (see (3.4))

1 − B(d∗) = max
k=1,...,s

ρk(δ/γ )
(1 − δ)

(1 − γ )
,

which is to say that the optimal solution consists of using the most powerful study alone. �

4. Comparison with univariate methods

The comparison of our method with univariate methods will be based on a class of models for
G of the form

G(u; N ) = 1 − Φ

(
Φ−1(1 − u/2)−

√
Nµ

√
1 + Nτ 2

)
+ Φ

(
−

Φ−1(1 − u/2)+
√

Nµ
√

1 + Nτ 2

)
,

where as usual Φ is the standard normal d.f., Φ−1 its inverse, and N , µ and τ 2 are certain
parameters. This is one of the ‘location models’ considered by [5] and arises out of multiple
testing problems with t- or z-statistics, for example. In order to explain briefly the rationale
behind G(·; N ) and the meaning of the parameters (details can be found in the reference just
mentioned) let T1, . . . , Tn be test statistics such that T j is a normal r.v. with mean θ j

√
N and

variance 1. We think of T j as some variant of the t-statistic, of θ j as the ‘effect size’ and of N



2118 J.A. Ferreira, S.O. Nyangoma / Journal of Multivariate Analysis 99 (2008) 2108–2124

as sample size, or more precisely as a factor accounting for sample size (in the case of the two-
sample t-statistic, N is the reciprocal of the sum of the inverses of the two sample sizes). Defining
the p-value associated with T j as the probability of observing a result at least as extreme as the
observed value of |T j | in a similar, independent experiment, and assuming that the empirical
d.f. of {θn0+1, . . . , θn} (the non-zero effect sizes) converges to that of a normal r.v. with mean µ
and variance τ 2 as n → ∞, we get G(·; N ) as the asymptotic d.f. of the p-values associated with
the false hypotheses. [The empirical d.f. of {θn0+1, . . . , θn} is defined exactly as if the non-zero
effect sizes were random. Its convergence may hold in probability (for example) or at every point
of the sample space depending on whether the effect sizes are interpreted as random or not; both
interpretations are allowed provided the limiting d.f. is non-random.]

To model the outcome of s independent studies we let {T (k)1 , . . . , T (k)n } (k = 1, . . . , s) be

independent sets of r.v.’s, assume that T (k)j is normal with mean θ j
√

Nk and variance 1, and
also that the empirical d.f. of the p-values associated with the false hypotheses from study k
converges to G(Nk )(·) := G(·; Nk). Then, as far as asymptotic results are concerned, the k-th
study is characterized by the d.f. G(Nk ), which in turn is determined by the ‘sample size’ Nk and
by µ and τ . The fact that µ and τ are the same across the s studies expresses the fundamental
assumption that the s studies address the same research question and measure the same thing (the
same θ j ’s).

By the average method we mean the procedure of computing the averages of the statistics
across studies, namely T̄ j :=

1
s

∑s
k=1 T (k)j , j = 1, . . . , n, and applying the Benjamini–Hochberg

method to the sample of p-values associated with the tests of θ j = 0 against θ j 6= 0. The p-values
are easily computed using the fact that T̄ j has a normal distribution with mean θ j

1
s

∑s
k=1

√
Nk

and variance 1/s, which can also be used to show that the limit of the empirical d.f. of the p-
values associated with the false hypotheses is G(N ′)(·) := G(·; N ′), with N ′

=
∑s

k=1
√

Nk/s. It
follows in particular (by the Cauchy–Schwartz inequality) that:

(i) Under the constraint of a total sample size of N =
∑s

k=1 Nk , the average method attains
maximum power with N j = N/s for all j .

(ii) If all the studies are based on the same sample size, then combining them by the average
method is equivalent to using a single study with an s-fold increase in sample size.

The second observation shows that there is a certain naturalness to the average method which
almost recommends it as the standard for comparison. However, as pointed out by a referee,
there is a more general univariate method based on Fisher’s method of combining p-values
which is equally simple and which for brevity we shall call here Fisher’s method: it consists of
applying the Benjamini–Hochberg to the p-values of the test statistics T̃ j := −2

∑s
k=1 log Z jk ,

j = 1, . . . , n, the p-values being computed using the fact that T̃ j has a chi-square distribution
with 2s degrees of freedom if and only if Z j1, . . . , Z js are standard uniform r.v.’s. Variations of
Fisher’s method have been proposed and applied to real data by Rhodes et. al. [13], for example,
but as far as we know there are no published results which allow us to assess its merits relative
to the average method. We conjecture that in the case of t- or z-statistics the average method is
uniformly more powerful than Fisher’s method, and in the sequel will provide some evidence
that this is true in the case of the data generating model described above.

One way of finding out whether one univariate method is uniformly better than another is
to compare the non-null d.f.’s associated with them. Specifically, if we show that one non-null
d.f. is strictly greater than another non-null d.f. then it will follow that the method associated
with the first is more powerful than the method associated with the second for all choices of γ
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and δ. This is easily seen in the context of Section 2: The asymptotic power for given γ and δ is
G ((δ/γ )ρ(δ/γ )) = ρ(δ/γ )(1−δ)/(1−γ ), and (δ/γ )ρ(δ/γ ) is the point where G intersects the
line l(u) = uγ (1 − δ)/[δ(1 − γ )]; consequently, if G > G̃, say, G always intersects l at a height
greater than G̃ does. This is the most efficient way of finding out which method is best provided
one of the methods is indeed uniformly more powerful than the other, since one is not restricted
to making comparisons for individual choices of γ and δ, but it is not very useful otherwise.

Now G(·; 2N ) is the non-null d.f. associated with the p-values of the average method based
on two independent samples of size N . Therefore, in order to show that the average method is
better than Fisher’s method in combining s = 2 studies with the same sample size it suffices
to show that G(·; 2N ) ≥ G̃(·; 2N ), where G̃(·; 2N ) is the (limiting) non-null d.f. associated
with Fisher’s method. Although we do not have an explicit expression for G̃(·; 2N ) (except in
the uninteresting case where all the effect sizes are constant), it is straightforward to compute it
approximately using simulation, namely by simulating the θ j and the T (k)j according to how we

have defined them in the first two paragraphs of this section, and then computing the T̄ j ’s and the
p-values as explained in the third paragraph.

Fig. 1 compares the non-null distributions associated with the average and Fisher methods for
µ = 0.5 and a couple of choices of N and τ , and shows that G(·; 2N ) ≥ G̃(·; 2N ) does indeed
hold for these values of the parameters; the fact that it holds for many other values suggests that
it holds in general. Apart from this main observation, Fig. 1 also tells us that the superiority of
the average method over Fisher’s method is more visible with ‘large’ N and ‘large’ τ .

The third function plotted in Fig. 1 is ϕ(x; N ) := 1 − [1 − G(1 − (1 − x)1/2; N )]2, the
analogue of G(·; 2N ) and G̃(·; 2N ) in the multivariate method. As shown in Example 3.1, the
limiting power of the multivariate method when s = 2 corresponds to the height at which ϕ(·; N )
intersects l, and so, as before, the inequality ϕ(·; N ) ≥ G̃(·; 2N ) implied by Fig. 1 suggests that
the multivariate method is generally superior to Fisher’s method. [ϕ(·; N ) is generally not a non-
null d.f. as defined at the end of Section 2, as our method is not univariate; it can be interpreted as
such only in the less interesting situation described in the last paragraph of Example 3.1, where
the multivariate method is asymptotically equivalent to a univariate method.]

In contrast, the comparison between G(·; 2N ) and ϕ(·; N ) is not straightforward: although
ϕ(u; N ) > G(u; 2N ) for ‘moderate or large’ u, the opposite is true for x near zero if the sample
size or τ is ‘small’. This only tells us that the average method is better than the multivariate
method for smaller sample sizes and smaller τ for certain δ and γ—those for which the line l
has a ‘sufficiently large’ slope; in order to compare the two methods we need to compute their
power for specific choices of γ , δ, and the other parameters.

We shall do this with s = 2, µ = 0.5, 1, τ = 1, γ = 0.8 and δ = 0.1, and over a range
of sample sizes N1, N2; other choices of the parameters yield qualitatively similar conclusions.
Fig. 2 shows the power curves of the two methods as functions of sample size. The left panels
refer to the case N = N1 = N2 and also include the baseline power curve at δ—i.e. the power
of the adapted Benjamini–Hochberg method applied to a single study based on a sample of
size N . The right panels are intended to illustrate what happens when one study is considerably
weaker than the other: they show the power curves of the two methods as functions of the pair
of sample sizes N1, N2 with N2 = 2N1; in each case, the ordinate at N1 is the power obtained
by combining a study with sample size N1 with a study with sample size 2N1. In both methods
the improvement in power relative to that of the most powerful study is considerable when the
two studies are equally powerful, but not impressive when they are too unbalanced. In broad
terms, the average method is the more powerful with lower sample sizes and the less powerful
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Fig. 1. Comparing the non-null d.f.’s associated with the three different methods when µ = 0.5, N = 2, 5 and
τ = 0.5, 1.0, 1.5.

with large sample sizes. Taking into account the range of sample sizes and the magnitude of
the differences in power shown in Fig. 2, the multivariate method seems overall preferable to
the univariate one. However, in applications in which power is rather low one may be better off
applying the average method, which is also simpler to implement. In any case, since power can
in principle be estimated in both methods, one can always apply the two and keep the results of
the most powerful one.
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Fig. 2. Comparing the power of the multivariate and average methods for various sample sizes N when δ = 0.1, γ = 0.8,
τ2

= 1, µ = 0.5 (upper panels) and µ = 1 (lower panels). Left panels: power as a function of N = N1 = N2; right
panels: power as a function of pairs (N1, N2) with N2 = 2N1 (the values in the horizontal axis stand for N1).

Finally, the comparison of the two methods as developed here provides a partial answer to
an interesting question essentially formulated by [8]. Suppose that the result of an experiment
consists of 2N pairs of measurements (2N on a control and 2N on a diseased group, say) on
each of a large number of variables and that the interest lies in the detection of mean differences
between pairs. In principle, one can use the paired t-test to test for differences across all variables,
computing the associated p-values, and then apply the Benjamini–Hochberg method to detect
mean differences subject to a given f.d.r. The question is whether it would not be more profitable
to split the sample into two samples of size N , computing two sets of t-statistics/p-values, and
apply the multivariate procedure to combine the two. In broad terms, and as indicated by the
present example, the answer seems to be that it is better to split the samples provided N is not
too small; in practice one can determine (by means of estimates of power) the point beyond
which splitting is no longer advantageous.

5. Discussion

Whatever the multiple testing procedure, the more hypotheses one rejects the greater the
average power attained (though of course power comes at the cost of the false discovery rate). In
the multivariate method proposed here, the list of rejections is defined as the union of the lists
of rejections obtained from the individual studies. It is the upper bound of the set of rejection
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lists: the set which contains all lists, and the smaller set with this property. And, because it
is more inclusive than any other set, it can only increase the number of rejections, and hence
average power, relative to individual lists. One might think, for example, that it would be better
to take the intersection of the lists, on the grounds that hypotheses that are rejected in all studies
somehow deserve ‘more credit’ than hypotheses that are rejected only in a couple of studies.
However, when combining a weak and a powerful study this line of thinking will force the list
of rejections to be a subset of the least inclusive list – the list of the weaker study – which, by
definition, cannot yield greater power than that obtained from the weaker study alone. The same
holds even if the two studies being combined are equally powerful: one can never be better off
by taking the intersection than by using a single study.

To give an example where this can be shown explicitly, consider the situation of Example 3.1
(combining s identical studies) with the model from Example 3.2: G(x) = G( j)(x) = xα for x ∈

[0, 1], α ∈ (0, 1) and all j . As in Section 3, one can show that the f.d.r. and average power of the
multivariate procedure based on the intersection of the s lists are γ Ā(d)/[γ Ā(d)+(1−γ )B̄(d)]
and B̄(d), where

Ā(d) =

s∏
j=1

δ j (1 − γ )

γ (1 − δ j )
and B̄(d) =

s∏
j=1

G( j)
(
δ j

γ
ρ j

(
δ j

γ

))
.

Thus, with our choice of G, maximizing power subject to a f.d.r. of δ amounts to finding δ∗ that
satisfies {δ∗(1 − γ )/[γ (1 − δ∗)]}s

= δ(1 − γ )/[γ (1 − δ)] and maximizes G ((δ∗/γ )ρ (δ∗/γ ))s ,
and it can be seen from the expression of (δ∗/γ )ρ (δ∗/γ ) given in Example 3.2 that the optimal
average power is (δ(1 − γ )/[γ (1 − δ)])α/(1−α), which does not depend on s. In particular (take
s = 1), the power of the multivariate method based on the intersection is equal to the power
provided by a single study, and hence, from what we have said around (3.4), inferior to the
power of the multivariate method that we propose when s ≥ 2 (the methods are obviously
identical when s = 1). In fact, although the average power of our method cannot be computed
explicitly in this case, it can be shown – and seen from the numerical results of Example 3.2 –
that it does increase with s.

As an alternative to taking the intersection of the rejection lists one might also consider
defining the list of rejections as the list of hypotheses rejected in at least k of the studies. However,
if k = 1 this is exactly our approach, if k = s it is the approach based on the intersection, and
if 1 < k < s it amounts to a more or less stringent form of intersection or to a more or less
restricted form of union; so it is obvious that taking the union of the lists still leads to a more
inclusive rejection list and hence, as far as average power is concerned, to the best result.

If we define (somewhat loosely) a multivariate method of multiple testing as a procedure
based on the determination of individual false discovery rates and on the construction of a
rejection list from individual rejection lists, it is apparent from the above discussion that our
method is ‘the right’ multivariate Benjamini–Hochberg method. However, it does not follow that
the multivariate method is superior to univariate methods—methods that reduce the multivariate
problem to a univariate multiple testing problem by computing p-values or test statistics as a
function of the p-values or test statistics from the individual studies. In Section 4 we compared
the multivariate method with the simple and conceptually sound average method, which in turn
was found to be uniformly more powerful than Fisher’s method. We have seen that, under
the particular numerical setting that we chose, both the average and multivariate methods are
powerful, that the former tends to be somewhat more powerful than the latter with relatively
weak studies, and that the contrary is true with more powerful studies. As already implied in the
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Introduction, the average method (and Fisher’s method as well) has been assessed here at its best.
Indeed, we have assumed that the variances of the test statistics are known and identical, while in
practice one might have to replace the T̄ j ’s by weighted averages, with weights to be determined
(using Exercise 3 on p. 12 of [14], for example). Thus our numerical examples suggest that the
multivariate method is a powerful method of combining different multiple testing studies.

On the other hand (point (ii) of Section 4) in the case of s ‘replicate’ studies the average
method amounts to the univariate method applied to the sample obtained by pooling the ‘raw
observations’ (those that enter in the calculation of the T (k)j ’s) from the s studies. Consequently,
in that case the average method is ‘playing at home’, being a univariate method applied to a
genuine univariate problem, and our method is attempting to beat it, transforming the univariate
problem into a multivariate one by splitting the sample into s identical samples; thus the fact
that the latter often beats the former if the splitting is properly done (if s is not ‘too large’, as
discussed at the end of Section 4) shows that the multivariate Benjamini–Hochberg method can
improve upon (univariate) Benjamini–Hochberg method.

Irrespective of their relative performance, an obvious advantage of the average method over
ours is its somewhat greater computational simplicity; an advantage of ours is generality: it
applies to many more situations, not just to those in which test statistics can be averaged across
studies in a meaningful way (specifically, in a way that accounts for the sample sizes, variances,
and other study-specific characteristics), and, as mentioned at the beginning of Section 3, it does
not even require the test statistics to be the same across studies.

Finally, we recall that our fundamental requirement that the studies be homologous implies
that the proportion of true hypotheses is the same across studies. The latter condition can be
checked by comparing the estimates of γ obtained in different studies; the method for obtaining
confidence intervals for γ proposed by Lai [9], for example, may be useful in this connection.
Of course, a certain amount of agreement between such estimates is expected if the studies are
approximately homologous and if the assumptions behind the Benjamini–Hochberg method are
tenable; if no agreement is found, then there is little point in proceeding with the method proposed
here (with any method, really, since then one must look for the causes of the disagreement). An
application of this and other methods to several real data sets from molecular biology is currently
under way and will be published elsewhere.
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