
 Procedia CIRP 53 (2016) 231 – 236

Available online at www.sciencedirect.com

2212-8271 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientific committee of The 10th International Conference on Axiomatic Design
doi: 10.1016/j.procir.2016.07.002

ScienceDirect

10th International Conference on Axiomatic Design — ICAD 2016

The axiomatic design of Chessmate: a chess-playing robot

Freyja Yeatman Ómarsdóttira, Róbert Bjarnar Ólafssona, Joseph Timothy Foleya,*

aReykjavik University, Menntavegur 1, Reykjavík 101, Iceland
∗ Corresponding author. Tel.: +354–599–6569; fax: +354–599–6201. E-mail address: foley@ru.is

Abstract

Successfully completing a project on time is often a difficult task especially when the project is not well defined. This paper demonstrates the

application of Axiomatic Design principles to shape and direct a multi-disciplinary project from initial conception to the final tested product. This

product is Chessmate: a small robot which plays chess on a physical board. This robot is intended as a telepresence mechanism or for players who

are physically challenged. Verifiable requirements were developed at the beginning of the project based upon this top level goal. These Functional

Requirements ensured that the team focused on the necessary capabilities of the end product even while working on electrical, mechanical, and

software elements in parallel. Construction of a design matrix identified sources of coupling that would require additional effort to avoid delays.

Coupling was reduced in software by careful Application Programming Interface (API) and abstraction development. Testing parameters were

explicitly stated by the requirements enabling regular validation in both software and hardware. The result was a complete chess-playing system

from start to finish in 12 weeks.

© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the scientific committee of The 10th International Conference on Axiomatic Design.

Keywords: Axiomatic Design; chess; robotics;

1. Introduction

Chessmate is a software controlled mini robotic arm which

moves small chess pieces around a chessboard. The target au-

dience was players who wished to play against each other re-

motely or who have physical disabilities. In both of these cases,

interfacing with a standard chess board is not usually an option.

This project developed over 12 weeks in the Reykjavík Uni-

versity Mechatronics 1 course. In this course, Axiomatic De-

sign Theory (ADT) was first introduced as a mechanism for

structuring multi-disciplinary complex projects. The ADT prin-

ciples [1] were applied at the start of the project and provided

guidance for the most challenging elements in the design.

Nomenclature

ADT Axiomatic Design Theory

FR Functional Requirement

DP Design Parameter

C Constraint

1.1. Chess Robots

The concept of a robot that can play a game such as chess

has been around for a long time. Sadly, the earliest well-known

robot “The Turk” was actually a hoax where an operator inside

a cabinet controlled a manikin which moved the pieces [2]. A

simple search turns up many similar concepts for automated

chess players. The two most common mechanism for moving

pieces is either a robotic arm that lifts the pieces or an X-Y

controlled magnetic slider underneath the board [3].

Using a similar mechanism, a project called “Wireless Ar-

duino Powered Chess” consists of twin chess boards which

physically mimic each other’s moves and could theoretically

be separated by thousands of miles [4] Chhangani describes a

similarly named Arduino-based telepresence chess robot which

uses an X-Y magnetic pickup below the chessboard for the re-

mote player [5]. In both designs, piece movement is identified

by magnetic reed switches beneath each board.

A graduation project from the Kuwait University College of

Engineering and Petroleum [6] as well as a number of home

projects (e.g. [7] posted on use a 3 or 4

axis robotic arm. The mechanism for piece detection is also

often reed switches.

The focus of these existing projects is to provide an AI (or

remote player) physical mimicry during games. The human

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of The 10th International Conference on Axiomatic Design

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82126472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

232 Freyja Yeatman Ómarsdóttir et al. / Procedia CIRP 53 (2016) 231 – 236

player must move the piece on the physical board to indicate

a move in these cases. In comparison, the aim of Chessmate

is to allow players with physical barriers to moving the pieces

(e.g. remote distance or limited hand-eye coordination) to still

enjoy the game.

Chess robots are inherently mechatronic systems with many

parts. Developing one requires interacting software, electron-

ics, and mechanical components. Multi-disciplinary products

like this are particularly vulnerable to becoming unreason-

ably complicated and complex [8] without a guiding method-

ology. Modern designers have a plethora of methodologies to

choose from including Axiomatic Design [9], TRIZ [10], De-

sign Thinking [11], and Innovative Design Thinking [12]. Each

methodology has its own means and methods with a particular

focus. Axiomatic Design Theory (ADT) was chosen to be in-

cluded in the Mechatronics curriculum due to its successful de-

ployment at Reykjavik University in many disciplines including

additive manufacturing [13], rocket parachute deployment [14],

educational spectrometers [15], and ultrasonic carburetors [16].

1.2. Axiomatic Design Theory

The Axiomatic Design Theory (ADT) methodology [1] is a

structured way to formulate a design due to its focus on how

different requirements interact. This is particularly relevant on

time-constrained (or otherwise resource-constrained) projects

where such coupling factors can result in significant delays and

overruns [8,17]. This is due to these interactions creating often

unpleasant surprises later in development. Best practice indi-

cates that Functional Requirements (FR) are focused on trans-

formative or action verbs and can be verified [9,18]. By follow-

ing this rule, the testing process flows directly from these ex-

plicit criteria. This generalized description of “what is needed”

reminds the entire team of the goals and how they will be vali-

dated without constraining how to solve them. In the same way,

best practice for Design Parameters (DP) indicates the focus on

a noun that can be quantified or instantiated. This restriction al-

lowed the DPs to effectively be a consistent universal language

for the designers to explain how a particular element was to be

solved. The concept of using ADT as an intermediate language

for different disciplines which otherwise have trouble commu-

nicating is discussed in [19].

At the beginning of the design, often the voice of the cus-

tomer is translated into a set of Customer Needs. In the case

of Chessmate, this domain was not investigated deeply due to

the developers being the main customers. The primary Cus-

tomer Need (CN0) was simply “Play chess with someone who

cannot touch the pieces on my board.”; no further decomposi-

tion was performed. Rather, the focus was placed on develop-

ing comprehensive FR and DP lists, then evaluating the cou-

pling between them. This coupling is symbolized in a design

matrix, which is a Cartesian product of all FR and DP combi-

nations [20,21]. Where there is an interaction between an FR

and DP, this is denoted by a non-zero coefficient, or in the case

of the value being unknown, simply a placeholder variable X.

Minor levels of coupling, often considered higher-order effects,

are annotated with x to show their lessened effect. A diago-

nal matrix is “uncoupled” and satisfies the Independence Ax-

iom: “to maintain the independence of the functional require-

ments (FRs)” [9]. Such a design can be easily optimized by

adjusting a particular FR or DPs without affecting others. A

diagonal matrix indicates a “decoupled” or “path-dependent”

solution, which can still be optimized, but the ordering of pa-

rameter choice selection becomes important. All other design

matrices are “coupled” and may have a usable local solution

but usually resist modification and optimization [9]. Needless

to say, the focus is on minimizing coupling wherever it may

appear.

ADT’s second axiom is “minimize the information content

of the design.” Simply put, ensure that the design has the high-

est probability of meeting the stated FRs. When systems are

not able to meet FRs all of the time, this is denoted in ADT

as “complexity” and is deeply explored in [8]. As will become

apparent in the next section, this axiom became integral to the

design of the interaction between the robot and its chess pieces.

Finally, any factors to be considered that are not functional are

categorized as “Constraints.” These are often resource-focused

and affect all of the design decisions; they need to be revisited

often especially when choosing between otherwise equivalent

implementations.

2. Design

The design of Chessmate essentially had 4 elements to it, a

software component, an electrical component and two physical

components: the epitome of mechatronics. As previously men-

tioned, it was critical at the beginning to develop a comprehen-

sive set of requirements before proceeding. Discussion within

the team including some general concepts developed the CN0

into primary requirement and the mechanism for satisfying it:

FR0: Synchronize chessboards in two locations without touch-

ing pieces

DP0: Arduino-controlled robotic arm moves pieces on board

based upon user input into a serial terminal (remote or lo-

cal).

With the top-level complete, it was time to employ ADT’s pro-

cess for decomposition called “zig-zagging.” The process sim-

ply states that each pair of domains completes a full “mapping-

decomposition” process before moving to the next level.

2.1. Top-level Decomposition

For the Chessmate project, two levels of Functional Require-

ments (FRs) and their corresponding Design Parameters (DPs)

were developed. The first iteration of top-level FRs and DPs

can be seen in Table 1.

Upon later review, it was discovered that these FRs and DPs

were heavily coupled, redundant, and incorrectly formulated as

described by Thompson [22]. Applying AD best practices al-

lowed the designers to heavily refine the FRs and DPs to their

core as shown in Table 3. Similar to Bragason et al. [14], some

of the originally conceived FRs were actually constraints (Ta-

ble 2) due to their effect on the system as a whole.

After this analysis had been completed the next step was to

specify the robot and any related geometrical constraints. The

MeArm platform from MeArm Robotics in the UK was chosen

due to its affordability (9000 ISK), availability (2 weeks), and

suitability for interfacing with an Arduino micro-controller (ex-

isting library and connectors). Once the MeArm arrived, it was

233 Freyja Yeatman Ómarsdóttir et al. / Procedia CIRP 53 (2016) 231 – 236

Table 1. First draft of top level Functional Requirements and Design Parameters

ID Functional Requirement ID Design Parameter

FR1 Receive user input as to what move to make. DP1 Employ the serial console to receive user input.

FR2 Translate user input to robot movements. DP2 Map input from the user to a predefined two-

dimensional matrix in the software which corresponds

to each chessboard square

FR3 Know whether there is a piece already in the square to

move the new piece to.

DP3 Use software to determine whether there is a piece al-

ready present.

FR4 Pick-up/put-down chess pieces without knocking over

other pieces.

DP4 Use a magnet to pick up the pieces.

FR5 Update chessboard status in software. DP5 Read input and update the position matrix mentioned

in DP3.

FR6 Discard pieces. DP6 Use a box to use as a bin for the discarded pieces.

FR7 Display current turn and current status of the game. DP7 Use the serial console and LED’s to display current

chessboard status.

FR8 Have an on/off switch. DP8 Implement a hard wired switch connected directly to

the robot.

FR9 Reach all pieces and be able to lift them up vertically. DP9 The chessboard will be 12 × 12 cm in size, this means

the squares will be 1.5 × 1.5 cm and the chess pieces

will have diameter 12 cm.

Table 2. List of constraints (C) including decomposition

ID Constraint

C1 Schedule: 12 weeks

C2 Budget: 20000 ISK

C2.1 Robot platform: MeArm 2-axis RC-servo arm:

C2.1.1 Max size of chessboard: 12×12 cm.

C2.1.2 Maximum mass of the chess pieces: 10 g

C2.2 Arduino UNO maximum program size: 32KB.

put through performance tests to determine the detailed con-

straints (Table 2). The reach of the arm (4–16 cm) defined the

size of the chessboard (C2.1.1). This board size of 12×12 cm in-

dicated that the squares are 1.5×1.5 cm, so 1.2 cm was chosen as

the piece diameter. Putting the arm in the fully extended posi-

tion determined the maximum mass of the chess pieces (C2.1.2).

Knowing the maximum mass was critical to ensuring pieces

could be moved reliably anywhere on the chessboard.

The designer considers how each of the FRs and DPs inter-

acts to develop a design matrix as shown in Equation 1.

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

FR1

FR2

FR3

FR4

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X X 0 0

x X 0 0

0 0 X X
0 0 0 X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

DP1

DP2

DP3

DP4

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1)

This design is decoupled or “path-dependent” meaning that

the order of implementation is important. There is a low degree

of unavoidable coupling (x) between FR1 and FR2 due to the

inability to completely separate the user interface from the ap-

plication of chess rules. That said, by careful Application Pro-

gramming Interface (API) and choice of abstraction, the Chess-

mate design was able to avoid having these elements be com-

pletely coupled. In addition, there is coupling between FR3 and

DP4 due to the need to lift the pieces (in Z-axis) during pick-up

before moving them to another location (X- and Y-axis)1. This

is a minor concern due to the simplicity of programming this

“path-dependence.”

One demonstrable benefit of developing the design criteria

before implementation is shown in Fig. 1 and Fig. 2: the differ-

ence between the concept versus the reality is very small.

Any mechanical solution must meet functional requirements

FR3 and FR4: the pieces must be picked up and put down with-

out knocking over other pieces and can reach all squares and

pick up all pieces vertically. A great deal of effort was focused

on ADT Information Axiom with respect to movement; it was

critical to have consistent and stable piece placement at the end

of each turn. Incorrectly placed pieces, pieces too close to an

edge, and pieces that fell over were all unacceptable outcomes

due to the impact on gameplay and challenge of properly restor-

ing the board state after a failure.

3. Second Decomposition

The next phase of the “zig-zag” was to return to the Func-

tional domain and further expand the requirements in depth and

detail. The designers did not expand FR3 any further because

its needs had already been addressed completely by DP3. For

brevity, we omit any design matrices that are uncoupled (diag-

onal) or single-element.

The second-level FRs and DPs are much more application

specific (see Table 4). Of note, the software implementation

features much more heavily at this phase as it becomes the com-

mon communication medium between the various functions. In

the next section, we will discuss the implementation details for

each top-level FR in more detail. The instantiation of the sys-

tem can be seen in Fig. 3.

1Many below-board robots simply nudge the other pieces out of the way,

then correct the placement after.

234 Freyja Yeatman Ómarsdóttir et al. / Procedia CIRP 53 (2016) 231 – 236

Table 3. Top-level Functional Requirements (FR)

ID Functional Requirement ID Design Parameter

FR1 Interact with remote or local user. DP1 Arduino serial user interface and LED’s

FR2 Maintain state of chessboard according to chess rules DP2 Board configuration and chess rule-set evaluated

against piece location matrix

FR3 Move chess piece in X-, Y-, and Z-axis. DP3 Arm servo θ, extension ω, and lift φ mapped to chess

board geometry using MeArm IK library

FR4 Pick-up/put-down chess piece. DP4 Modulate End-effector magnet on rounded steel cap

of standardized piece

Table 4. Level 2 Functional Requirements and Design Parameters decomposition. FR3 omitted because it does not require any additional decomposition.

ID Functional Requirement ID Design Parameter

FR1.1 Parse user commands on serial terminal. DP1.1 : Read four integers from serial console

as command.

FR1.2 Display current turn on LED’s. DP1.2 : A yellow LED is white’s turn, a blue

LED is black’s turn.

FR2.1 Prevent user from playing illegal move DP2.1 Chess rule set library checked against requested

move

FR2.2 Synchronize internal and physical board state DP2.2 : Movement commands queued to re-

solve differences between states

FR2.3 Place captured pieces in “graveyard” DP2.3 knows position of “graveyard” and exe-

cutes movement to place

FR4.1 Lower end-effector to bring within grasping and re-

lease range

DP4.1 Z-position within 2 mm of metal cap

FR4.2 Modulate magnet DP4.2 Magnet in closed plastic tube lowered towards piece

via servo-actuated string.

FR4.3 Lift bottom of piece above top of other pieces DP4.3 Relative Z-position target is piece height+10 mm

Fig. 1. Chessboard and pieces designed in CAD (AutoDesk Inventor)
Fig. 2. Chessboard and pieces in implementation

235 Freyja Yeatman Ómarsdóttir et al. / Procedia CIRP 53 (2016) 231 – 236

Fig. 3. Chessmate: the final product

3.1. FR1 Interact with user.

A user who is next to Chessmate interfaces with it via a

serial-USB connection. Commands are typed in as a series of 4

integers, which are translated to chess moves. After each com-

mand is executed, the board state is rendered on the screen us-

ing text characters. This interface was chosen to be simple so

that Assisted Input methods (for visually impaired users) could

easily be integrated. Existing Assisted Input methods assume

that all content is text; rendering graphical content is still an

open problem. In addition, this textual display can easily be

presented as a service for a remote player. Depending upon the

visualization desired, it might be web-based or as simple as an

SSH connection. For convenience to the local player, an LED

turn indicator duplicates this information. These two functions

were uncoupled from each other. All functions regarding inter-

activity are chessboard agnostic to ensure independence as will

be described in the next section.

3.2. FR2 Maintain state of chessboard according to chess rules

As previously mentioned, an internal matrix is constructed

that is a representation of the board state. This representa-

tion would be heavily affected by FR1 except that it is decou-

pled using an abstraction barrier in the form of an Application

Programmer Interface (API). The user interface routines call

matrix-representation functions for state changes. The matrix

routines call robotic functions to implement the changes in the

physical board. Each of these functions can be easily changed

modify the data representation without affecting the calling rou-

tines. This underlying representation has an understanding of

chess rules, especially legal moves and when a piece has been

captured. When a command has been given for a move, the

difference in board states is determined, which then produces a

queue of operations to be applied (). If this move

results in a capture, indicates the destination for the

displaced piece to be the “graveyard”, a separate bin on the side.

This small connection between updating state and capturing a

piece results in a decoupled design as shown in Eq. 2

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

FR2.1

FR2.2

FR2.3

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

X 0 0

0 X 0

0 X X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

DP2.1

DP2.2

DP2.3

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(2)

3.3. FR3 Move chess piece in X-, Y-, and Z-axis

Implementation of chess piece movement in the physical

realm requires translating the abstract board layout into robotic

arm movements. The MeArm vendor provided a custom li-

brary “IK” to translate x, y, z coordinates into robot poses. It

was discovered that the library did not perform as advertised.

The z-value changed non-linearly for each chess board posi-

tion, as did the x and y values. This surprise coupling between

the Cartesian coordinates created a large amount of complexity.

The performance of the arm was repeatable enough that the de-

velopers were able to overcome this complexity by calibrating

each board position individually and building a map of the in-

accurate values. FR3 was not decomposed, so no design matrix

was generated.

3.4. FR4 Pick-up/put-down chess piece

The design of the end-effector was heavily influenced by the

robotic arm constraints as discussed in Section 2.1 A number

of experiments were performed to find the minimal information

content geometries for piece manipulation.

The main concern was to ensure the magnetic force was

strong enough to be able to pick up a single piece but also light

enough to be handled by the MeArm. The size constraint of

the chessboard defined the piece separation so X-Y expansion

could not be used to improve selectivity. Experiments with a

commercially available 9 mm diameter neodymium magnet de-

termined 10 mm of clearance between the magnet and the top

of the piece resulted in a reliable release. With the existing end-

effector servo and linkage, a 50-degree rotation provided this

magnet translation.

To minimize strain on the servomotor and conserve energy,

the distance between the magnet and metal cap needed to be

further controlled during operation. If the cap was too close to

the magnet, it took a lot of torque to release it; a spacer cho-

sen to keep the magnet distance consistent When the gap was

2.5 mm thick, the piece was held securely without straining the

motor: this became the tube’s bottom dimension. During the

pickup operation, the servo lowers the magnet to the bottom of

the tube and allows a small amount of slack. This means that

the servo can be inactive at that time. Even if it is active, the

slack prevents small “jerks” that occur often in the RC servos

from causing an accidental release. The ideal distance from the

piece for the tube to during pick was determined to be between

3–5 mm. Having a small gap between the pieces and the tube

allows for unintended servo movement without knocking the

piece over or those around it. In addition, there was a concern

that pieces with flat top surfaces might cantilever or shift side-

ways during pick-up. The simple solution was to have a small

contact point to allow gravity to pull the piece plumb. This re-

sults in a need to have a rounded top on the chess pieces.

The original MeArm included a small servo-actuated grip-

236 Freyja Yeatman Ómarsdóttir et al. / Procedia CIRP 53 (2016) 231 – 236

per. The gripper mechanism was removed, but the servo was

used in the final end-effector design as previously described.

At full extension, the arm could only support a mass grasped

with the provided gripper. The new end-effector needed to be

no more than the gripper’s weight to ensure that payload was

not significantly reduced. The custom tube was 3D printed and

consisted of the geometries previously determined. The magnet

is the heaviest component of the end-effector assembly but only

2.9 ± 0.1 g in mass, below the mass of the previous gripper.

The only source of coupling is due to FR4.1 and FR4.3 be-

ing dependent upon height of the piece. This decoupled design

matrix is shown in Eq. 3.

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

FR4.1

FR4.2

FR4.3

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

X 0 0

0 X 0

X 0 X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

DP4.1

DP4.2

DP4.3

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(3)

4. Conclusion

ADT has proved quite helpful in the Chessmate project for

understanding the interaction between the elements of hard-

ware and software. The independence axiom was a constant

reminder of proper abstraction design to prevent the user inter-

face and robot control elements from becoming non-modular.

The information axiom guided the development of the end ef-

fector to ensure reliable lifting (FR4) and placement (FR3) of

pieces. Functional Requirements enabled systematic imple-

mentation improving the chances of on-time completion of a

project. Chessmate is ready to play!

4.1. Future Work

For a complete chess telepresence experience, additional

work needs to be performed on the UI to make it more intuitive

for remote and local players. One concept would be to lever-

age video game matchup websites designs such as

to develop an equivalent robotic chess matchup site. Players

would pick an opponent (which might even be an AI) to play

against on Chessmate.

It is well known that serious chess players use the standard

shapes to get a feel for the condition of the board. With the cur-

rent pieces, this is not possible; further investigation is needed

on how to make the more standard chess piece geometries com-

patible with a magnetic pickup mechanism.

Acknowledgments

Special thanks also go to Mechatronics 1 TA Björn

Breiðfjörð Gíslasson who was always ready to answer ques-

tions and help at a moments notice. We are especially thankful

to our Ben Gray of MeArm Robotics for prompt help with the

MeArm. We must thank our good friend Björn Þór Sigurðsson

helped us design the circuit for the MeArm. We wish to thank

Halldór Guðfinnur Svavarsson for 3D printing the end-effector

and Ingi Níels Karlsson for helping us with the laser printer.

Last but not least, we wish to thank our colleagues for their

moral support.

References

[1] Suh NP. The Principles of Design. Oxford University Press; 1990.

[2] Schaffer S. Automata and the Proto-Industrial Ideology of the Englighte-

ment – History. In: Clark W, Golinski J, Schaffer S, editors. Enlightened

Automata. Chicago University Press; 1999. p. 126–165.

[3] maxjus. How to Build an Arduino Powered Chess Playing

Robot [Internet]; 2016 [cited 2016 Mar 31]. Available from:

.

[4] Thornhill T. Robot chess set allows players to physically make their move

from different sides of the world. Daily Mail. 2012 Jun 28;Available

from:

.

[5] Chhangani MA. Arduino based Wireless Powered Chess. International

Journal of Innovative REsearch in Computer and Communication Engi-

neering. 2015 Apr;3:3187–3194.

[6] yousifnimat. Chess Playing Robot [Internet]; 2014 [cited 2015 Aug

30]. Available from:

.

[7] Hatch D. Chess Playing Robot [Internet]; 2014 [cited 2015 Nov 02]. Avail-

able from: .

[8] Suh NP. Complexity. Oxford University Press; 2005.

[9] Suh NP. Axiomatic Design - Advances and Applications. Oxford Univer-

sity Press; 2001.

[10] Altshuller G, Clarke DW. 40 Principles: TRIZ Keys to Technical Innova-

tion. Technical Innovation Center, Inc.; 2005.

[11] Brown T. Design Thinking. Harvard Business Review. 2008 Jun;86(6):85–

92.

[12] Liu A, Lu SCY. A new coevolution process for conceptual design. CIRP

Annals – Manufacturing Technology. 2015;64:153–156.

[13] Thompson MK, Foley JT. Coupling and Complexity in Additive Manufac-

turing Processes. In: 8th International Conference on Axiomatic Design

(ICAD 2014). vol. 33. CIRP. Lisboa, Portugal: Axiomatic Design Solu-

tions, Inc.; 2014 Sep. 24–26. p. 177–182.

[14] Bragason G, Þorsteinsson S, Karlsson RI, Grosse N, Foley JT. Heat-

activated Parachute Release System. In: 9th International Conference on

Axiomatic Design (ICAD). vol. 34. Procedia CIRP. Florence, Italy: Else-

vier ScienceDirect; 2015 Sep 16–18. p. 131–136.

[15] Sölvason GO, Foley JT. Low-cost spectrometer for Icelandic chemistry

education. In: 9th International Conference on Axiomatic Design (ICAD).

vol. 34. Procedia CIRP. Florence, Italy: Elsevier ScienceDirect; 2015 Sep

16–18. p. 156–161.

[16] Jónsson BL, Garðarsson GO, Pétursson O, Hlynsson SB, Foley JT. Ultra-

sonic gasoline evaporation transducer — reduction of internal combustion

engine fuel consumption using axiomatic design. In: 9th International Con-

ference on Axiomatic Design (ICAD). vol. 34. Procedia CIRP. Florence,

Italy: Elsevier ScienceDirect; 2015 Sep 16–18. p. 168–172.

[17] Suh NP. Challenges in dealing with large systems. In: 9th International

Conference on Axiomatic Design (ICAD). vol. 34. Procedia CIRP. Flo-

rence, Italy: Elsevier ScienceDirect; 2015 Sep 16–18. p. 1–15. Keynote.

[18] Cochran DS, Li J, Vanover K, Foley JT. A System Design of a Rural

Hospital Operating Room. In: 26th CIRP Design Conference. Stockholm:

CIRP; 2016. p. 6.

[19] Foley JT, Harðardóttir S. Creative Axiomatic Design. In: Proceedings of

the 26th CIRP Design Conference. Stockholm; 2016 Jun. 15–17. p. 6.

[20] Cochran DS, Foley JT, Bi Z. Use of the Manufacturing System Design De-

composition for Comparative Analysis and Effective Design of Production

Systems. International Journal of Production Research. 2016;p. 24.

[21] Benavides EM. Advanced engineering design - An integrated approach.

Woodhead Publishing; 2012.

[22] Thompson MK. A classification of procedural errors in the definition of

functional requirements in Axiomatic Design theory. In: 7th International

Conference on Axiomatic Design (ICAD 2013). vol. 32. CIRP. Worchester,

MA: Axiomatic Design Solutions, Inc.; 2013. p. 1–6.

[23] Procedia CIRP. 9th International Conference on Axiomatic Design

(ICAD). vol. 34. Florence, Italy: Elsevier ScienceDirect; 2015 Sep 16–18.

