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Abstract

In an earlier paper, we introduced a collection of graded Abelian groupŝHFK(Y,K) associated
to knots in a three-manifold. The aim of the present paper is to investigate these groups for
specific families of knots, including the Kinoshita–Terasaka knots and their “Conway mutants”
These results show that̂HFK contains more information than the Alexander polynomial and
signature of these knots; and they also illustrate the fact that̂HFK detects mutation. We als
calculateĤFK for certain pretzel knots, and knots with small crossing number (n � 9). Our
calculations give obstructions to certain Seifert fibered surgeries on the knots considered her
 2003 Elsevier B.V. All rights reserved.

1. Introduction

In [18], we defined an invariant for knotsK ⊂ S3, which take the form of a grade
Abelian groupĤFK(K, i) for each integeri. The main results of [17] give explic
descriptions of some of the input required for determininĝHFK in terms of the
combinatorics of a generic planar projection ofK. As an application, it is shown tha
ĤFK for an alternating knot is explicitly determined by the Alexander polynomial an
the signature of the knot (compare also [21]). The aim of the present article is to
and extend techniques from [17] to determine certain knot homology groups of some
complicated types of knots. Indeed, to underscore the relative strength of̂HFK over the
Alexander polynomial, we focus mainly on certain knots with trivial Alexander polyno
(and hence vanishing signature).
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These calculations have the following consequences. Of course, they show thatĤFK is
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stronger than the Alexander polynomial; but more interestingly, they also show that,
many other knot invariants,̂HFK is sensitive to Conway mutation. These computati
further underline an interesting relationship between the knot Floer homology an
Seifert genusg(K) of the knotK. Specifically, recall that in Theorem 5.1 of [18], w
proved an adjunction inequality, stating that if deĝHFK(K) denotes the largest integerd

for which ĤFK(K,d) �= 0, then

degĤFK(K) � g(K). (1)

Indeed, we also conjectured, based on the analogy with Seiberg–Witten theory
theorem of Kronheimer and Mrowka [9], that

degĤFK(K) = g(K)

for every knot inS3. Calculations from this paper canbe taken as further evidenc
supporting this conjecture.

Finally, the calculations provide obstructions to realizing Seifert fibered spaces
certain surgeries onS3 along many of the knots studied here.

We emphasize that in general, calculatinĝHFK is not a purely combinatoria
matter. The generators of this complex can be described combinatorially, and i
in [17], we indentified them with Kauffman states (cf. [6]), but the differentials co
pseudo-holomorphic disks in a symmetric product. However, there are some add
combinatorial aspects of this chain complex described below (see Section 2), includi
a multi-filtration on the chain complex, which facilitate our calculations. As a fur
illustration of these techniques, we also calculate the knot Floer homology groups for
knots with at most nine crossings.

We now give a description of the knots we study and state the results of our calcula

1.1. Kinoshita–Terasaka and Conway knots

In [8], Kinoshita and Terasaka construct a family of knotsKTr,n, indexed by integer
|r| �= 1 andn, with trivial Alexander polynomial. These knots are obtained by modify
a picture of the(r + 1,−r, r,−r − 1) (four-stranded) pretzel links, and introducingn
twists. There are some redundancies in these knots. Whenr ∈ {0,1,−1,−2} or n = 0, this
construction gives the unknot. Also, there is a symmetry identifyingKTr,n = KT−r−1,n,
which can be realized by turning the knot inside out. Finally, the reflection ofKTr,n is the
knot KTr,−n. Now, recall that the knot Floer homology groups transform in a controlle
manner under reflection: i.e., ifK denotes the reflection ofK, then for eachi, d ∈ Z,

ĤFKd(K, i) ∼= ĤFK
−d

(K,−i)

(where here the left-hand side denotes knot Floer homology in dimensiond , while the
right-hand side denotes knot Floerco-homology in dimension−d) and also

ĤFKd(K, i) ∼= ĤFKd−2i (K,−i) (2)

(cf. Eqs. (2) and (3), respectively, of [18]), so there is no loss of generality in assu
r > 1 andn > 0. We have illustrated the case wherer = 3 andn = 2 in Fig. 1. It is possible
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Fig. 1.Kinoshita–Terasaka knot withr = 3 andn = 2. When the circled crossing is changed, we obtainKT3,1,
while if it is resolved, we obtain a(r + 1,−r, r,−r − 1)-pretzel link. The Conway knot is obtained as a mutat
around the sphere indicated here with a large, dotted ellipse (indeed, it is the mutation induced by 180◦ rotation
about the axis perpendicular to the plane of the knot projection). The relevance of the indicated pointsx andy

will become apparent in Sections 3 and 4, respectively.

to eliminate one crossing from the diagram forKTr,n, but the new diagram is somewh
more cumbersome to draw.

We calculate the topmost non-trivial knot Floer homology group forKTr,n in Section 3,
arriving at the following result:

Theorem 1.1. Consider the Kinoshita–Terasaka knotKTr,n with n > 0 and r > 1. This

knot hasĤFK(KTr,n, s) = 0 for all s > r, and

ĤFK(KTr,n, r) ∼= Zn
(r) ⊕ Zn

(r+1),

where here(and indeed throughout this paper) the subscript(r) indicates that the
corresponding summand is supported in dimensionr.

Note that in [4], Gabai exhibits a Seifert surface forKTr,n with genusr, and proves
that it is genus-minimizing, using the theory of foliations. It is interesting to note
Theorem 1.1, together with Inequality (1), gives an alternate proof that this Seifert s
is genus-minimizing. Some new applications will be described later (cf. Section 1.4)

Theorem 1.1 is based on the results of [17], where we give combinatorial descri
of some of the data for calculatinĝHFK. In fact, in Section 2 we explain how some
this data can be simplified, and amplify it with a multi-filtration on the chain comple
Kauffman states. Using these techniques, we obtain some additional calculations, a

Let Cr,n denote the Conway knot, which is obtained fromKr,n by mutation. This kno
is obtained using the same construction asKr,n, only using a four-stranded pretzel link
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of as obtained fromKr,n by a mutation using the sphere pictured in Fig. 1, cf. [10]. Th
knots also have trivial Alexander polynomial, and indeed, they satisfy the same symm
asKr,n. Note that these knots, too, admit a projection with one fewer crossing. In the
wherer = 2 andn = 1, an eleven-crossing projection is pictured in Fig. 5. We prove
following in Section 4:

Theorem 1.2. Let Cr,n denote the Conway mutant ofKTr,n with n > 0 and r > 1. This

knot hasĤFK(Cr,n, s) = 0 if s > 2r − 1, and

ĤFK(Cr,n,2r − 1) ∼= Zn
(2r−1) ⊕ Zn

(2r).

It is easy to construct Seifert surfacesF for Cr,n with genusg(F ) = 2r −1, compare [3],
see also Section 4.

Since KTr,n and Cr,n differ by a Conway mutation, and their groupŝHFK are
manifestly different, we see that, unlike the Alexander, Jones, HOMFLY, and Kauf
polynomials, the invariant̂HFK is sensitive to mutation. It is interesting to compare t
with Khovanov’s invariants, cf. [23,7].

1.2. Pretzel knots

The techniques described here also lend themselves quickly to a calculation for pretz
knotsP(p,q, r), wherep, q , andr are odd integers. Whenp, q , andr all have the same
sign, these knots are alternating, and hence their Floer homology has been dete
in [17]. Thus, by reflecting the knot if necessaryand relabeling, we are left with the ca
whereq < 0 andp, r > 0.

Theorem 1.3. Consider the knotK = P(p,q, r) wherep = 2a + 1, q = −(2b + 1),
r = 2c + 1, with a, b, c � 0. Then, ifb � min(a, c), we have that

ĤFK(K,1) = Zab+bc+b−ac
(1)

.

If b < min(a, c), we have that

ĤFK(K,1) = Z
b(b+1)
(1) ⊕ Z

(b−a)(b−c)
(2) .

This family contains infinitely many knots with trivial Alexander polynomial: t
Alexander polynomial is trivial precisely whenpq + qr + pr + 1 = 0 (e.g., let(p, q, r) =
(−3,5,7)). It follows at once from the above theorem that for all non-trivial pretzel kn
in the above family,̂HFK is also non-trivial.

1.3. Knots with few crossings

Although the techniques from Section 2 are not sufficient to calculatêHFK in general,
they can be employed successfully in the study of relatively small knots, as measu
the number of double-points. In fact, in Section 6 we calculatêHFK for all knots with
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in [18] and [16] (the knot 942 and 819—the (3,4) torus knot). The Floer homology o
the remaining non-alternating knots (with less than ten crossings) behaves like the
homology of alternating knots, cf. Theorem 6.1 below.

1.4. Surgeries on knots

In another direction, the calculations of this paper can be used to give inform
on three-manifolds obtained as integral surgeries on knots, following results of [19
also [20]). To explain, recall that theformal sum of Euler characteristics of̂HFK gives
the symmetrized Alexander polynomial∆K(T ):∑

i

χ
(
ĤFK(K, i)

) · T i = ∆K(T ) (3)

(cf. Section 10 of [18]). It is an immediate corollary of this that

deg∆K � degĤFK(K). (4)

It is a result of [19] (see especially Corollary 1.5 of [19]) that ifK is a knot for which
degĤFK(K) > 1 and Inequality (4) is strict, thenK does not admit certain Seifert fibere
surgeries. Specifically, we have the following:

Corollary 1.4. For any integerq �= 0, 1/q surgery onS3 alongKTn,r or Cn,r (with n > 0
andr > 1) is never Seifert fibered space.

For the case of pretzel knotsP(p,q, r) with p, q , andr all odd, Corollary 1.5 of [19]
no longer applies, since deĝHFK(K) = 1. And indeed, there are cases of such pre
knots with Seifert fibered surgeries. However, a careful look at the proof of that coro
and a closer look at̂HFK gives the following corollary(cf. Proposition 5.6). Note tha
this corollary covers all non-trivial three-stranded pretzel knots with trivial Alexa
polynomial (compare with [5,11]):

Corollary 1.5. Let P(p,q, r) be a non-trivial pretzel knot withp, q , and r odd. When
p � r > 0 andq < −1 with |q| < min(p − 2, r), no integral surgery alongP(p,q, r) is a
Seifert fibered space.

Further remarks. Additional calculations of knot Floer homology groups can be fo
in [22] and [2]. The authors wish to thank Eaman Eftekhary, Cameron Gordon, Mi
Khovanov, Rob Kirby, Paul Melvin, and Jacob Rasmussen for interesting conversati

2. Calculational tools

Let K ⊂ S3 be a knot. In [18], we introduced the knot Floer complex̂CFK(K) =⊕
s∈Z

ĈFK(K, s) which is associated to a Heegaard diagram for a knot, and w
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generators of the chain complex̂CFK in terms of combinatorics of a generic projection
a knot (together with some extra data). We recall the constructions in Section 2.1, and sh
that in some cases, the number of generators can be cut down, to make the calc
simpler. In Section 2.2, we give a combinatorial description of the domain of a hom
classφ ∈ π2(x,y) connecting a pair of states. Here, the condition thatD(φ) � 0 from [14]
(a necessary condition fory to appear with non-zero multiplicity in the expression for∂x)
is formulated in terms of a multi-filtration on the set of states.

In Section 2.3, we recall the correspondence between states and maximal subtrees (
also [6]), which removes much of the redundancy which is inherent in the descriptio
state.

In Section 2.4, we turn to certain properties of the “skein exact sequence” from [1

2.1. Simplifying Heegaard diagrams

Choose an orientation forK and a generic projection ofK to the plane. The projectio
gives a planar graphG where the vertices ofG correspond to the double-points of t
projection ofK, and the edges inherit an orientation fromK. Choose a distinguished ed
ε0 for this planar graph. We call a projection with this additional data adecorated kno
projection.

There are four distinct quadrants (bounded by edges) emanating from each vertex, e
of which is a corner of the closure of some region ofS2 − G. We distinguish the two o
these regions which contain the distinguished edge on their boundary, denoting thA
andB.

Definition 2.1. A state(cf. [6]) is an assignment which associates to each vertex ofG one
of the four in-coming quadrants, so that:

• the quadrants associated to distinct vertices are subsets of distinct regions inS2 − G,
• none of the quadrants associated to vertices is a corner of the distinguished regA

or B.

It is easy to see that a state sets up a one-to-one correspondence between vertiG

and the regions ofS2 − G − A − B.

Definition 2.2. Thefiltration levelof a state is the integer obtained by adding up the lo
contributions at each quadrant, which are determined by the crossing types of the kno
as indicated in Fig. 2. Theabsolute gradingof a state is determined by adding up anot
local contribution, pictured in Fig. 3.

We have the following result from [17]:

Theorem 2.3. Fix a generic knot projection for a knotK ⊂ S3. There is a one-to-on
correspondence with generators of̂CFK(K, i) and statesx whose associated filtratio
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Fig. 2.Local filtration level contributions. We have illustrated the local contributions for the filtration level o
state for both kinds of crossings.

Fig. 3.Local grading contributions. We have illustrated the local contribution for the absolute grading assoc
for a state.

level is i. Under this correspondence, the absolute grading of a state in the above
coincides with the absolute degree of the corresponding generator of̂CFK(K, i).

Definition 2.4. Fix a decorated knot projection. Anessential intervalis a sequence o
consecutive edges with the following properties:

• the distinguished edgeε0 appears in the sequence, so we can write

E =
m⋃

i=−�

εi,

where here�,m � 0, andεi+1 is the successor ofεi for all i = −�, . . . ,m − 1,
• the immersed arcs

E+ =
m⋃

i=1

εi and E− =
−1⋃

i=−�

εi

are pairwise disjoint,
• as we traverse the arcE+ according to the orientation ofK, i.e., starting at the verte

ε0 ∩ ε1, and then passing throughε1, . . . , εm in order, all of the crossings we encoun
for the first time have the same type (i.e., they are all either over- or under-cross
similarly, as we traverse the arcE− backwards, i.e., starting atε0∩ε−1, and proceeding
through tillε−�, all the crossings we encounter the first time have the same type (w
might be different from the crossing type encountered alongE+).

Definition 2.5. Fix a decorated knot projection, and also an essential intervalE =⋃m
i=−� εi . Each edgeεi inherits an orientation fromK, and we write its endpoints a
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E. An E-essential state is a statex with the following properties:

• for i = 1, . . . ,m, if vi /∈ {v1, v2, . . . , vi−1}, then the corner containingx(vi) contains
the edgeεi on its boundary;

• for i = −� + 1, . . . ,0, if vi /∈ {v0, v−1, . . . , vi+1}, then the corner containingx(vi)

contains the edgeεi−1 on its boundary.

Proposition 2.6. Fix a knot projectionG for a knotK ⊂ S3, and letE be an essential arc
Then, there is a system of generators for̂CFK consisting of onlyE-essential states(in the
sense of Definition2.5), with gradings and filtration levels as given in Theorem2.3.

Proof. Recall that the Heegaard surface constructed in [17] is obtained as a bounda
regular neighborhood of the knotprojection. For each vertexv, we have aβ-curve denoted
βv , and at the distinguishedε0, we choose a meridianµ for the knot which is supporte
nearε0. Then, on either side of that meridian in the Heegaard surface, we choose a
basepointsw andz for the definition of̂CFK(K).

Suppose for simplicity that all thevi are distinct (i.e., thatE− ∪ E+ is an embedded
arc inG). To simplify the Heegaard diagram as above, we move the two basepoints f
away from the meridian, so that we can handleslide theβ-curves belonging tov1 andv0
acrossµ, to get new curvesβ ′

1 andβ ′
0. We continue handlesliding in this manner—βvk+1

acrossβ ′
vk

andβv−k acrossβ ′
v−k+1

—until we have a new sequence ofβ-curvesβ ′
v0

, . . . , β ′
vk

which now meet always at most twoα-curves (rather than four). The hypothesis on
crossing types was used to ensure that the reference points could always be move
the handlesliding region (without crossing any of the attaching circles). This proced
illustrated in Fig. 4. It is not difficult to modify the above procedure whenE− andE+ have
self-intersections. �

Of course, the notion of essential arc, and the above proposition depends on the
of essential interval. However, for some decorated knot projections, there is alw
unique maximal essential interval. Indeed, this is the case for all the projection
consider in this paper, and hence, with this understood, we call a state an essent
if it is E-essential for this maximal essential intervalE.

2.2. The combinatorics of domains, and the multi-filtration

Of course, the calculation of̂HFK(K) requires an explicit understanding of t
differential in the complex̂CFK(K), which in turn involves a pseudo-holomorphic cur
count. More precisely, given a pair of statesx and y (whose filtration level coincides
and whose absolute gradings differ by one), lettingx and y denote the correspondin
generators of̂CFK(K), there is a unique homotopy class of Whitney diskφ ∈ π2(x,y)

with nz(φ) = nw(φ) = 0. They component of∂x is the signed count of points #M(φ)/R

in the moduli space of pseudo-holomorphic representatives ofφ (modulo translation). A
present, this count does not have a direct combinatorial description. However, the
combinatorial conditions onx andy which ensure that it vanishes.
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Fig. 4. Diagram simplification. We have illustrated the proof of Proposition 2.6. At the top, we have illustr
the part of the Heegaard diagram coming from [17] (near where we have two under-crossings followed
over-crossing), choosing our reference point between the under- and the over-crossing. We have dropped al
subscripts to theα-curve, but we remind the reader that there is one region in each of the compact comp
of R2 − G (the non-compact region here is denoted byA). At the bottom, we have illustrated the correspond
“simplification”.

LetG be a graph for the knot projection ofK with N edges. We order the edges{εi}N−1
i=0

of G, so thatε0 is the marked edge, and the others appear in the order in which the
encountered by moving alongK (with its specified orientation). Letvi denote the vertex a
the intersection ofεi with εi+1 (note that each vertex inG appears asvi for two different
values ofi, once as an overcrossing, and once as an undercrossing). We can asso
each statex a multi-filtration-level

Mx ∈ Hom
({εi}N−1

i=0 ,Z ⊕ Z
)
,

as follows:

Mx(εi)

=




(0,0) if i = 0,

Mx(εi−1) + (0,1) if vi is an overcrossing andx(vi) is to the right ofεi ∪ εi−1,

Mx(εi−1) − (0,1) if vi is an overcrossing andx(vi) is to the left ofεi ∪ εi−1,

Mx(εi−1) + (1,0) if vi is an undercrossing andx(vi) is to the left ofεi ∪ εi−1,

Mx(εi−1) − (1,0) if vi is an undercrossing andx(vi) is to the right ofεi ∪ εi−1.
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Fig. 5. A domain. Let x denote the state indicated by the dark circles andy denote the state indicated by th
hollow ones, in the Conway knot as pictured above. Then,1

2(Mx − My) is represented as above: specifica

near each edgeε, we have written1
2(Mx − My)(ε), unless the latter quantity vanishes. Since sometimes th

negative, it follows thatx �> y, and hence, although it is easy to see that deg(x) = deg(y) + 1, y does not appea
in the expansion for∂x.

Definition 2.7. Fix a decorated knot projection. We define a partial ordering on th
of states, as follows: ifx and y are two different states, thenx > y if for all edgesε,
Mx(ε) − My(ε) is a pair of non-negative integers.

An example of two statesx andy for whichx �> y andy �> x is illustrated in Fig. 5.

Proposition 2.8. Suppose thatx and y represent the same filtration level, and inde
suppose thaty appears in∂x with non-zero multiplicity, thenx > y.

Proof. Let (Σ,α,β) denote the Heegaard diagram forS3 used for Theorem 2.3. Consid
an edgeεi in the knot projection which does not meet the one of the two distingui
regions in the knot diagram. This edge, then, gives rise to a cylinder in the Hee
diagram, which is divided into two squares by theα-arcs. We place one reference po
ti in the “top” part of the diagram, and another onebi in the “bottom” part. It is easy to se
(after a straightforward case-by-case analysis ofx(vi) andy(vi)) that if φ ∈ π2(x,y) is the
homotopy class withnz(φ) = nw(φ) = 0, then

1

2

(
Mx(εi) − My(εi)

) = (
nti (φ), nbi (φ)

)
.

The result now follows from the basic fact that ifφ has a pseudo-holomorph
representative (for suitably small perturbations of the holomorphic condition), the
these multiplicities must be non-negative (cf. Lemma 3.2 of [14]).

Note that this argument also applies when the Heegaard diagram is “simplified”
Proposition 2.6, only in that case, one uses the multi-filtration only over those edges whic
are not in the essential interval.

2.3. Trees

States admit a rather economical description in graph-theoretic terms (see also [6
regions in the complement of the planar projection can be colored black and white in
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chessboard pattern, by the rule that any two regions which share an edge have opposite
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color. There is then an associated “black graph”, whose vertices correspond to the
colored black, and whose edges correspond to vertices inG, which connect the opposit
black regions. We letA (respectivelyB) denote the black (respectively white) region who
boundary contains the distinguished edgeε0.

In these terms, states are in one-to-one correspondence with the maximal sub
the black graph. Given a statex, we associate to it the union of vertices ofG, thought of
now as edges in the black graph, to whichx associates a black quadrant. This gives
maximal black subtree associated to the statex.

Conversely, given a black subtreeT , we can orient the edges so that the “root” is
distinguished black regionA, and all edges point away from this root. We construct
black part of the corresponding vertex assignment, as follows. Letv be a vertex ofG which
corresponds to some edge ofT . With respect to the induced orientation onT , this oriented
edge ofT points to a uniquely determined endpointr ∈ T , which in turn corresponds to on
of the two black quadrants (inS2 − G) which meet atv. We letx(v), then, be the quadran
corresponding tor. To determine the rest of the vertex assignment, we first conside
dual white graphT ∗, obtained from the white graph by deleting all the edges correspon
to the vertices appearing in the black subtreeT . Note thatT ∗ is actually a tree, and repe
the above procedure, now for the white quadrants.

Clearly, one can reformulate the results of Theorem 2.3 in terms of these graphs
edge of both the black and white graphs inherits a label among the numbers{−1,0,+1}: an
edge in the white (respectively black) graph is labelled with 0 if the two white (respec
black) quadrants meeting at the corresponding vertex both are have grading contrib
(cf. Fig. 3), and it is labelled with±1 if one of the two white (respectively black) graph
labelled with±1. We call edges labelled with 0neutraledges, and view them as unorient
while the non-neutral ones are oriented (so as to point away from the vertex corresp
to the quadrant labelled with 0 in Fig. 3).

Given a black treeT , let T ∗ be its dual white tree, and orient both as before (so
the edges ofT andT ∗ point away fromA andB, respectively). Then, twice the filtratio
level corresponding toT is obtained as follows. We sum over all edgese in T the label of
the edgee in G times+1 if its orientation as an edge of the black graph agrees with
induced orientation coming fromT , and−1 if the orientations disagree (note here that t
last sign is irrelevant for neutral edges); and then add to that the corresponding sum
edges of the dual white graphT ∗.

Similarly, the grading level corresponding toT is obtained by summing over all edg
e in T the label of the edgee in G, provided that its orientation agrees with the induc
orientation coming fromT (and zero otherwise), and once again adding the correspo
sum forT ∗.

2.4. Exact sequences

In a different direction, we derived in [18] a “skein exact sequence”, which we rec
here.

Suppose thatK is an oriented knot inY , and we have a diskD which meetsK in two
algebraically cancelling points. If we perform−1 surgery onγ = ∂D, we obtain a new kno
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K− in S3, which is obtained fromK by introducing a full twist in a tubular neighborhood
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alongγ . Performing+1 surgery onγ gives us another knotK+ with a full twist introduced
in the other direction. There is a third linkK0 which is obtained by resolving the knot (s
as to missD entirely). Recall [18] that the link invariant in this case is, by definition,
knot invariant for the knot inS1 × S2 obtained by performing a zero-surgery alongγ .

In [18], we established skein exact sequences for each integeri

· · · → ĤFK(K, i)
f1−→ ĤFK(K0, i)

f2−→ ĤFK(K+, i)
f3−→ · · ·

and

· · · → ĤFK(K−, i)
g1−→ ĤFK(K0, i)

g2−→ ĤFK(K, i)
g3−→ · · · ,

where the mapsfi andgi are induced by two-handle additions.
It will be useful to us to have the following compatibility result aboutg2 andf1:

Lemma 2.9. For the above two exact sequences, the composite

g2 ◦ f1 : ĤFK(K, i) → ĤFK(K, i)

is trivial.

Proof. The mapf1 is induced by cobordism formed by zero-surgery onγ , while g2 is
induced by the cobordism formed by zero-surgery on another unknotδ which linksγ once
(and does not link the knotK). As in [15], we obtain the same map if we switch the or
in which we perform the two two-handle additions: first we perform zero-surgery oδ,
and then zero-surgery onγ (see Fig. 6). However, in this latter ordering, we factor thro
the three-manifoldY # (S2 × S1) (and the knot is contained entirely in theY summand. It
is easy to adapt the Künneth principle for connected sums in this context (see esp
Proposition 6.1 of [13]) to see that

ĤFK
(
Y #

(
S2 × S1),K, i

) ∼= ĤFK(Y,K, i) ⊗ H 1(S2 × S1). (5)

Of course,H 1(S2 × S1) ∼= Z ⊕ Z, but our reason for writing the answer in this form is th
we have now an action of[δ] ∈ H1(S

2 × S1) on ĤFK(Y # (S2 × S1), i) (induced from
the corresponding action on̂HF(Y # (S2 × S1))). The above isomorphism is compatib
with this action of[δ] (where[δ] ∈ H1(S

2 × S1) acts on the right-hand side through
natural action onH 1(S2 × S1), cf. Section 4.2.5 of [14]). Now,f1 maps to the kerne

Fig. 6.Composite map. We have pictured here two strands ofK . Performing zero-surgery onγ realizes the map
f1, while zero-surgery onδ realizesg2.
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of the [δ]-action, since the curve representingδ is null-homologous in the four-manifold
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obtained by attaching a two-handle alongδ to Y −K; while g2 is trivial on the image of the
[δ]-action because, once again,δ is null-homologous in the corresponding four-manifo
(compare [15]). But in the description of the[δ]-action from Eq. (5), it is clear that th
image of[δ] coincides with the kernel of[δ], completing the proof. �

3. Calculations for the Kinoshita–Terasaka knots

Consider the Kinoshita–Terasaka knotsKTr,n with n �= 0. All the knotsKTr,n have
trivial Alexander polynomial, but the knots themselves are non-trivial whenr > 1 and
n �= 0. Indeed, Gabai exhibits a Seifert surface forKTr,n of genusr and proves (cf. [4])
that this Seifert surface has minimal genus.

We shall focus first on the case wheren = 1. We distinguish the edge connecting t
base of the−r − 1 andr + 1 strands opposite to where the (n = 1) twisting takes place—
this is indicated by the pointx pictured in Fig. 1. We have illustrated the “black graph”
KTr,1, in Fig. 7. For the black graph, there are two edges, labelede andf , and four chains
{ai}r+1

i=1, {bi}ri=1, {ci}ri=1 and{di}r+1
i=1. The edgese, f , bi , anddi are labeled with+1, while

Fig. 7. Black graph for the Kinoshita–Terasaka knot. The following edges are labeled with+1: e, f {bi }ri=1,

{di }r+1
i=1 ; the following are labeled with−1: {ai }r+1

i=1 , {ci }ri=1. The distinguished black vertex is circled. The wh

regions correspond to the complement of this graph inS2, and the distinguished white region is the non-comp
one (i.e., the one bounded by the chain of{ai }, {di }, ande). Note that all the edges in the dual white graph
neutral (since none of the edges in the black graph are).
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Fig. 8.Generators forKn,r with n = 1, r = 2.

those of typeai andci are labeled with−1. The distinguished black region correspond
the vertex wherear+1, br , cr , anddr+1 meet. The vertices of the white graph are, of cou
the regions in the complement of this planar graph. The region bounded by the chaibi

andci and the edgef corresponds to the distinguished white region. In fact, since non
the black edges is neutral, all of the white ones are.

We calculateĤFK(KTr,n, r) in the case wheren = 1 using Theorem 2.3, togeth
with the multi-filtration (Proposition 2.8). The case wheren is arbitrary will follow from
properties of the skein exact sequence cf. Lemma 2.9 (though one could alternately
more direct argument using the multi-filtrations).

Proof of Theorem 1.1 when n = 1. It is easy to see that there are two treesB andC

which represent filtration level−r: the treeB does not containar+1, f , cr , or dr+1, while
the treeC does not containar+1, e, br , or dr+1. These trees are illustrated in Fig. 8.

Moreover, the grading ofB is given by 1− r, while the grading ofC is given by−r. It
is straightforward to verify thatB �> C for the multifiltration (see Fig. 9 for an illustration
and hence, according to Proposition 2.8,∂ ≡ 0. These calculations show that

ĤFK(KTr,1, s) ∼=
{

0 if s < −r,

Z(−r) ⊕ Z(1−r) if s = −r.

Note that this is equivalent to the statement of the theorem (withn = 1), in view of the
symmetry of the knot Floer homology groups (cf. Eq. (2)).

Calculation for an (r + 1,−r, r,−r − 1) pretzel link. Note that there is a skein exa
sequences of the form

· · · → ĤFK(KTr,n−1, i)
f n

1−→ ĤFK(X(r), i)
f n

2−→ ĤFK(KTr,n, i) → ·· · , (6)

whereX(r) is an oriented(r + 1,−r, r,−r − 1) pretzel link which is independent ofn.
(Strictly speaking, the notation forf n

1 andf n
2 ought to include the leveli, but we suppres

this for readibility.) The mapsf n
1 andf n

2 both decrease absolute grading by1
2. In fact,

according to Lemma 2.9,

f n
2 ◦ f n+1

1 ≡ 0. (7)

Moreover,KTr,0 is the unknot. Specializing to the case wherei = r, andn = 1 it follows
at once that
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Fig. 9. Comparison of generatorsB and C. We have labeled some of the multiplicities for the multi-filtrati
comparing these two generators of̂HFK(KTn,r ,−r), whenn = 1 andr = 2. Here,B is denoted by the black
dot, andC by the hollow one. The arrow appears on the distinguished edge of the knot projection (at the
denoted byx in Fig. 1).

ĤFK
(
X(r), r

) ∼= Z
(r− 1

2 )
⊕ Z

(r+ 1
2 )

, (8)

and the mapf 1
2 is an isomorphism.

Proof of Theorem 1.1 for arbitrary n. To establish the theorem for alln � 1 we prove
inductively both the theorem, and also the statement that the mapf n

2 is injective. The basic
case was established above. For the inductive step, iff n+1

2 is not injective, thenf n+1
1

would have to be non-trivial, but this contradicts the injectivity off n
2 (which holds by the

inductive hypothesis), together with Lemma 2.9, in the form of Eq. (7).

3.1. Additional remarks

Consider the case ofKr,n with n = 1. By moving the marked edge, we obtain vario
chain complexes representinĝHFK(Kr,1). Typically, subtrees which represent filtratio
level r vary as we move the marked edge. However, since the white graph cons
neutral edges only, if we choose our marked edge so that the distinguished black
X remains unchanged—there are four possible choices—then the maps from m
subtrees to filtration levels and degrees are unchanged. However, the map from m
subtrees to states, of course, varies, and more interestingly, the induced partial orderi
on subtrees can change, too. For example, if we mark the edge ofB opposite to the edg
containingx (cf. Fig. 1), then it is easy to see that the two generatorsB andC described
in the proof of Theorem 1.1 are still the two representatives for filtration levelr, and their
dimensions arer + 1 andr. However, with this choice of marked edge, it is now the c
thatB > C.
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4. Calculations for the Conway knots
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We consider the Conway mutantsCr,n of the Kinoshita–Terasaka knots. The calculat
of ĤFK(Cr,n,2r − 1) proceeds similarly to the calculations from Section 3. Note tha
knot C2,1 can be given the eleven-crossing presentation pictured in Fig. 5. In this case,
we place the reference point where the arrow is indicated, and use the simplification of t
Heegaard diagram described in Section 2, then it is straightforward to see that in fil
level 3 there are only two inessential states, the two statesx andy pictured in the figure
and they have absolute grading 4 and 3, respectively. However,∂x = 0, sincex �> y, as
illustrated in the figure, verifying Theorem 1.2 forr = 2, n = 1.

As before, we begin by restricting to the case wheren = 1. Rather than drawing th
black graph in this case, we indicate the necessary modifications to Fig. 7. (Note th
not hard to find projections with fewer essential states than the ones we describe—
in the desired filtration level, we can arrange for there to be only two essential states
the case withr = 2 considered above. However the diagrams we describe presently ha
the advantage that they are easier to describe in words.) The black graph ofCr,n looks just
like that for KTr,n, except that now there arer + 1 edges of typeci , and onlyr edges
of type di . Moreover, the edges labeled with+1 aree, f , {bi}ri=1 and {ci}r+1

i=1, and the
edges labeled with−1 are{ai}r+1

i=1 and{di}r+1
i=1. In particular all edges in the dual whi

graph remain neutral. We choose our marked edge to contain the pointy in Fig. 1 (after
mutating). Correspondingly, now, the distinguished black edge at the vertex betweb1

andb2, and the distinguished white region is bounded by the chains{bi}ri=1, {ci}r+1
i=1 and

the edgef .

Lemma 4.1. For the diagram ofCr,1 described here withr > 2, there are8 Kauffman
states representing filtration level2r − 1. Of these,3 are in dimensionr + 2, which we
denoteCE, CF1, CF2, andCF3, and3 are in dimensionr + 1, which we denoteDE,
DF1 DF2, andDF3. (Note that these states are explicitly identified in the proof be
which also explains their notation. See also Fig.10.)In the case wherer = 2, we have only
6 essential states: the two statesCF1 andDF1 are missing from this diagram.

Fig. 10.Generators forCn,r with n = 1, r = 3.
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Proof. Notice that there are a total of 4r +4 edges in the black graph, and in fact a maximal
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spanning tree must contain exactly 4r edges. It is clear that a maximal tree which conta
neithere norf has filtration level at mostr.

Thus, all maximal subtrees with filtration level 2r − 1 contain eithere or f . Now, if T

is a maximal subtree which contains one ofE or F , then clearly, it must contain at lea
one of the chainsA = {ai}, B = {bi}, C = {ci} or D = {di}. Indeed, it cannot contain mor
than one. Accordingly, we say that a tree is of typeAE if it contains the chainA and the
vertexe. We analyze the eight cases separately.

Trees of typeAE which represent filtration level 2r − 1, we claim, cannot contai
the edgeb1. But a tree which containsA, and does not containb1 corresponds to a
inessential vertex assignment—and indeed, in the case wherer > 2, such trees neve
represent filtration level 2r − 1. The same remarks rule out trees of typeAF , and similar
remarks rule out trees of typeBE, andBF .

It is easy to see that there is only one tree of typeCE which represents filtration leve
2r − 1, and it is the one which does not containa1, f , b2, anddr . Similarly, there is only
one tree of typeDE, and it does not containa1, f , b2, andcr+1.

Assume for the moment thatr > 2. There are three trees of typeCF representing
filtration level 2r − 1: one which does not containe, a1, b3, anddr , which we denote
CF1, one which does not containe, a1, b2, andd2, which we denoteCF2, and one which
does not containe, a2, b2, anddr . Similarly, there are three trees of typeDF representing
filtration level 2r − 1, which we denote{DFi }3

i=1, whereDFi is gotten fromCFi by
deletinge andcr+1 and addingf anddr . The case wherer = 2 works similarly, excep
that the statesCF1 andDF1 do not exist. �
Lemma 4.2. Consider the essential generators listed in Lemma4.1 for Cr,1 with r > 2.
These have the following ordering properties for the multi-filtration:

CF1 > CF2 > CE > CF3,

DF1 > DF2 > DE > DF3,
(9)

and

CF3 �> DE, CE �> DF2, CF2 �> DF2. (10)

Moreover, fixing fixi �= 2, and lettingφ ∈ π2(CFi,DFi) be the homotopy class wit
nw(φ) = 0, we have that

#

(M(φ)

R

)
= 1. (11)

The same holds for the corresponding homotopy class inπ2(CE,DE). Whenr = 2, the
same remarks hold, excluding statesCF1 andDF1.

Proof. Verifying the order properties is straightforward. Some of the work in verify
relation (10) is shortened, given relation (9), and the observation that the difference
multi-filtering betweenCFi andDFi for i �= 2 is supported in a single edge; a simi
remark holds forCE andDE. For the statement about homotopy classes, observe th
of these homotopy classes are represented by quadrilaterals, and hence #M(φ)/R can be
calculated by one-variable complex analysis (compare Section 3 of [13]).�
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Proof of Theorem 1.2. Again, we start with the case wheren = 1. We use the complex
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described in Lemma 4.1.
According to Lemma 4.2 (cf. relations (9)) together with the basic property o

multi-filtration (Proposition 2.8), the chain complex admits a subcomplex generated
CF3 and DF3. Indeed, the homology of this complex is trivial, in view of Eq. (1
Thus,ĤFK(Cr,1,2r − 1) is calculated as the homology of the induced quotient comp
Another application of this principleallows us to cancel also the generatorsCE andDE.
The leftover complex, generated byCF1, CF2, DF1, andDF2, now admits a quotien
complex which is generated byCF1 andDF1 and hence, according to Eq. (11), has triv
homology. (Note that this step is skipped whenr = 2.)

Thus, ĤFK(Cr,1,2r − 1) is calculated by the homology of the remaining comp
generated byCF2 andDF2. SinceCF2 �> DF2, it follows that the homology is

Z(2r−1) ⊕ Z(2r),

verifying the calculation of̂HFK(Cr,n,2r − 1) whenn = 1.
Note that for the pictured knot projection, are two states representing filtration

2r + 1 (and none representing higher filtration levels). However, these two state
quickly seen to cancel (they, too, are connected by a quadrilateral).

To go fromn = 1 to arbitraryn, observe thatCr,0 is an unknot. Thus, we have a ske
exact sequence relating the various Conway knots, corresponding to Eq. (12):

· · · → ĤFK(Cr,n−1, i)
f n

1−→ ĤFK(Y (r), i)
f n

2−→ ĤFK(Cr,n, i) → ·· · , (12)

for any integeri, where nowY (r) is an oriented(r + 1,−r,−r − 1, r) pretzel link, rather
than the pretzel link(r + 1,−r, r,−r − 1) belonging to the Kinoshita–Terasaka kn
considered earlier. (Of course,Y (r) is a mutant ofX(r), and both have trivial Alexande
polynomial.)

Fig. 11.A Seifert surface. We have illustrated here a genus 2r − 2 Seifert surface for the(r + 1,−r,−r − 1, r)

pretzel link, whenr = 2. A Seifert surface for the Conway knot is obtained as a Murasugi sum with the cylind
(with n full twists) at the indicated (dashed) rectangle.
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With these remarks in place, the induction used to verify the theorem runs exactly as it
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did in the case ofKTr,n. As a consequence, we also obtain the following formula forY (r):

ĤFK
(
Y (r),2r − 1

) ∼= Z
(2r− 1

2)
⊕ Z

(2r+ 1
2 )

. �
4.1. A Seifert surface

Note that the Conway knotCr,n has a genus 2r − 1 Seifert surface, obtained by
straightforward modification of the picture for the case wherer = 2,n = 1 described in [3].

We describe first the Seifert surface for the(r + 1,−r,−r − 1, r) pretzel link. We “pull
down” the overcrossing which connects the first two tassles and the undercrossing
connects the second two. And then, we consider the black regions for the knot proj
Those in turn we label with signs, with the rule that no two regions which meet at a v
have the same sign. The Seifert surface for this pretzel link is obtained by connecting
black regions by half-twists at each vertex. It is easy to see that the surfaceF obtained in
this manner is orientable, and hasχ(F) = 4− 4r. We have illustrated this data in Fig. 1
for the case wherer = 2.

We can plumb this with a cylinder withn full twists in it (i.e., forming a Murasugi sum)
to obtain a Seifert surface for the Conway knot whose genus is 2r − 1.

5. Calculations for the pretzel knots

In this section, we consider the family of pretzel knotsP(p,q, r), wherep, q andr are
odd. We follow the usual conventions from knot theory here (cf. [10]) for the directio
the twisting (which, unfortunately, seems to be opposite from the convention used in
compare Fig. 12.

There are some relations amongst the pretzel knots. For example, it is easy to s
P(p,q, r) = P(q, r,p), and thatP(−1,1, r) is the unknot, for anyr.

Fig. 12.The pretzel knotP (5,−3,7). This knot has trivialAlexander polynomial.
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∆P(p,q,r)(T ) = 1

4

(
(pq + qr + pr)

(
T − 2+ T −1) + (

T + 2+ T −1));
thus, there are infinitely many examples with trivial Alexander polynomial. Whenp, q ,
andr are all positive, then the signature ofP(p,q, r) is given by

σ
(
P(p,q, r)

) = 2.

Whenm is an even integer,T2,m denote the torus link, oriented so that the two strand
which we can think of as supported inside a solid torus—are oriented so that the alg
intersection ofT2,m with a disk transverse to the solid torus is zero. In this case,

∆T2,m
= m

2

(
T −1/2 − T 1/2).

Moreover, the signature ofT2,m is ±1, depending on the sign ofm:

σ(T2,m) = sgn(m).

Clearly, if we resolve one of the intersection points corresponding to the first stra
P(p,q, r), we obtain the torus linkT2,q+r . Thus, the skein long exact sequence of [18
this case gives

· · · → ĤFK
(
P(p,q, r)

) F−→ ĤFK(T2,q+r )
G−→ ĤFK

(
P(p − 2, q, r)

) H−→ · · · ,
(13)

where hereF andG preserve filtration levels, and both drop absolute grading by1
2. The

mapH also preserves filtration level, and it preserves the parity of absolute grading.
Whenp, q , and r all have the same sign, then the usual projection ofP(p,q, r) is

alternating. In this case, the knot Floer homology is determined by [17]. Specifi
in [17], it is shown that ifL is a non-split, oriented, alternating link with signature
σ = σ(L), and Alexander–Conway polynomial∆L(T ), then if we write(

T −1/2 − T 1/2)n−1 · ∆L(T ) = a0 +
∑
s>0

as

(
T s + T −s

)
,

then

ĤFK(L, s) ∼= Z
|as |
(s+ σ

2 )
. (14)

Thus, by reflectingP(p,q, r) knot if necessary, we are left with the case whereq < 0
andp, r > 0. Note that whenm �= 0, T2,m is a non-split, alternating link.

Proposition 5.1. Consider the pretzel knotK = P(2a + 1,−(2b + 1),2c + 1) with
a, b, c � 0. Then, ifb � min(a, c), we have that

ĤFK(K,1) = Z
ab+bc+b−ac
(1) .

Proof. For fixedb � 0, we prove the result by induction on botha andc.
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Consider the base case wherea = c = 0. Using the skein exact sequence in the form of
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Eq. (13) withp = r = 1, and the relation thatP(−1, q,1) is the unknot, we see at onc
that

ĤFK∗
(
P

(
1,−(2b + 1),1

)
,1

) ∼= ĤFK∗+ 1
2
(T2,−2b).

Moreover, sinceT2,−2b is alternating, Theorem 1.4 of [17] applies, and hence, in this
Eq. (14) specializes to give

ĤFK(T2,−2b,1) ∼= Zb

( 1
2 )

.

For the inductive step ona, suppose we know the result forP(2a +1,−2b−1,2c+1),
and suppose thatb � a + 1 andb � c. The condition thatb � c ensures thatT2,−2(b−c)+1

still has signature−1, and hencêHFK(T2,−2(b−c)+1,1) is supported in dimensio

1/2; by the inductive hypothesis,̂HFK(P(2a + 1,−2b − 1,2c + 1),1) is supported in
dimension 1. Thus, the skein exact sequence forceŝHFK(P(2a + 3,−2b − 1,2c + 1),1)

to be supported in dimension one. The inductive step onc works analogously. �
We now turn to the case whereb � min(a, c).

Lemma 5.2. Let K be the pretzel knotK = P(2a + 1,−2b − 1,2c + 1) with a, b, c � 0
andb � min(a, c). Then,

rk ĤFK�1(K,1) � b(b + 1).

Proof. This is proven by induction ona and c, starting with the basic case whe
min(a, c) = b. Suppose for concreteness thatb = c. Then, it is easy to see th
rkĤFK(P(2a + 1,−2b − 1,2b + 1),1) is independent ofa: the middle term in the skei
exact sequence (Eq. (13)) vanishes: it corresponds tôHFK of the two-component unlink
whose knot Floer homology is supported in filtration level zero. Thus, it can be calcu
in the case wherea < b, so Proposition 5.1 applies, proving that̂HFK(K,1) is supported
entirely in dimension one, where its rank is preciselyb(b + 1).

For the inductive step, suppose we are increasinga by one, and apply Eq. (13). Now
the middle termT2,2(c−b) has signature+1, and hencêHFK(T2,2(c−b),1) is supported in
dimension 3/2. In particular, the map

H : ĤFK�1
(
P(2a + 1,−2b − 1,2c + 1),1

)
→ ĤFK�1

(
P(2a + 3,−2b − 1,2c + 1),1

)
is surjective, providing the inductive step for increasinga. Increasingc follows simi-
larly. �

To proceed, we use a decorated knot projection forP(2a + 1,−2b − 1,2c + 1), and
consider the multi-filtration on states from Section 2.

Specifically, choose a knot projection forP(2a+1,−2b−1,2c+1) whose correspond
ing black graph consists of two vertices with degree three, connected by three linear stra
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Fig. 13.Labellings for the pretzel knotP (2a + 1,−2b − 1,2c + 1). At left, we have a projection for the pretz
knotP (2a+1,−2b−1,2c+1) where, of course, the labeled rectangles represent tangles with a specified numb
of twists in them. The edgesP , Q, R are labeled here. At the right, we have the corresponding black graph (f
one of the two colorings). The circled vertex corresponds to the black region distinguished by the edgeQ.

of edges{xi}2a+1
i=1 , {yj }2b+1

j=1 , and{zk}2c+1
k=1 . The vertex meeting the edgesx2a+1, y2b+1, and

z2c+1 is the distinguished black vertex. The corresponding distinguished black regio
triangle with three edgesP , Q, andR, with P facing the vertex corresponding tox2a+1,
Q facing fromy2b+1, andR facingz2c+1. Our distinguished edge for the decorated k
projection isQ.

Let Ai,j respectivelyBi,j , respectivelyCi,j be the Kauffman state corresponding to
tree which is obtained by deletingyi andzj respectivelyxi andzj respectivelyxi andyj

from the black graph.

Lemma 5.3. For the pretzel knotK = P(2a + 1,−2b − 1,2c + 1) with a, b, c � 0, the
generators of̂CFK(K,1) in dimension one are

{A2i,2j+1} 1�i�b
1�j�c

, {C2i,2j+1} 1�i�a
1�j�b

and the generators in dimension two are of the form

{B2i,2j+1} 1�i�a
1�j�c

.

There are no other generators of̂CFK(K,1).

Proof. This follows at once from the above diagram.�
Lemma 5.4. For the marked edgesP andR, we have that

MB2i,2j+1(P ) − MA2s,2t+1(P ) = 2(j − s − t, j − s − t),

MB2i,2j+1(R) − MC2s,2t+1(R) = 2(i − s − t, i − s − t).
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Proof. This, too, follows quickly from the diagram.�
t

n zero

1.
Lemma 5.5. For the pretzel knotP(2a +1,−2b−1,2c+1) with a, b, c � 0, we have tha
rkĤFK1(P (2a + 1,−2b − 1,2c + 1),1) � b · (b + 1).

Proof. According to Lemma 5.4 (together with Proposition 2.8), the generatorsA2s,2t+1
(where 0� s � b and 0� t � c) with s + t > 2c + 1, of which there areb(b + 1)/2,
all lie in the cokernel of the boundary operator. Similarly, the generatorsC2s,2t+1 (where
0 � s � a and 0� t � b) with s + t > 2a, of which there are anotherb(b + 1)/2, all lie
in the cokernel of the boundary operator. Since there are no generators in dimensio
(according to Lemma 5.3), the stated bound follows.�
Proof of Theorem 1.3. The case whereb � min(a, c) is established in Proposition 5.
Together, Lemmas 5.2 and 5.5 show that rk̂HFK(P(2a +1,−2b−1,2c+1))= b(b+1).
The rest of the theorem now follows at once from Lemma 5.3.�

To prove Corollary 1.5, we need the following result, which closely follows [19]:

Proposition 5.6. LetK be a knot withdegĤFK(S3,K) = 1. Then, if

rkĤFKev
(
S3,K,1

)
� 2 and rkĤFKodd

(
S3,K,1

)
� 1,

then no integral surgery ofS3 alongK is a Seifert fibered space.

Proof. By reflecting the knot if necessary, we can assume thatS3
p(K) is Seifert fibered for

somep � 0.
According to Lemma 4.1 of [19],

HF+
red,ev

(
S3

0(K),0
) ∼= ĤFKodd

(
S3,K,1

)
.

This completes the case wherep = 0, see for example Theorem 3.4 of [19].
As in the proof of Lemma 3.1 of [19], Section 4 of [18] gives aZ[U ]-submodule

of HF+(S3
n(K), [0]) (for sufficiently largen) which is isomorphic toĤFK(S3,K,1);

indeed, we have a short exact sequence:

0 → ĤFK
(
S3,K,1

) → HF+(
S3

n(K), [0]) → HF+(
S3) → 0.

The above is a map ofU -modules, and theU action onĤFK(S3,K,1) is trivial. It follows
now that

rkHF+
red,ev

(
S3

n(K)
)
� rkĤFKev

(
S3,K,1

) − 1,

rkHF+
red,odd

(
S3

n(K)
)
� rkĤFKodd

(
S3,K,1

)
.

Considering the integer surgeries long exact sequence, it follows that for allp > 0

rkHF+
red,odd

(
S3

n(K)
) = rkHF+

red,ev

(
S3

p(K)
)
,

rkHF+
red,ev

(
S3

n(K)
) = rkHF+

red,odd

(
S3

p(K)
)
.



82 P. Ozsváth, Z. Szabó / Topology and its Applications 141 (2004) 59–85

In view of our hypotheses, thenHF+ (S3
p(K)) is non-trivial in both even and odd degrees.

f [20]

osi-

er
e the

em 1.2

above

s

are
ee,
red
On the other hand, results from [20] show that for a Seifert fibered space withb1(Y ) = 0,
HF+

red(Y ) is supported in either even or odd degrees (this is proved in Corollary 1.4 o
whenb1(Y ) = 0. �
Proof of Corollary 1.5. This is a direct consequence of Theorem 1.3 and Prop
tion 5.6. �

6. Knots with few crossings

We give here another application of the results of Proposition 2.6, showing that the Flo
homology groups of all but two of the knots with nine or fewer crossings behave lik
Floer homology of alternating knots. The two counterexamples to this are the(3,4)-torus
knot (which appears in the tables under the name 819) and a certain nine-crossing knot 942.
In fact, the knot Floer homologies of these two knots have been determined in Theor
of [16] and Proposition 6.6 of [18], respectively, where it is shown that:

ĤFK(819, i) ∼=




Z(0) if i = 3,

Z(−1) if i = 2,

Z(−4) if i = 0,

Z(−5) if i = −2,

Z(−6) if i = −3,

0 otherwise,

ĤFK(942, i) ∼=




Z(1) if i = 2,

Z2
(0) if i = 1,

Z2
(−1) ⊕ Z(0) if i = 0,

Z2
(−2) if i = −1,

Z(−3) if i = −2,

0 otherwise.

(Note that the standard knot tables do not distinguish a knot from its mirror. For the
statements, we have chosen the versions of the knots whose signature is negative.)

Theorem 6.1. Except for the knots819 and942, any other knotK admitting a projection
with nine or fewer crossings has the property that

ĤFK(K, i) ∼= Z
|ai |
(i+ σ

2 )
, (15)

where hereσ denotes the signature of the knotK, and theai are the coefficients of it
symmetrized Alexander polynomial.

Proof. Of course, for alternating knots, the theorem follows from [17]. Now, there
only nine non-alternating knots to considerhere according to standard knot tables, s
for example, [1]. One of these, the knot 946, which is the pretzel knotP(−3,3,3), will be
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Fig. 14.Decorated knot projections for small knots. We have illustrated here knots with nine or fewer cross
which do not admit alternating projections, except for 819 (the (3,4) torus knot), 942, and 946 (the pretzel knot
P (−3,3,3)).

handled separately. We illustrate distinguished edges for knot projections for the remaining
eight knots in Fig. 14 (but dropping orientations).

Now, of these eight, we consider 943 separately as well. For the remaining seven kn
it is straightforward to see that in each filtration level, all of the essential states have
same absolute grading. Indeed, calculating these absolute gradings, one can readily verif
that for these knots, the essential states with filtration leveli all have absolute gradin
i + σ/2. In view of Proposition 2.6, the theorem then follows for these seven knots.

For the case of 943, a direct analysis using the illustrated decorated knot projec
verifies Eq. (15) for alli < 0, and hence also for alli �= 0, in view of the symmetry o
ĤFK, Eq. (2). In the case wherei = 0, now, we claim that there are three generators,
in dimension−1, and two in dimension−2. In fact, a closer look at the states reveals t
the essential stateX in dimension−1 can be connected to an essential stateY in dimension
−2 by a homotopy classφ whose associated domain is an octagon (with multiplicity+1,
missing the reference pointz). Compare with the genus four Heegaard diagram ofS3

pictured in Fig. 16, where there are three generators forS3, A1,A2,B, with homotopy
classes connectingA1 respectivelyA2 to B represented by octagons. It now follows eas
that for a homotopy classφ whose domain is an octagon,

#
(
M(φ)/R

) = ±1.
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Fig. 15. A differential for 943. We have illustrated here two of the essential statesX and Y for the indicated
decorated knot projection (where the distinguishededge is the one containing the arrow). The stateX is
represented by the collection of dark circles, whileY is represented by the hollow circles. Moreover,X andY are
in dimensions−1 and−2, respectively, and it is easy to see that the domain of the homotopy class connecX

to Y is an octagon.

Fig. 16.Octagons. In this genus four Heegaard diagram forS3, there are three generators for̂CF(S3). Two of
them are indicated here—one by the unmarked solid circles (call itX), the other by the unmarked hollow circle
(call thatY ). It is easy to find an octagonal domainD(φ) with nz(φ) = 0 which connectsX to Y (and indeed
there is another octagonal domain connecting the other intersection pointX′ to Y ). This forces #M(φ)/R = ±1.

Hence, we have that the boundary operator in̂CFK(943,0) is non-trivial, and indeed
that the homology in filtration level 0 is given byZ(−2), completing the verification o
Eq. (15) for 943.

Finally, we turn to the pretzel knotP(−3,3,3). As in Section 5, we fit this into a skei
exact sequence

· · · → ĤFK
(
P(−3,3,3)

) F−→ ĤFK(U2)
G−→ ĤFK

(
P(−3,3,1)

) H−→ · · · ,
where hereU2 is the unlink with two components (this isT2,0 in the notation from
Section 5). By using the action of the homology class which links, it is easy to
thatĤFK(P(−3,3,3)) ∼= ĤFK(P(−3,3,1)). Note thatP(−3,3,1) = P(−1,−1,5) =
P(1,1,3), which alternates. �
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