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Abstract

In an earlier paper, we introduced a collection of graded Abelian grﬂ/JE?(Y, K) associated
to knots in a three-manifold. The aim of the present paper is to investigate these groups for several
specific families of knots, includg the Kinoshita—Terasaka kisoand their “Conway mutants”.
These results show th@ FK contains more information than the Alexander polynomial and the
signature of these knots; and yhalso illustrate the fact thall FK detects mutation. We also
calculate HFK for certain pretzel knots, and knots with small crossing numbeg @). Our
calculations give obstructions to certain Seifert fibered surgeries on the knots considered here.
0 2003 Elsevier B.V. All rights reserved.

1. Introduction

In [18], we defined an invariant for knot& c $3, which take the form of a graded
Abelian groupH/F7((K,i) for each integeri. The main results of [17] give explicit
descriptions of some of the input required for determiniH/g?\K in terms of the
combinatorics of a generic planar projection Kf As an application, it is shown that
HFK for an alternating knot is explicitly detmined by the Alexander polynomial and
the signature of the knot (compare also [21]). The aim of the present article is to apply
and extend techniques from [17] to determine certain knot homology groups of some more
complicated types of knots. Indeed, to underscore the relative strengﬁ over the
Alexander polynomial, we focus mainly on certain knots with trivial Alexander polynomial
(and hence vanishing signature).
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These calculations have the following consequences. Of course, they shanAlRats
stronger than the Alexander polynomial; but more interestingly, they also show that, unlike
many other knot invariantsITF?( is sensitive to Conway mutation. These computations
further underline an interesting relationship between the knot Floer homology and the
Seifert genug (K) of the knotK. Specifically, recall that in Theorem 5.1 of [18], we
proved an adjunction inequality, stating that if d@ﬁ((l() denotes the largest integér
for which ITﬁ((K, d) #£0, then

degH FK (K) < g(K). (1)

Indeed, we also conjectured, based on the analogy with Seiberg—Witten theory and a
theorem of Kronheimer and Mrowka [9], that

degH FK (K) = g(K)

for every knot in $3. Calculations from this paper cdme taken as further evidence
supporting this conjecture.

Finally, the calculations provide obsttians to realizing Seifert fibered spaces as
certain surgeries o8 along many of the knots studied here.

We emphasize that in general, calculatimg/i?? is not a purely combinatorial
matter. The generators of this complex can be described combinatorially, and indeed
in [17], we indentified them with Kauffman states (cf. [6]), but the differentials count
pseudo-holomorphic disks in a symmetric product. However, there are some additional
combinatorial aspects of this chain complgescribed below (see Section 2), including
a multi-filtration on the chain complex, which facilitate our calculations. As a further
illustration of these techniques, we alsoadhte the knot Floer homology groups for all
knots with at most nine crossings.

We now give a description of the knots we study and state the results of our calculations.

1.1. Kinoshita—Terasaka and Conway knots

In [8], Kinoshita and Terasaka construct a family of kn&tg, ,, indexed by integers
|r| # 1 andn, with trivial Alexander polynomial. These knots are obtained by modifying
a picture of the(r + 1, —r, r, —r — 1) (four-stranded) pretzel links, and introducing 2
twists. There are some redundancies in these knots. Whad0, 1, —1, —2} orn = 0, this
construction gives the unknot. Also, there is a symmetry identifi®g, = K7_,_1.,,
which can be realized by turning the knot inside out. Finally, the reflectida®f, is the
knot KT, _,. Now, recall that the knot Floer honagy groups transform in a controlled
manner under reflection: i.e., ¥ denotes the reflection &, then for eachi, d € Z,

— ———d —
HFKy(K,i)=HFK (K, —i)

(where here the left-hand side denotes knot Floer homology in dimedsiaile the
right-hand side denotes knot Flom-homology in dimensionr-d) and also

HFK (K, i) = HFKa—2:(K, i) @

(cf. Egs. (2) and (3), respectively, of [18]), so there is no loss of generality in assuming
r > 1 andn > 0. We have illustrated the case where 3 andn = 2 in Fig. 1. Itis possible
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Fig. 1. Kinoshita—Terasaka knot with= 3 and» = 2. When the circled crossing is changed, we obi&ifg 1,
while if it is resolved, we obtain & + 1, —r, r, —r — 1)-pretzel link. The Conway knot is obtained as a mutation
around the sphere indicated here with a large, dotted ellipse (indeed, it is the mutation inducedl fytet&h
about the axis perpendicular to the plane of the knojgation). The relevance of the indicated pointand y

will become apparent in Sections 3 and 4, respectively.

to eliminate one crossing from the diagram ;. ,, but the new diagram is somewhat
more cumbersome to draw.

We calculate the topmost non-trivial knot Floer homology groupkfdy. , in Section 3,
arriving at the following result:

Theorem 1.1. Consider the Kinoshita—Terasaka knktZ,. , with n > 0 andr > 1. This
knot hasH FK(K T, ,,s) =0forall s > r, and

HFK(KT:n,r) = Z?r) ® Z?r+1)’

where here(and indeed throughout this papethe subscript(r) indicates that the
corresponding summand is supported in dimension

Note that in [4], Gabai exhibits a Seifert surface fof;., with genusr, and proves
that it is genus-minimizing, using the theory of foliations. It is interesting to note that
Theorem 1.1, together with Inequality (1), gives an alternate proof that this Seifert surface
is genus-minimizing. Some new applications will be described later (cf. Section 1.4).
Theorem 1.1 is based on the results of [17], where we give combinatorial descriptions
of some of the data for calculatinﬁ. In fact, in Section 2 we explain how some of
this data can be simplified, and amplify it with a multi-filtration on the chain complex of
Kauffman states. Using these techniques, we obtain some additional calculations, as well.
Let C,, denote the Conway knot, which is obtained frém, by mutation. This knot
is obtained using the same constructiorkas, only using a four-stranded pretzel link of
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type(r+1, —r, —r — 1, r) instead of(r + 1, —r, r, —r — 1). Alternatively, it can be thought

of as obtained fronk, , by a mutation using the sphere pictured in Fig. 1, cf. [10]. These
knots also have trivial Alexander polynomial, and indeed, they satisfy the same symmetries
ask, ,. Note that these knots, too, admit a projection with one fewer crossing. In the case
wherer = 2 andn = 1, an eleven-crossing projection is pictured in Fig. 5. We prove the
following in Section 4:

Theorem 1.2. Let C,,, denote the Conway mutant &f7;.,, with » > 0 andr > 1. This
knot hasH FK(C,,,s)=0if s > 2r — 1, and

HFK(Crp,2r —1) = Lior 1) ® Ly

Itis easy to construct Seifert surfacgdor C, ,, with genug (F) = 2r — 1, compare [3],
see also Section 4. .

Since K7,, and C,, differ by a Conway mutation, and their grougsF K are
manifestly different, we see that, unlike the Alexander, Jones, HOMFLY, and Kauffman
polynomials, the invariantl FK is sensitive to mutation. It is interesting to compare this
with Khovanov's invariants, cf. [23,7].

1.2. Pretzel knots

The techniques described here also lend sgedaes quickly to a calculation for pretzel
knotsP(p, q,r), wherep, g, andr are odd integers. Whep, ¢, andr all have the same
sign, these knots are alternating, and hence their Floer homology has been determined
in [17]. Thus, by reflecting the knot if necessanyd relabeling, we are left with the case
whereq <0 andp, r > 0.

Theorem 1.3. Consider the knoK = P(p,q,r) wherep =2a + 1, g = —(2b + 1),
r=2c+1,witha, b,c > 0. Then, ifb > min(a, ¢), we have that

TP __ rpab+bc+b—ac
HFK(K,l)—Z(l) .

If b < min(a, ¢), we have that

T o __ mpb(b+1) (b—a)(b—c)
HFK(K.1)=Z;y) —~ ®Zy, .

This family contains infinitely many knots with trivial Alexander polynomial: the
Alexander polynomial is trivial precisely whew + gr + pr+1=0 (e.g., let(p.q,r) =
(—=3,5,7)). It follows at once from the above theorem that for all non-trivial pretzel knots
in the above familyH FK is also non-trivial.

1.3. Knots with few crossings

Although the techniques from Section 2 are not sufficient to calcHa in general,
they can be employed successfully in the study of relatively small knots, as measured by

the number of double-points. In fact, in Section 6 we calculaex for all knots with
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nine or fewer crossings, except for two particular knots whdgeK has been calculated

in [18] and [16] (the knot § and §g—the (3, 4) torus knot). The Floer homology of

the remaining non-alternating knots (with less than ten crossings) behaves like the Floer
homology of alternating knots, cf. Theorem 6.1 below.

1.4. Surgeries on knots

In another direction, the calculations of this paper can be used to give information
on three-manifolds obtained as integral surgeries on knots, following results of [19] (see

also [20]). To explain, recall that tHlermal sum of Euler characteristics & FK gives
the symmetrized Alexander polynomidl (7'):

S x(HFK(K.i) - T' = Ax(T) A3)

1

(cf. Section 10 of [18]). It is an immediate corollary of this that
degAx < degH FK (K). 4)

Itis a result of [19] (see especially Corollary 1.5 of [19]) thakKifis a knot for which
degH FK (K) > 1 and Inequality (4) is strict, theki does not admit certain Seifert fibered
surgeries. Specifically, we have the following:

Corollary 1.4. For any integerg # 0, 1/q surgery onS® alongK T, or C,,.» (Withn > 0
andr > 1) is never Seifert fibered space.

For the case of pretzel knoB(p, ¢, r) with p, ¢, andr all odd, Corollary 1.5 of [19]
no longer applies, since dég/ﬁ((K) = 1. And indeed, there are cases of such pretzel
knots with Seifert fibered surgeries. However, a careful look at the proof of that corollary,
and a closer look afl FK gives the following corollary(cf. Proposition 5.6). Note that
this corollary covers all non-trivial three-stranded pretzel knots with trivial Alexander
polynomial (compare with [5,11]):

Corollary 1.5. Let P(p, g, r) be a non-trivial pretzel knot wittp, ¢, andr odd. When
p =r>0andqg < —1with |¢g| <min(p — 2, r), no integral surgery alond(p,q,r) is a
Seifert fibered space.

Further remarks. Additional calculations of knot Floer homology groups can be found
in [22] and [2]. The authors wish to thank Eaman Eftekhary, Cameron Gordon, Mikhail
Khovanov, Rob Kirby, Paul Melvin, and Jacob Rasmussen for interesting conversations.

2. Calculational tools

Let K c S3 be a knot. In [18], we introduced the knot Floer complek K (K) =
P, CFK(K,s) which is associated to a Heegaard diagram for a knot, and whose
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homology groups are knot invariants, see also [22]. In [17], we gave a description of the
generators of the chain complﬁ in terms of combinatorics of a generic projection for

a knot (together with some extra data). We retted constructions in Section 2.1, and show

that in some cases, the number of generators can be cut down, to make the calculations
simpler. In Section 2.2, we give a combinatorial description of the domain of a homotopy
classg € m2(x, y) connecting a pair of states. Here, the condition Bat) > 0 from [14]

(a necessary condition fgrto appear with non-zero mulfipity in the expression fofx)

is formulated in terms of a multi-filtration on the set of states.

In Section 2.3, we recall the correspondenetneen states and maximal subtrees (see
also [6]), which removes much of the redundancy which is inherent in the description of a
state.

In Section 2.4, we turn to certain properties of the “skein exact sequence” from [18].

2.1. Simplifying Heegaard diagrams

Choose an orientation fa€ and a generic projection & to the plane. The projection
gives a planar graplt where the vertices of; correspond to the double-points of the
projection ofK, and the edges inherit an orientation fré&m Choose a distinguished edge
¢o for this planar graph. We call a projection with this additional datieeorated knot
projection

There are four distinct quadrants (boundgclbdges) emanating from each vertex, each
of which is a corner of the closure of some regionséf— G. We distinguish the two of
these regions which contain the distinguished edge on their boundary, denotind\them
andB.

Definition 2.1. A state(cf. [6]) is an assignment which associates to each vertéx ofie
of the four in-coming quadrants, so that:

e the quadrants associated to distinattioes are subsets of distinct regionssth— G,
e none of the quadrants associated to vertices is a corner of the distinguished Aegions
or B.

It is easy to see that a state sets up a one-to-one correspondence between vegtices of
and the regions a$2 — G — A — B.

Definition 2.2. Thefiltration levelof a state is the integer obtained by adding up the local
contributions at each quadrant, which areéedmined by the crossing types of the knots,

as indicated in Fig. 2. Thabsolute gradingf a state is determined by adding up another
local contribution, pictured in Fig. 3.

We have the following result from [17]:

Theorem 2.3. Fix a generic knot projection for a knat c $3. There is a one-to-one
correspondence with generators 6fF K (K, i) and statest whose associated filtration
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Fig. 2. Local filtration level contributionsWe have illustrated the local contributions for the filtration level of a
state for both kinds of crossings.

Fig. 3.Local grading contributionsWe have illustrated the local contribution for the absolute grading associated
for a state.

level isi. Under this correspondence, the absolute grading of a state in the above sense

coincides with the absolute degree of the corresponding generam(K, i).

Definition 2.4. Fix a decorated knot projection. Aessential intervais a sequence of
consecutive edges with the following properties:

o the distinguished edge) appears in the sequence, so we can write

where here, m > 0, andg; ;1 is the successor af foralli =—¢,...,m — 1,
e the immersed arcs

m -1
E+:U€i and E_ = U &

i=1 i=—{

are pairwise disjoint,
e as we traverse the aft; according to the orientation &, i.e., starting at the vertex
goNe1, and then passing through, .. ., ¢, in order, all of the crossings we encounter

for the first time have the same type (i.e., they are all either over- or under-crossings);

similarly, as we traverse the aft_ backwards, i.e., starting a§Ne_1, and proceeding

through tille_g, all the crossings we encounter the first time have the same type (which

might be different from the crossing type encountered alBnjy

Definition 2.5. Fix a decorated knot projection, and also an essential intetval
\U/L_, . Each edges; inherits an orientation fronk, and we write its endpoints as
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de; = vi+1 — v;, SO that{v_g, ..., v,+1} are the vertices in the order they appear along
E. An E-essential state is a statewith the following properties:

e fori=1,...,m,if v; ¢ {v1,v2,...,v;_1}, then the corner containing(v;) contains
the edges; on its boundary;

o fori=—¢+1,...,0,if v; ¢ {vo,v_1,...,v;41}, then the corner containing(v;)
contains the edge _1 on its boundary.

Proposition 2.6. Fix a knot projectionG for a knotk c $2, and letE be an essential arc.
Then, there is a system of generatorsdar K consisting of onlyE-essential state@n the
sense of DefinitioR.5), with gradings and filtration levels as given in Theor2ra

Proof. Recall that the Heegaard surface domsted in [17] is obtained as a boundary
regular neighborhood of the knptojection. For each vertax we have g-curve denoted
By, and at the distinguishedh, we choose a meridian for the knot which is supported
nearsg. Then, on either side of that meridian in the Heegaard surface, we choose a pair of
basepoints andz for the definition ofﬁ’?(l().

Suppose for simplicity that all the; are distinct (i.e., thaE_ U E, is an embedded
arc inG). To simplify the Heegaard diagram as above, we move the two basepoints further
away from the meridian, so that we can handleslidegrmirves belonging t@1 andug
acrossu, to get new curveg; and ;. We continue handlesliding in this manneﬁm1
acrosss,, andg,_, acrosss, 1 —until we have a new sequencemicurvesﬁvo,... -
which now meet always at most twe-curves (rather than four). The hypothesis on the
crossing types was used to ensure that the reference points could always be moved out of
the handlesliding region (without crossing any of the attaching circles). This procedure is
illustrated in Fig. 4. It is not difficult to modify the above procedure witenand £+ have
self-intersections. O

Of course, the notion of essential arc, and the above proposition depends on the choice
of essential interval. However, for some decorated knot projections, there is always a
unique maximal essential interval. Indeed, this is the case for all the projections we
consider in this paper, and hence, with this understood, we call a state an essential state
ifitis E-essential for this maximal essential interyal

2.2. The combinatorics of domains, and the multi-filtration

Of course, the calculation ofﬁ?((l() requires an explicit understanding of the
differential in the compleﬁ?(l(), which in turn involves a pseudo-holomorphic curve
count. More precisely, given a pair of statesand y (whose filtration level coincides,
and whose absolute gradings differ by one), lettingndy denote the corresponding
generators oC/F\K(K), there is a uniqgue homotopy class of Whitney disk m2(x, y)
with n,(¢) =n,(¢) = 0. They component obx is the signed count of pointsM (¢)/R
in the moduli space of pseudo-holomorphic representativés(afodulo translation). At
present, this count does not have a direct combinatorial description. However, there are
combinatorial conditions om andy which ensure that it vanishes.
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o

o

Fig. 4. Diagram simplification We have illustrated the proof of Proposition 2.6. At the top, we have illustrated
the part of the Heegaard diagram coming from [17] (near where we have two under-crossings followed by one
over-crossing), choosing our reference point betweerutider- and the over-crossing. We have dropped all the
subscripts to the:-curve, but we remind the reader that there is one region in each of the compact components
of RZ2— G (the non-compact region here is denotedd)y At the bottom, we have illustrated the corresponding
“simplification”.

Let G be a graph for the knot projection &f with N edges. We order the edg{es}f\':‘ol
of G, so thatgg is the marked edge, and the others appear in the order in which they are
encountered by moving alori (with its specified orientation). Let denote the vertex at
the intersection of; with ;11 (note that each vertex i& appears as; for two different
values ofi, once as an overcrossing, and once as an undercrossing). We can associate to
each state a multi-filtration-level

M, € Hom({ei}f"z‘ol, Z&17Z),

as follows:

M, (&i)
(0,0 if i =0,
M, (g;—1) + (0,1) if v; is an overcrossing and(v;) is to the right ofs; U g;_1,
={ M,(ei—1) — (0,1) if v; is an overcrossing andv;) is to the left ofs; U g;_1,
M, (gi—1) + (1,0) if v; is an undercrossing andv;) is to the left ofs; U g;_1,
M, (g;—1) — (1,0) if v; is an undercrossing andv;) is to the right ofs; U g;_1.
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Fig. 5. A domain Let x denote the state indicated by the dark circles ardenote the state indicated by the
hollow ones, in the Conway knot as pictured above. Th%a(er — M,) is represented as above: specifically,

near each edge, we have written%(Mx — My)(e), unless the latter quantity vanishes. Since sometimes this is
negative, it follows thak # y, and hence, although it is easy to see thatdeg- dedgy) + 1, y does not appear
in the expansion fob.x.

Definition 2.7. Fix a decorated knot projection. We define a partial ordering on the set
of states, as follows: it and y are two different states, then> y if for all edgese,
M, (e) — M, (¢) is a pair of non-negative integers.

An example of two states andy for whichx # y andy # x is illustrated in Fig. 5.

Proposition 2.8. Suppose that and y represent the same filtration level, and indeed
suppose thap appears indx with non-zero multiplicity, them > y.

Proof. Let (X, &, B) denote the Heegaard diagram frused for Theorem 2.3. Consider

an edges; in the knot projection which does not meet the one of the two distinguished
regions in the knot diagram. This edge, then, gives rise to a cylinder in the Heegaard
diagram, which is divided into two squares by thercs. We place one reference point

t; in the “top” part of the diagram, and another dnen the “bottom” part. It is easy to see
(after a straightforward case-by-case analysis(of) andy(v;)) that if ¢ € m2(X, y) is the
homotopy class with, (¢) = ny, (¢) =0, then

1
E(Mx (e1) — My(e0)) = (n1; (@), i, ().

The result now follows from the basic fact that #§ has a pseudo-holomorphic
representative (for suitably small perturbations of the holomorphic condition), then all
these multiplicities must be non-negative (cf. Lemma 3.2 of [14]).

Note that this argument also applies when the Heegaard diagram is “simplified” as in
Proposition 2.6, only in that case, one uses thétirfiltration only over those edges which
are not in the essential interval.

2.3. Trees

States admit a rather economical description in graph-theoretic terms (see also [6]). The
regions in the complement of the planar gatjon can be colored black and white in a
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chessboard pattern, by the rule that any two regions which share an edge have opposite
color. There is then an associated “black graph”, whose vertices correspond to the regions
colored black, and whose edges correspond to verticés iwhich connect the opposite
black regions. We |eA (respectivel\B) denote the black (respectively white) region whose
boundary contains the distinguished edge

In these terms, states are in one-to-one correspondence with the maximal subtrees of
the black graph. Given a state we associate to it the union of vertices@f thought of
now as edges in the black graph, to whiclassociates a black quadrant. This gives the
maximal black subtree associated to the state

Conversely, given a black subtr&e we can orient the edges so that the “root” is the
distinguished black regioA, and all edges point away from this root. We construct the
black part of the corresponding vertex assignment, as follows: beta vertex otz which
corresponds to some edge®fWith respect to the induced orientation Binthis oriented
edge ofT" points to a uniquely determined endpoirg 7', which in turn corresponds to one
of the two black quadrants (i% — G) which meet ab. We letx (v), then, be the quadrant
corresponding te. To determine the rest of the vertex assignment, we first consider the
dual white graptf'*, obtained from the white graph by deleting all the edges corresponding
to the vertices appearing in the black subtfeéNote that7* is actually a tree, and repeat
the above procedure, now for the white quadrants.

Clearly, one can reformulate the results of Theorem 2.3 in terms of these graphs. Each
edge of both the black and white graphs inherits a label among the nufppidei® +1}: an
edge in the white (respectively black) graph is labelled with 0 if the two white (respectively
black) quadrants meeting at the corresponding vertex both are have grading contribution O
(cf. Fig. 3), and it is labelled with-1 if one of the two white (respectively black) graph is
labelled with+1. We call edges labelled withr@eutraledges, and view them as unoriented,
while the non-neutral ones are oriented (so as to point away from the vertex corresponding
to the quadrant labelled with 0 in Fig. 3).

Given a black tred’, let T* be its dual white tree, and orient both as before (so that
the edges of" andT* point away fromA andB, respectively). Then, twice the filtration
level corresponding t@ is obtained as follows. We sum over all edgdsa T the label of
the edger in G times+1 if its orientation as an edge of the black graph agrees with the
induced orientation coming froffi, and—1 if the orientations disagree (note here that this
last sign is irrelevant for neutral edges); and then add to that the corresponding sum for all
edges of the dual white gragh.

Similarly, the grading level correspondingTois obtained by summing over all edges
e in T the label of the edge in G, provided that its orientation agrees with the induced
orientation coming fronT (and zero otherwise), and once again adding the corresponding
sum for7*.

2.4. Exact sequences

In a different direction, we derived irlLB] a “skein exact sequence”, which we recall
here.

Suppose thak is an oriented knot irY, and we have a disk which meetsK in two
algebraically cancelling points. If we perforil surgery ory = 0 D, we obtain a new knot
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K_ in $3, which is obtained fronk by introducing a full twist in a tubular neighborhood
alongy . Performing+1 surgery ory gives us another knd ;. with a full twist introduced
in the other direction. There is a third linkg which is obtained by resolving the knot (so
as to missD entirely). Recall [18] that the link invariant in this case is, by definition, the
knot invariant for the knot ir§? x $2 obtained by performing a zero-surgery along

In [18], we established skein exact sequences for each integer

. > HFR(K, i) L5 HFR (Ko, i) 2> HFR (K4, i) L ...
and
e — . 81 T . 82 == . 83
o> HFR(K_, i) 55 HFK (Ko, i) > HFR(K, i) =55 ...,

where the mapg; andg; are induced by two-handle additions.
It will be useful to us to have the following compatibility result abgptand f7:

Lemma 2.9. For the above two exact sequences, the composite
g20 fi:HFK(K,i)— HFK(K,i)

is trivial.

Proof. The mapf1 is induced by cobordism formed by zero-surgeryygrwhile gz is
induced by the cobordism formed by zero-surgery on another udkmbich linksy once

(and does not link the kndt). As in [15], we obtain the same map if we switch the order

in which we perform the two two-handle additions: first we perform zero-surge; on

and then zero-surgery gn(see Fig. 6). However, in this latter ordering, we factor through
the three-manifold” # (52 x $1) (and the knot is contained entirely in tilesummand. It

is easy to adapt the Kinneth principle for connected sums in this context (see especially
Proposition 6.1 of [13]) to see that

HFK (Y #(5?x SY),K,i) S HFK(Y, K, i) ® H(S? x §%). (5)

Of course H1(S2 x §1) = Z @ Z, but our reason for writing the answer in this form is that
we have now an action g6] € H1(S2 x SY) on HFK (Y # (52 x SY), ) (induced from
the corresponding action QH?(Y # (52 x $1))). The above isomorphism is compatible
with this action of{8] (where[§] € H1(S? x S1) acts on the right-hand side through its
natural action onH1(S? x §1), cf. Section 4.2.5 of [14]). Nows1 maps to the kernel

S

Fig. 6. Composite mapWe have pictured here two strandsiof Performing zero-surgery op realizes the map
f1, while zero-surgery o8 realizesg,.
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of the [§]-action, since the curve representihigs null-homologous in the four-manifold
obtained by attaching a two-handle alahni® Y — K'; while g» is trivial on the image of the
[8]-action because, once agais null-homologous in the corresponding four-manifold
(compare [15]). But in the description of thié&]-action from Eq. (5), it is clear that the
image of[§] coincides with the kernel d&], completing the proof. O

3. Calculationsfor the Kinoshita—Ter asaka knots

Consider the Kinoshita—Terasaka knd9;., with n # 0. All the knotsK 7. ,, have
trivial Alexander polynomial, but the knots themselves are non-trivial whenl and
n # 0. Indeed, Gabai exhibits a Seifert surface K0T, ,, of genusr and proves (cf. [4])
that this Seifert surface has minimal genus.

We shall focus first on the case where= 1. We distinguish the edge connecting the
base of the-r — 1 andr + 1 strands opposite to where the=£ 1) twisting takes place—
this is indicated by the point pictured in Fig. 1. We have illustrated the “black graph” of
KT, 1,in Fig. 7. For the black graph, there are two edges, labeted £, and four chains
{a )12 (biYi_y, {eiY_y and{d; )/ 1] The edges, f, b;, andd; are labeled witht-1, while

1

€

)
dZ
4 d
3
a d

Fig. 7. Black graph for the Kinoshita—Terasaka knd@he following edges are labeled withl: e, f {b;}_;,

{d; };;rll the following are labeled with-1: {a; };;rll {ci}/_,- The distinguished black vertex is circled. The white
regions correspond to the complement of this grapji‘lzimnd the distinguished white region is the non-compact
one (i.e., the one bounded by the chainaf}, {d;}, ande). Note that all the edges in the dual white graph are
neutral (since none of the edges in the black graph are).
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Fig. 8.Generators forK,, , withn =1, r = 2.

those of types; andc; are labeled with-1. The distinguished black region corresponds to
the vertexwhere, 1, b, ¢, andd, 1 meet. The vertices of the white graph are, of course,
the regions in the complement of this planar graph. The region bounded by the chain of
andc; and the edgg corresponds to the distinguished white region. In fact, since none of
the black edges is neutral, all of the white ones are.

We calculate[ﬂ?\K(KTr,n,r) in the case where = 1 using Theorem 2.3, together
with the multi-filtration (Proposition 2.8). The case wherés arbitrary will follow from
properties of the skein exact sequence cf. Lemma 2.9 (though one could alternately give a
more direct argument using the multi-filtrations).

Proof of Theorem 1.1 when n =1. It is easy to see that there are two trégsnd C

which represent filtration levelr: the treeB does not contaia, 11, f, ¢, Ord,+1, wWhile

the treeC does not contain, 11, e, b,, ord,+1. These trees are illustrated in Fig. 8.
Moreover, the grading aB is given by 1— r, while the grading o€ is given by—r. It

is straightforward to verify thaB # C for the multifiltration (see Fig. 9 for an illustration)

and hence, according to Proposition 218 0. These calculations show that

o - 0 ifS<—r,
HFK(KT1,5) = {Z(_r) ®Za—y fs=-—r.

Note that this is equivalent to the statement of the theorem (withl), in view of the
symmetry of the knot Floer homology groups (cf. Eq. (2)).

Calculation for an (r + 1, —r, r, —r — 1) pretzel link. Note that there is a skein exact
sequences of the form

—— fll — fn —
oo> HFK(KTyp_1,i) —> HFK(X(r),i) —> HFK(KTyp,i) — -, (6)

where X (r) is an orientedr + 1, —r, r, —r — 1) pretzel link which is independent af
(Strictly speaking, the notation fofy’ and £’ ought to include the level but we suppress
this for readibility.) The mapg7' and f;' both decrease absolute grading %1yln fact,
according to Lemma 2.9,

3o fitt=0. ©

Moreover,K T, g is the unknot. Specializing to the case wheter, andn = 1 it follows
at once that
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0-1) 0.-1)

Fig. 9. Comparison of generatorB/an\d C. We have labeled some of the multiplicities for the multi-filtration
comparing these two generators 8% K (KT, —r), whenn = 1 andr = 2. Here,B is denoted by the black

dot, andC by the hollow one. The arrow appears on the distinguished edge of the knot projection (at the vertex
denoted by in Fig. 1).

HFR(X(), 1) 27, 3 &7Z, 3, ®)
and the magy; is an isomorphism.

Proof of Theorem 1.1 for arbitrary n. To establish the theorem for all> 1 we prove
inductively both the theorem, and also the statement that thefhapinjective. The basic
case was established above. For the inductive stepif is not injective, thenf”+l
would have to be non-trivial, but this contradicts the injectivityfgf (which holds by the
inductive hypothesis), together with Lemma 2.9, in the form of Eq. (7).

3.1. Additional remarks

Consider the case &, with n = 1. By moving the marked edge, we obtain various
chain complexes representimﬁ (K1). Typically, subtrees which represent filtration
level r vary as we move the marked edge. However, since the white graph consists of
neutral edges only, if we choose our marked edge so that the distinguished black region
X remains unchanged—there are four possible choices—then the maps from maximal
subtrees to filtration levels and degrees are unchanged. However, the map from maximal
subtrees to states, of course, varies, andeniimterestingly, the induced partial ordering
on subtrees can change, too. For example, if we mark the edgeopposite to the edge
containingx (cf. Fig. 1), then it is easy to see that the two generaBoesxdC described
in the proof of Theorem 1.1 are still the two representatives for filtration levahd their
dimensions are + 1 andr. However, with this choice of marked edge, it is now the case
thatB > C.
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4. Calculationsfor the Conway knots

We consider the Conway mutar@s,, of the Kinoshita—Terasaka knots. The calculation
of H/ﬁ((cm, 2r — 1) proceeds similarly to the calculations from Section 3. Note that the
knot C2.1 can be given the eleven-crossing preseaepictured in Fig. 5. In this case, if
we place the reference point where the arrewndicated, and use the simplification of the
Heegaard diagram described in Section 2, then it is straightforward to see that in filtration
level 3 there are only two inessential states, the two stagasd y pictured in the figure,
and they have absolute grading 4 and 3, respectively. Howéves, 0, sincex # y, as
illustrated in the figure, verifying Theorem 1.2 foe=2,n = 1.

As before, we begin by restricting to the case where 1. Rather than drawing the
black graph in this case, we indicate the necessary modifications to Fig. 7. (Note that it is
not hard to find projections with fewer essential states than the ones we describe—indeed,
in the desired filtration level, we can arrange for there to be only two essential states, as in
the case with- = 2 considered above. However the gliams we describe presently have
the advantage that they are easierdésatibe in words.) The black graph©f,, looks just
like that for K7, ,, except that now there are+ 1 edges of type;, and onlyr edges
of type d;. Moreover, the edges labeled withl aree, f, {b;}/_, and{c;}/11, and the
edges labeled with-1 are{ai}{ill and {dl-}fill. In particular all edges in the dual white
graph remain neutral. We choose our marked edge to contain theypwirfig. 1 (after
mutating). Correspondingly, now, the distinguished black edge at the vertex bebween
andby, and the distinguished white region is bounded by the chidn$_,, {c,-}lf;“ll and
the edgef.

Lemma 4.1. For the diagram ofC, 1 described here withr > 2, there are8 Kauffman
states representing filtration lev@l — 1. Of these3 are in dimension + 2, which we
denoteCE, CFy, CF>, andC F3, and 3 are in dimensionr + 1, which we denotdd E,
DF1 DF,, and D F3. (Note that these states are explicitly identified in the proof below,
which also explains their notation. See also Hif.)In the case where = 2, we have only

6 essential stateghe two state€” F1 and D F; are missing from this diagram.

Fig. 10.Generators forC,, , withn =1, r = 3.
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Proof. Notice thatthere are a total of 4 4 edges in the black graph, and in fact a maximal
spanning tree must contain exactlyddges. It is clear that a maximal tree which contains
neithere nor f has filtration level at most.

Thus, all maximal subtrees with filtration levet 2 1 contain eithee or f. Now, if T
is a maximal subtree which contains onefbr F, then clearly, it must contain at least
one of the chaingd = {a;}, B = {b;}, C ={c;} or D = {d;}. Indeed, it cannot contain more
than one. Accordingly, we say that a tree is of typE if it contains the chaim and the
vertexe. We analyze the eight cases separately.

Trees of typeAE which represent filtration levelr2— 1, we claim, cannot contain
the edgeb;. But a tree which containd, and does not contaih; corresponds to an
inessential vertex assignmenand indeed, in the case where> 2, such trees never
represent filtration level:2— 1. The same remarks rule out trees of typg, and similar
remarks rule out trees of typ®E, andBF.

It is easy to see that there is only one tree of tgj#e which represents filtration level
2r — 1, and it is the one which does not contain f, b2, andd,. Similarly, there is only
one tree of typeD E, and it does not contaim, f, b2, andc, 1.

Assume for the moment that> 2. There are three trees of tygeF representing
filtration level 2 — 1: one which does not contai) a1, b3, andd,, which we denote
C F1, one which does not contain a1, b2, anddz, which we denot& F», and one which
does not contain, az, b2, andd,. Similarly, there are three trees of typeF representing
filtration level 22 — 1, which we denote{DFi}f:l, where DF; is gotten fromCF; by
deletinge andc¢,+1 and addingf andd,. The case where = 2 works similarly, except
that the state€ F; and D F1 do not exist. O

Lemma 4.2. Consider the essential generators listed in Lemibfor C, 1 with r > 2.
These have the following ordering properties for the multi-filtration

CF,>CF>,>CE > CF3, ©)
DF1> DF> > DE > DF3,

and
CF3 # DE, CE # DF,, CFy # DF>. (20)

Moreover, fixing fixi # 2, and letting¢ € n2(CF;, DF;) be the homotopy class with
ny(¢) =0, we have that

M@\
#<T> =1 (11)

The same holds for the corresponding homotopy class (€ E, DE). Whenr = 2, the
same remarks hold, excluding statég; and D F1.

Proof. Verifying the order properties is straightforward. Some of the work in verifying
relation (10) is shortened, given relation (9), and the observation that the difference in the
multi-filtering betweenC F; and DF; for i # 2 is supported in a single edge; a similar
remark holds foiIC E and DE. For the statement about homotopy classes, observe that all
of these homotopy classes are represented by quadrilaterals, and Wdiigg/®R can be
calculated by one-variable complex analysis (compare Section 3 of [13]).
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Proof of Theorem 1.2. Again, we start with the case whete= 1. We use the complex
described in Lemma 4.1.

According to Lemma 4.2 (cf. relations (9)) together with the basic property of the
multi-filtration (Proposition 2.8 the chain complex admits a subcomplex generated by
CF3 and DF3. Indeed, the homology of this complex is trivial, in view of Eq. (11).
Thus,I—Tﬁ((Cr,l, 2r — 1) is calculated as the homology of the induced quotient complex.
Another application of this principlallows us to cancel also the generat6r8 andDE.

The leftover complex, generated I6yF1, C F2, DF1, and D F>, now admits a quotient
complex which is generated lyF; and D F; and hence, according to Eq. (11), has trivial
homology. (Note that this step is skipped whes 2.)

Thus,H/F?(Cr,l, 2r — 1) is calculated by the homology of the remaining complex

generated by F»> and D F». SinceC F»> # DF», it follows that the homology is

Zor—1) ® Z2r,

verifying the calculation ofﬂ(cm, 2r — 1) whenn =1.

Note that for the pictured knot projection, are two states representing filtration level
2r + 1 (and none representing higher filtration levels). However, these two states are
quickly seen to cancel (they, too, are connected by a quadrilateral).

To go fromn = 1 to arbitraryn, observe tha€, o is an unknot. Thus, we have a skein
exact sequence relating the various Conway knots, corresponding to Eq. (12):

o> HFK (Crp1, i) S HFRY (. i) 2 HFK(Cpp,i)— -+, (12)

for any integeti, where nowY (r) is an orientedr + 1, —r, —r — 1, r) pretzel link, rather
than the pretzel linkr 4+ 1, —r, r, —r — 1) belonging to the Kinoshita—Terasaka knots
considered earlier. (Of coursg(r) is a mutant ofX (r), and both have trivial Alexander
polynomial.)

Fig. 11.A Seifert surfaceWe have illustrated here a genus-2 2 Seifert surface for thé + 1, —r, —r — 1, r)
pretzel link, wherr = 2. A Seifert surface for the Conway knot is alited as a Murasugi sum with the cylinder
(with = full twists) at the indicated (dashed) rectangle.
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With these remarks in place, the inductiondise verify the theorem runs exactly as it
did in the case oK 7, ,. As a consequence, we also obtain the following formuldfo:

HFK(Y(r).2r —=1)=Zp, 3 ®Zgp 1) O
4.1. A Seifert surface

Note that the Conway knof,, has a genus2— 1 Seifert surface, obtained by a
straightforward modification of the picture for the case whete2,n = 1 described in [3].

We describe first the Seifert surface for et 1, —r, —r — 1, r) pretzel link. We “pull
down” the overcrossing which connects the first two tassles and the undercrossing which
connects the second two. And then, we consider the black regions for the knot projection.
Those in turn we label with signs, with the rule that no two regions which meet at a vertex
have the same sign. The Seifert surface for this pretzel link is obtained by connecting these
black regions by hé&ltwists at each vertex. It is easy to see that the surfacbtained in
this manner is orientable, and hasF) = 4 — 4r. We have illustrated this data in Fig. 11
for the case where= 2.

We can plumb this with a cylinder with full twists in it (i.e., forming a Murasugi sum),
to obtain a Seifert surface for the Conway knot whose genusis?

5. Calculationsfor the pretzel knots

In this section, we consider the family of pretzel knéts, g, r), wherep, ¢ andr are
odd. We follow the usual conventions from knot theory here (cf. [10]) for the direction of
the twisting (which, unfortunately, seems to be opposite from the convention used in [12]),
compare Fig. 12.

There are some relations amongst the pretzel knots. For example, it is easy to see that
P(p,q,r)=P(q,r, p), and thatP(—1, 1, r) is the unknot, for any.

o
L8

Fig. 12.The pretzel knoP (5, —3, 7). This knot has trivialAlexander polynomial.

OO
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Recall that
1
Appg.n(T) = Z((pq +qr+pr)(T -2+ T_l) +(T+2+ T_l));

thus, there are infinitely many examples with trivial Alexander polynomial. When,
andr are all positive, then the signature Bfp, ¢, r) is given by
G(P(p, q, r)) =2

Whenm is an even integef, ,, denote the torus link, oriented so that the two strands—
which we can think of as supported inside a solid torus—are oriented so that the algebraic
intersection off» ,, with a disk transverse to the solid torus is zero. In this case,

ATZ.m = %(T_l/z - Tl/2)'

Moreover, the signature db ,, is +1, depending on the sign of:
o (T2,m) = sgnim).

Clearly, if we resolve one of the intersection points corresponding to the first strand in
P(p,q,r), we obtain the torus lin> ;.. Thus, the skein long exact sequence of [18] in
this case gives

o> HFK(P(p,q,7)) —> HFK (Ta.q1,) —> HFK(P(p—2,4,7)) —> -,

(13)
where hereF andG preserve filtration levels, and both drop absolute gradiné.b?he
mapH also preserves filtration level, and itgserves the parity of absolute grading.

When p, ¢, andr all have the same sign, then the usual projectio?¢p, g, r) is
alternating. In this case, the knot Floer homology is determined by [17]. Specifically,

in [17], it is shown that ifL is a non-split, oriented, alteating link with signature
o =o(L), and Alexander—Conway polynomidl; (T), then if we write

(172 - TY2)" ATy = a0+ Y ay(T* +T7),

s>0

then

HFK(L,s)= Z'@%). (14)

Thus, by reflecting? (p, g, r) knot if necessary, we are left with the case where 0
andp, r > 0. Note that whem: # 0, T2 ,,, is a non-split, alternating link.
Proposition 5.1. Consider the pretzel knoK = P(2a + 1, —(2b + 1), 2c + 1) with
a,b,c>0. Then, ifb > min(a, c¢), we have that

TP __ rpab+bc+b—ac
HFK(K.1) =7 .

Proof. For fixedb > 0, we prove the result by induction on battandc.
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Consider the base case where: ¢ = 0. Using the skein exact sequence in the form of
Eqg. (13) withp = r = 1, and the relation thaP(—1, ¢, 1) is the unknot, we see at once
that

HFK(P(L—(2b+1),1), ) ZHFK 1 (T2-2).

Moreover, sincd» _y;, is alternating, Theorem 1.4 of [17] applies, and hence, in this case
Eqg. (14) specializes to give

HFK(To_2,1) ;Z‘(’l).
2

For the inductive step om, suppose we know the result fé2a +1, —2b — 1, 2c + 1),
and suppose th#&t> a + 1 andb > c. The condition thab > ¢ ensures thal> _sp—¢)+1
still has signature—1, and henceﬁ{(ng_z(h_cHl, 1) is supported in dimension
1/2; by the inductive hypothesiW(P(Za +1,-2b—1,2c + 1),1) is supported in
dimension 1. Thus, the skein exact sequence foEETK(P(Za +3,-2b—1,2c+1),1)
to be supported in dimension one. The inductive step works analogously. O

We now turn to the case whebe< min(a, c).

Lemma 5.2. Let K be the pretzel knok = P(2a + 1, —2b — 1,2¢ + 1) with a,b,c >0
andb < min(a, ¢). Then,

tk HFK <1(K. 1) <b(b+1).

Proof. This is proven by induction om and ¢, starting with the basic case where
min(a,c) = b. Suppose for concreteness thiat= c. Then, it is easy to see that
rkﬁF\K(P(Za +1,-2b—1,2b+1),1) is independent od: the middle term in the skein
exact sequence (Eq. (13)) vanishes: it correspon@ of the two-component unlink,
whose knot Floer homology is supported in filtration level zero. Thus, it can be calculated
in the case where < b, so Proposition 5.1 applies, proving th‘?ﬁ((K, 1) is supported
entirely in dimension one, where its rank is precidely + 1).

For the inductive step, suppose we are increasiby one, and apply Eq. (13). Now,
the middle ternl» »—) has signature-1, and hencéﬂ(Tg,z(c_h), 1) is supported in
dimension 32. In particular, the map

H:HFK<1(P(a+1,—2b—1,2c+1),1)
— HFK<1(P(2a+3,-2b— 1,2c + 1),1)
is surjective, providing the inductive step for increasingincreasinge follows simi-

larly. O

To proceed, we use a decorated knot projectionH@a + 1, —2b — 1, 2¢ + 1), and
consider the multi-filtration on states from Section 2.

Specifically, choose a knot projection fB(2a + 1, —2b — 1, 2c + 1) whose correspond-
ing black graph consists of two vertices withgtee three, connected by three linear strands
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2a+1 —2b-1 2c+1

Q

Fig. 13.Labellings for the pretzel kna® (2a + 1, —2b — 1, 2¢ + 1). At left, we have a projection for the pretzel

knot P (2a+1, —2b—1, 2c+ 1) where, of course, the labeled rectanglgsesent tangles with a specified number
of twists in them. The edgeB, Q, R are labeled here. At the right, we teathe corresponding black graph (for
one of the two colorings). The circled vertex capends to the black region distinguished by the e@ge

of edges(x;} 21, {yj}i”:*il, and{z¢} 241, The vertex meeting the edges, 1, y25+1, and

z2¢+1 is the distinguished black vertex. The corresponding distinguished black region is a
triangle with three edge®, Q, andR, with P facing the vertex corresponding 19,1,
Q facing fromyy,+1, and R facing zo.+1. Our distinguished edge for the decorated knot
projectionisQ.

Let A; ; respectivelyB; ;, respectivel\C; ; be the Kauffman state corresponding to the
tree which is obtained by deleting andz; respectivelyr; andz; respectivelyr; andy;
from the black graph.

Lemma 5.3. For the pretzel knok = P(2a + 1, —2b — 1, 2¢ + 1) with a, b, c > 0, the
generators ofC FK (K, 1) in dimension one are

{A2i2j11} 1<i<h » {C2i2j+1} 1<i<a
1<j<e 1<j<b

and the generators in dimension two are of the form

{B2i2j+1} 1<i<a -
1<j<e

There are no other generators 67 K (K, 1).
Proof. This follows at once from the above diagrant

Lemma 5.4. For the marked edgeB and R, we have that

MBZ[,zj_*_l(P) - MAZv,ZH—l(P) == 2(.] -5 — tvj -8 - t)7
MpBy 55,1 (R) = Mcy 5,1 (R) =200 —s —t,i —s —1).
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Proof. This, too, follows quickly from the diagram.O

Lemma5.5. For the pretzel knoP (2a + 1, —2b — 1, 2¢ + 1) with a, b, ¢ > 0, we have that
rkHFK1(P(2a+1,-2b—1,2c+1D), D)) >b-(b+1).

Proof. According to Lemma 5.4 (togetheritlv Proposition 2.8), the generatafs; 2,11

(where 0< s < b and 0< ¢t < ¢) with s +¢ > 2c + 1, of which there aré (b + 1)/2,

all lie in the cokernel of the boundary operator. Similarly, the generaiers,+1 (where

0< s <aand0<t < b)with s + 1 > 2a, of which there are anothérs + 1)/2, all lie

in the cokernel of the boundary operator. Since there are no generators in dimension zero
(according to Lemma 5.3), the stated bound followsl

Proof of Theorem 1.3. The case wheré > min(a, c¢) is established in Proposition 5.1.
Together, Lemmas 5.2 and 5.5 show tha#iRK (P(2a+1, —2b—1,2c+ 1)) = b(b + 1).
The rest of the theorem now follows at once from Lemma 5:3.

To prove Corollary 1.5, we need the following result, which closely follows [19]:

Proposition 5.6. Let K be a knot withdegH FK (3, K) = 1. Then, if
tkHFKey(S%, K,1) >2 and rkHFKogd(S% K, 1) > 1,
then no integral surgery of® along X is a Seifert fibered space.
Proof. By reflecting the knot if necessary, we can assumeSﬁ(aK ) is Seifert fibered for

somep > 0.
According to Lemma 4.1 of [19],

HF

redev

(S3(K),0) = HF Koqd(S%, K, 1).

This completes the case where= 0, see for example Theorem 3.4 of [19].
As in the proof of Lemma 3.1 of [19], Section 4 of [18] givesZal ]-submodule

of HF*(S3(K),[0]) (for sufficiently largen) which is isomorphic toH FK ($3, K, 1);
indeed, we have a short exact sequence:

0— HFK (S, K,1) — HF*(S3(K),[0]) > HF*(5%) — 0.

The above is a map @f-modules, and th& action om(s3, K, 1) istrivial. It follows
now that

(KH Fityoy(S3(K)) > tkH FK ey(S%, K. 1) - 1,
tkH Fiigoqd(S3(K)) = tkH FK oad(S°, K, 1).
Considering the integer surgeries long exact sequence, it follows that for-all
rkHFr-gd,odd(Ss(K)) = rkHFr—gdev(Si(K))’
3 3
rkHFr—cia_clev(Sn (K)) = rkHFr—:a—d,odd(sp(K))'
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In view of our hypotheses, theﬁFrJgd(Sf;(K)) is non-trivial in both even and odd degrees.
On the other hand, results from [20] show that for a Seifert fibered spacéwith = 0,
HFrJgd(Y) is supported in either even or odd degrees (this is proved in Corollary 1.4 of [20]

whenb1(Y)=0. O

Proof of Corollary 1.5. This is a direct consequence of Theorem 1.3 and Proposi-
tion5.6. O

6. Knotswith few crossings

We give here another application of the riksof Proposition 2.6, showing that the Floer
homology groups of all but two of the knots with nine or fewer crossings behave like the
Floer homology of alternating knots. The two counterexamples to this ar@,thgtorus
knot (which appears in the tables under the namga&nd a certain nine-crossing kng9
In fact, the knot Floer homologies of these two knots have been determined in Theorem 1.2
of [16] and Proposition 6.6 of [18], respectively, where it is shown that:

Z(0) ifi =3,
Z—y ifi=2,
e —— .\~ Z(_4) If i = 0,
HFK89.i) = Z(—s) if i =-2,
Z—eg fi=-=3,
0 otherwise,
Zy) ifi =2,
Zgo) ifi=1,
ORI
Z(—2) ifi =-1,
Z(—3) ifi =-2,
0 otherwise.

(Note that the standard knot tables do not distinguish a knot from its mirror. For the above
statements, we have chosen the versions of the knots whose signature is negative.)

Theorem 6.1. Except for the knot819 and 942, any other knoK admitting a projection
with nine or fewer crossings has the property that

T S\~ la;l

HFK(K,z)_Z(i+%), (15)
where heres denotes the signature of the knkt and theqa; are the coefficients of its
symmetrized Alexander polynomial.

Proof. Of course, for alternating knots, the theorem follows from [17]. Now, there are
only nine non-alternating knots to consideere according to standard knot tables, see,
for example, [1]. One of these, the knafs9which is the pretzel knoP (-3, 3, 3), will be
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Fig. 14.Decorated knot projections for small know/e have illustrated here knots with nine or fewer crossing
which do not admit alternating projections, except feg &he (3, 4) torus knot), 9o, and g (the pretzel knot
P(=3,3,3).

handled separately. We illustrate distingidiedges for knot projectns for the remaining
eight knots in Fig. 14 (but dropping orientations).

Now, of these eight, we considesfseparately as well. For the remaining seven knots,
it is straightforward to see that in each filitm level, all of the essential states have the
same absolute grading. Indeedlculating these absoluteaglings, one can readily verify
that for these knots, the essential states with filtration |éwel have absolute grading
i +0/2. In view of Proposition 2.6, the theorem then follows for these seven knots.

For the case of &, a direct analysis using the illustrated decorated knot projection
verifies Eq. (15) for ali < 0, and hence also for all£ 0, in view of the symmetry of
ITF\K, Eg. (2). In the case whete= 0, now, we claim that there are three generators, one
in dimension—1, and two in dimensior-2. In fact, a closer look at the states reveals that
the essential stat€ in dimension—1 can be connected to an essential staite dimension
—2 by a homotopy clasg whose associated domain is an octagon (with multipligity,
missing the reference poin). Compare with the genus four Heegaard diagransdf
pictured in Fig. 16, where there are three generatorssford1, A», B, with homotopy
classes connecting; respectivelyd, to B represented by octagons. It now follows easily
that for a homotopy class whose domain is an octagon,

#(M(¢)/R) = +1.
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Fig. 15. A differential for943. We have illustrated here two of the essential stafeand Y for the indicated
decorated knot projection (where the distinguisteste is the one containing the arrow). The stitds
represented by the collection of dark circles, whilés represented by the hollow circles. MoreovErandY are

in dimensions-1 and—2, respectively, and it is easy to see that the domain of the homotopy class contécting
to Y is an octagon.

Fig. 16.0ctagons In this genus four Heegaard diagram %, there are three generators B (53). Two of
them are indicated here—one by the unmarked solid circles (c#)l ithe other by the unmarked hollow circles
(call thatY). It is easy to find an octagonal domali(¢) with n;(¢) = 0 which connectsY to Y (and indeed
there is another octagonal domain ceating the other intersection poiit to Y). This forces M (¢)/R = £1.

Hence, we have that the boundary operatm(%g, 0) is non-trivial, and indeed
that the homology in filtration level O is given ), completing the verification of
Eq. (15) for Q3.

Finally, we turn to the pretzel kna@t(—3, 3, 3). As in Section 5, we fit this into a skein
exact sequence

.-~ HFK(P(~3,3,3)) —> HFK(U) —> HFK (P(=3,3,1)) = - -,

where hereUs is the unlink with two components (this % o in the notation from
Section 5). By using the action of the homology class which links, it is easy to see
thatH FK (P(—3,3,3)) = HFK(P(—3,3,1)). Note thatP(—3,3,1) = P(—1, —1,5) =
P(1,1, 3), which alternates. O
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