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Abstract

Let {P,(x)}.-, be a system of polynomials satisfying the recurrence relation
P-l(x) =0, PO(x) =1, P,,+1(X) + thn—l(x) + CnPn(x) = XP,,(X),

where h,, c, are real sequences and h, > 0, n =0, 1,2, ... . The co-recursive polynomials { P¥(x)}>., satisfy the same
recurrence relation except for n = 1, where P¥(x) = yx — ¢o — B, 7 # 0. It is well known that the problem of determining
the zeros of P,(x) is equivalent to the problem of determining the cigenvalues of a generalized eigenvalue problem
Tf = AAf, where T and A are symmetric matrices. In this paper the problem of determining the zeros of the co-recursive
polynomials is reduced to a perturbation problem of the operators T and A perturbed by perturbations of rank one.
A function (1) = @(4, 44,44, ..., 4)isfound, k = 1,2, ..., n, whose zeros are the zeros of P}(x), and 4, are the zeros of
the polynomial P,(x) of degree n, for y 5 0. This function unifies many results concerning interlacing between the zeros of
P,(x) and PX(x) for y # 0. Moreover we obtain from this function similar results in the unstudied case y = 0.
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1. Introduction

Consider the polynomials R,(x) of degree n which are defined by
Rn+1(x) +R,,_1(X)=2X(1 _aén,O)Rn(x)a n =031, cers (11)
R_i(x)=0, Ro(x)=1,

where 0 <2 < 1,8, = 1forn =0and 8, , = 0 for n # 0. For « = § and « = 0 these polynomials
are the Tchebichef polynomials of the first and second kind, respectively. More precisely, the
Tchebichef polynomials C,(x) are obtained from (1.1) by setting C,(x) = R,(x),n =0,1,2,..., and
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a =14 or o = 0. The polynomials (1.1) may also be defined by

sin(n + 1)¢

R, (x) = 2acosng + (1 — 20) S0

, cosp=x, n=0,12, .... (1.2)

This is a variational connection between the two kinds of Tchebichef polynomials and was for us
the first motivation to study perturbations of the coefficients of the general form of orthogonal
polynomials:

Pn+ l(x) + thn—l(x) + cnPn(x) = XP,,(X), (13)
P_i(x)=0, Po(x)=1, h,>0and c, real sequence.

Later it was brought to our attention that such perturbations were studied by other authors in
the past [1,2,8,9] because of their applications in several problems of physics and harmonic
analysis. In 1957 Chihara [2] studied the following perturbed polynomials,

Pria(x) + B, PRy (x) + (¢ + B3, 0) PR(X) = xPF(x), B#0, (1.4)

which he called co-recursive orthogonal polynomials. Among others he proved that the zeros x;,
j=12,...,n of P,(x) and x¥ of P}(x) are mutually separated,

Xjo1 <x¥g<x;<x¥ j=23,..,n B>0, (1.5)

with the roles of x; and x¥ reversed for § < 0.
Recently Slim [9] has studied the more general case

Freg(xX) + by Fo1(x) 4+ (¢n + BOu0) Fr(x) = x(1 + (y — 1)3,,0) F(x), (1.6)
F*,(x)=0, FX(x)=1, h,>0, B+#0, y#0. 1.7)

He has proved that all the zeros of (1.6) are real and simple for y # 0 and he found a series of
sufficient conditions in order that relation (1.5) be satisfied.

There is a case where the polynomials F,(x) and F}(x) have the same zeros. This is the case
where f#0, y#1 and = (y — )4, where 4, is any zero of F,(x). We assume here that
B#(@y— DA, k=1,2,...,n,and prove that the number 4 is a zero of the polynomial F ¥(x) defined
recursively by (1.6) and (1.7) if and only if 4, # 4 and A is a zero of the function

o}

N=1—GG~D—-pH S 1.
pA)=1—-@A@r 1) ﬁ)k;ik—i’ (1.8)

where o, are real numbers such that Y%_; 67 = 1. This result unifies many results concerning
interlacing between the zeros of F,(x) and F}(x) for y # 0. Moreover we obtain from (1.8) similar
results for the case y = 0, which has not been studied until now. In that case the degree of F }¥(x) is
unpredictable. We find conditions in order that F¥(x) is of degree n — 1 and has real and simple
zeros which lie between the n zeros of F,(x).
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2. Reduction of the problem of zeros of F}(x) to the problem of the zeros of (1.8)

The relation (1.6), by setting a,, = \/h,+; and F¥(x) = /hihy ... h, Q.(x), F§(x) = Qo(x), can be

reduced to

Qi+ 1(X) + - 1Qn—1(x) + (¢ + B1,0)Qnlx) = x(1 + (y — 1),0) Qu(), (2.1)

where the polynomials Q,(x) and F}¥(x) have the same zeros.
According to an abstract setting [6,7] 4 is a zero of the polynomial Q,(x) if and only if it is an
eigenvalue of the problem

(AV* + VA + C + BPo)x = Al + (7 — 1)Py)x (2.10)

in the space H,.

In (2.1) H, is a finite-dimensional Hilbert space with the orthonormal basis e,
k=0,1,...,n— 1, A and C are the diagonal operators Ae, = oye;, Ce, = e, k =0,1, ... ,n — 1,
V is the truncated shift (Ve,=¢,4,, k=0,1,...,n =2, Ve,_;,=0), V* the adjoint of
V(V*e, =e,—y, V*ey =0) and P, is the orthogonal projection of the subspace spanned by the
element eq, i.e. Pox = (x,e9)ey, x€ H,. For completeness we give below the proof of the above
statement.

Let 4 be an eigenvalue of the problem (2.1z). Since o, #0, k=0,1,2, ... ,n — 1, we have
(x,e0) # 0, because otherwise (x,e;) = (x,¢€,) = --- = (x,e,-1) = 0,1.e. x = 0. So we normalize x by
setting (x, ep) = 1. Then from (2.1a) we find (x,e;) = Q1 (4),(x,€5) = Q2(4), ..., (X,e5—1) = Q,—1(A).
Since Ve,_; = 0, scalar product multiplication of (2.1a) by e, leads to

OCn—2Qn—2(’D + Cn—lQn—l(}“) = AQn—l(’D’

which together with (2.1a) gives Q,(4) = 0.

Conversely if Q,(4) = 0, then it is easy to see that the vector x = Y328 Qr(4)ew, Qo(A) = 1, satisfies
(2.1a). Note that x 5 0 because Qy(4) = 1.

We write the problem (2.1a) in the form

(To + BPo)x = A1 + (y — 1)Py)x
or

Tox — Ax =[Aly — 1) — ] Pyx, 2.2)
where

To=AV*+VA+C.
In (2.2) T, is a self-adjoint operator, whose eigenvalues

A <Ay <lz< - <A, (2.3)

are the zeros of the unperturbed polynomial P,(x) of degree n. For y = 1 the eigenvalue problem
(2.2) is the problem

(To + BPo)x = Ax, (2.4)
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where P, is a perturbation of rank one. In the case n tends to infinity the operator V is the
unilateral shift operator on an abstract separable Hilbert space H with the orthonormal basis e,,
n=20,1,2, ... . For more details of the truncated shift V see [5]. It is known that if T, is self-adjoint
(not necessarily in a finite-dimensional Hilbert space) with a discrete spectrum then between every
distinct pair of eigenvalues (4;, 4;+ ) of T, there is precisely one eigenvalue of Ty + B P, in one of
the intervals [4;, 4;+1) or (A, 4;+ 1] or (4;, 4;+1) [4]. Here the possible case for the operators T, and
To + B P, to have a common eigenvalue is excluded because of a peculiarity of the perturbation P,
This peculiarity is expressed in the following lemma.

Lemma 2.1. Let  # A(y — 1), and assume that x satisfies (2.2) with some real A #0. Then A is
a regular point of the operator T,

Proof. Let / be an eigenvalue of T, i.c.

Toxo = Axg, Xo # 0. (2.5)
Then scalar product multiplication of (2.2) by x, gives

(A — 1) — B)(Pox,x0) =0
or

(Pox,x0) = (x, eg) (€9, X0) = 0.

This is impossible because (x,e) # 0 and (xo, eo) # 0. O
Now with a slightly modified version of the method used in [4] we prove the following theorem.

Theorem 2.2. Let B % A(y — 1). Then A # O satisfies (2.2) with some x # 0, if and only if A is a zero of
the function

O =1 =[A6y — 1) = BI(To — )" eor o), )
from which (1.8) follows.
Proof. Let 4 be a zero of (2.6), i.e.

1—-[Aly = 1) = B1(To — Al)" 'eq,e0) = 0

or

(eo, ?o) —[Ay — 1) = B1(To — A1)~ 'eg,e0) = 0

or

(eo,e0 — [A(y — 1) = BI(To ~ Al)" 'eo) = 0.
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The last means that the element

y=e — [y = 1) = BI(To — L) 'e, 2.7
is orthogonal to ey, i.e. (y,¢5) = 0. Thus from (2.7)

—eo+y=[40 —1) = BI(To — AI)" ' Po(—eo + y) (2.8)

because Po( —eg + y) = — eo. From (2.8) we see that x = — e, + y is different from the zero
element and satisfies (2.2). Conversely let A # 0 satisfy (2.2). Then because of Lemma 21, A is
a regular point of T, i.e. (T — A1) ! exists as an operator on H, and we have

=[A(y — 1) = BI(To — AI)" ' Pyx (2.9a)

or
x =[Ay — 1) = B1(To — A1) *(x,e0)e0 (2.9b)

or
x = (x,e0)[Aly — 1) — B1(To — A" Le,. (2.9¢)

From (2.2) (x,e,) # 0 because otherwise (x,e;) =0, (x,e,) =0, ..., (x,e,_,) = 0 and x = 0. Thus
from (2.9) we see that

(x,e0) = (x,e0) [Aly — 1) — BI((T, — A" ey, €o)

and 4 is a zero of the function (2.6). Expanding the element (T, — AI)” e, in terms of the complete
orthonormal system y,, k = 1,2, ... ,n, of T, and the eigenvalues /,, i.e.

n

(To — M)_leo = Z (To — M)_leo’,\’k)Yk = Z (e0,(To — /“)_IJ’k)Yk
k=1

k=1

" 1
Z < iYk> Ve = Z (eo,,Vk)J’k,

we find easily that (2.6) can be taken in the form (1.8), where 67 = |(,, €o)|? and

1= |30”2 Z | eo,}’k)l Z Uf. O
k=1

Remark 2.3. Adding and subtracting the term (y — 1) Zk 1407 in (1.8) and using the relation
Yi-10% = 1, the relation (1.8) for y #% 1 can be written in the form

o (B/(y — 1) — Ay
. e —1

oD =y+@y—1) Z (2.10)
k=
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3. Interlacing of zeros

Theorem 3.1. For f # 0 and y = 1 the zeros A¥ of F¥(x) are real and simple and interlaced with the
zeros A of F,(x) as

<A<l < - <d, <A} (3.1
for f >0 and

AM<hi<ii< - <i¥<i, (3.2)
for p <.

Proof. For f > 0 and y = 1 we observe from the function

2

=1 o Ok 33
P =1+p T 77 (3

that in the interval (4,, + co) there exists at least one zero of ¢(4). In fact we have
o(+w)=lm:- +»@(4) =1and limi-i-0¢(4) = — oo because 4, — A < 0. So by the inter-
mediate theorem there exists a zero of ¢(4) in (4,, + o). Also from (3.3) by the intermediate
theorem it follows that between two successive zeros of F,(x), 4; and ;. ;, there exists at least one
zero of F¥(x). Thus we prove the existence of n real and different zeros of F¥(x), 1%, A%, ..., A¥,
such that relation (3.1) holds. For < 0 we also have the existence of n different zeros of F*(x). The
n — 1 zeros lie between the zeros A, of the polynomial F,(x). The first zero A¥ lies in the interval
(— o00,4;y) because ¢( — o0) =limi- - » @(4) =1 and lim;~ 1 -0 @(4) = — 0. Thus we obtain
relation (3.2). [

Remark 3.2. Theorem 3.1 has been proved by Chihara in [2] by a different method.

Theorem 3.3. Let f =0,y # 0 and let two successive parts in the sum (2.10) have the same sign. Then
between two successive zeros of F,(x) there exists at least one zero of F¥*(x).

Proof. This follows from (2.10) by the intermediate theorem. U

Theorem 3.4. Let f =0,y > 1 and let all zeros 4, of F,(x) be positive. Then the zeros of F,(x) and the
zeros A of F}¥(x) are interlaced as

A< <A< ... <if<i,. (3.4
Proof. The existence of n — 1 zeros follows from Theorem 3.3, and the existence of A¥, in the

interval ( — o0, A;), follows from (2.10) because for y > 1, ¢( — 0 ) =limi- - « @(1) =y > 0 and
limisi—o@A)y=0c0. O
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Theorem 3.5. Let one of the three sets of conditions,
@ B/(y—1) <inLy>1,
(b) B/ly — 1) < 41,7 <0,
(© B/y—1)>4,0<y<l,
be satisfied. Then the zeros Af of F¥(x) and the zeros A, of F,(x) are interlaced as

A<l <Ay < ... <if<i,.

Proof. The proof of the existence of n — 1 different zeros follows from Theorem 3.3 because
(B/(y — 1)) — A, have the same sign. The existence of A¥ in the interval ( — o0, 4,) follows because
(@ fory>1,¢(—o0)=y>0and lim; ,;, _o@(4) = — w0,
(b) fory <0,¢p(—o0)=y<0andlim;_;, _o¢(4) = + oo and
(¢ for0<y<1,¢(—o0)=y>0and lim;_,; _o¢(1) = — 0,
sincey —1<0,/(y—1)—-A4>0Vk=1,2,....,nand 4, — 1 >0. O

In the same way we can easily prove the following.

Theorem 3.6. Let one of the three conditions,
@ B/y—1D <, 0<y<,
(b) B/y — 1) > 4,7 <0,
© B/y—1D>iny>1,
be satisfied. Then the zeros 4, of F,(x) and the zeros A} of F¥(x) are interlaced as

AM<Af<ly< ... <A, <Ak

Remark 3.7. In [9] it was proved that the conclusions of Theorems 3.5 and 3.6 hold true if in the
conditions (a), (b), (c) the numbers 4, and 4, are replaced by {; and n,, where [{,, n,] is the true
interval of orthogonality of F,(x). Moreover in [9] it was assumed that {; > — o0 andn; < + o0,
‘which restrict the class of the perturbed polynomials F,(x).

Remark 3.8. During the conference Prof. Galliano Valent informed us that the results of Slim [9]
were also proved by Allaway [1] in his Ph.D. thesis in 1972, which was never published.

4. The special case y = 0

This case has not been studied previously by other authors because in that case one of the terms
1 4+ (y — 1)0n,0 of relation (1.6) vanishes, and the degree of the polynomial F }(x) defined by the
recurrence relation (1.6) is unpredictable. However from function (2.10), which in this case takes the
form

"B+ Mok

o)=Y

DI A 4.1

we obtain the following result.
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Theorem 4.1. Suppose that y =0and > — A, k=12, ... ,nor f< — A4, k=1,2,... ,n. Then
the degree of the polynomial F ¥ (x) is n — 1 and has real and simple zeros, which lie between the n zeros

of F,(x).

Proof. From (4.1), using the intermediate theorem, we establish the existence of n — 1 different real
zeros of the polynomial F}¥(x). On the other hand, from the recurrence relation we see easily that
the degree of F¥(x) cannot be greater thann — 1. O
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