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Abstract 

Let {P.(x)}.~ 0 be a system of polynomials satisfying the recurrence relation 

P_I(X) = 0, Po(x) = 1, P.+l(x) + h.P.-x(x)  + c.P.(x) = xP.(x), 

where h., c. are real sequences and h. > 0, n = 0, 1, 2 . . . . .  The co-recursive polynomials { P*(x)}~= o satisfy the same 
recurrence relation except for n = 1, where P*(x) = 7x - co - fl, 7 ¢ 0. It is well known that the problem of determining 
the zeros of P.(x) is equivalent to the problem of determining the eigenvalues of a generalized eigenvalue problem 
T f =  2Af, where T and A are symmetric matrices. In this paper the problem of determining the zeros of the co-recursive 
polynomials is reduced to a perturbation problem of the operators T and A perturbed by perturbations of rank one. 
A function ~p(2) = ~o(2, 2~, ,~2 . . . . .  )~k) is found, k = 1, 2 . . . . .  n, whose zeros are the zeros of P*(x), and 2k are the zeros of 
the polynomial P.(x) of degree n, for 7 ¢ 0. This function unifies many results concerning interlacing between the zeros of 
P.(x) and P*(x) for 7 ¢ 0. Moreover we obtain from this function similar results in the unstudied case 7 = 0. 
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1. Introduction 

Cons ide r  the po lynomia l s  R.(x)  of  degree  n which are defined by 

R n + I ( X )  + R , - l ( X )  = 2x(1 - ~ , , o ) R , ( x ) ,  n = 0, 1, . . . ,  (1.1) 

R - 1 ( x )  = O, Ro(x) = 1, 

where  0 ~< ~ < 1, 6,,0 = 1 for n = 0 and  6,,o = 0 for n ¢ 0. F o r  e = ½ and  e = 0 these po lynomia l s  
are the Tcheb iche f  po lynomia l s  of  the first and  second kind, respectively.  M o r e  precisely, the 
Tcheb iche f  po lynomia l s  C,(x) are ob ta ined  f rom (1.1) by sett ing C,(x) = R,(x),  n = 0, 1, 2, . . . ,  and  

* Corresponding author. 

0377-0427/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved 
SSDI 0 3 7 7 - 0 4 2 7 ( 9 3 ) E 0 2 4 2 - E  



164 E.K. Ifantis, P.D. Siafarikas/Journal of Computational and Applied Mathematics 57 (1995) 163-170 

a = ½ or a = 0. The polynomials (1.1) may also be defined by 

,, ,sin(n + 1)q~ 
R . ( x ) = 2 a c o s n ~ o + ( 1 - z c O  , , c o s q ~ = x ,  n = O ,  1 , 2 , . . . .  (1.2) 

sm~o 

This is a variational connection between the two kinds of Tchebichef polynomials and was for us 
the first motivation to study perturbations of the coefficients of the general form of orthogonal  
polynomials: 

P,+ x(x) + h,P._ l(x) + c.P.(x) = xP.(x), (1.3) 

P - l ( x )  -- O, Po(x) = 1, h, > 0 and c, real sequence. 

Later it was brought  to our attention that such perturbations were studied by other authors in 
the past [1, 2, 8, 9-1 because of their applications in several problems of physics and harmonic 
analysis. In 1957 Chihara [2] studied the following perturbed polynomials, 

P*+,(x) + h.P*-l(x)  + (c, + flb~,o)P*(x) = xP*(x), fl v ~ O, (1.4) 

which he called co-recursive orthogonal polynomials. Among others he proved that the zeros x j, 
j = 1,2 . . . . .  n, of P.(x) and x* of P*(x) are mutually separated, 

xj-1 < x * - i  < x j < x * ,  j = 2 , 3 , . . . , n ,  f l > 0 ,  (1.5) 

with the roles of xj and x* reversed for fl < 0. 
Recently Slim [9] has studied the more general case 

F*+l(x) + h,F*_,(x) + (c, + flb.,o)F*(x) = x(1 + (7 - 1)6,,o)F*(x), (1.6) 

F* - l (X)=0 ,  F ] ( x ) = l ,  h , > 0 ,  f l ~ 0 ,  y 4 0 .  (1.7) 

He has proved that all the zeros of (1.6) are real and simple for 7 ~: 0 and he found a series of 
sufficient conditions in order that relation (1.5) be satisfied. 

There is a case where the polynomials F,,(x) and F*(x) have the same zeros. This is the case 
where /3:~0, 7 ~ 1  and /3 = (7 --1)2k, where 2k is any zero of F,(x). We assume here that 
13 ¢ (7 - 1)2k, k = 1, 2, .. . ,  n, and prove that the number 2 is a zero of the polynomial  F*(x) defined 
recursively by (1.6) and (1.7) if and only if 2k ~ 2 and 2 is a zero of the function 

~p(,~) = 1 -- (Z(Y -- 1) -- fl) ~k --- 2' 
k = l  

(1.8) 

where o- k are real numbers such that ~ ,=  1 ak z = 1. This result unifies many results concerning 
interlacing between the zeros of F,(x) and F*(x) for 7 4: 0. Moreover  we obtain from (1.8) similar 
results for the case 7 = 0, which has not been studied until now. In that case the degree of F*(x) is 
unpredictable. We find conditions in order that F*(x) is of degree n -- 1 and has real and simple 
zeros which lie between the n zeros of F,,(x). 
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2. Reduction of the problem of zeros of F*(x) to the problem of the zeros of (1.8) 

The relat ion (1.6), by  setting ~, = x /~ .+  1 and F*(x) = x/hahl ... h, Q,(x), F*(x) = Qo(x), can be 
reduced  to 

~,Q,+l(x) + % - l Q , - l ( x )  + (c, + flf, ,o)Q,(x) = x(1 + (y - 1)6,,o)Q,(x), (2.1) 

where  the po lynomia l s  Q,(x) and  F*(x) have the same zeros. 
Accord ing  to an abs t rac t  setting [6, 7] ,l is a zero of  the po lynomia l  Q,(x) if and only if it is an 

eigenvalue of  the p rob lem 

(AV* + VA + C + flPo)x = 2(1 + (7 - 1)Po)x (2.1a) 

in the space H, .  
In (2.1) H ,  is a f ini te-dimensional  Hi lber t  space with the o r t h o n o r m a l  basis ek, 

k = 0, 1 . . . . .  n - 1, A and  C are the diagonal  opera to rs  Aek = akek, Cek = Ckek, k = O, 1, . . . ,  n -- 1, 
V is the t runca ted  shift (Vek=ek+l ,  k = 0,1, ... ,n - 2, V e , _ l = 0 ) ,  V* the adjoint  of  
V(V*ek = ek-~, V*eo = 0) and P0 is the o r thogona l  projec t ion  of  the subspace  spanned  by the 
element  eo, i.e. Pox = (x, eo)eo, x ~ H , .  Fo r  completeness  we give be low the p r o o f  of  the above  
statement .  

Let  2 be an eigenvalue of  the p rob lem (2.1c 0. Since "k ~:0,  k = 0,1,2,  ... , n -  1, we have 
(x, eo) -¢ 0, because  o therwise  (x, el)  = (x, e2) . . . . .  (x, e,_ 1) = 0, i.e. x = 0. So we normal ize  x by 
setting (x, eo) = 1. Then  from (2.1a) we find (x, el)  = Q1 (2), (x, e2) = Q z (2), ... , (x, e ,_ 1) = Q , -  1 (2). 
Since Ve,_ ~ = 0, scalar p ro d u c t  mult ipl icat ion of  (2.1a) by  e,_ 1 leads to 

+ c . _ 1 Q . _  , (2) = 2 Q . _  , (2), 

which together  with (2.10 0 gives Q,(2) = 0. 
n - 1  Converse ly  if Q, (2) = 0, then it is easy to see that  the vector  x = Y~k = o Qk (2)ek, QO (2) = 1, satisfies 

(2.1cx). N o t e  that  x # 0 because  Qo(2) = 1. 
We  write the p rob lem (2.1a) in the form 

o r  

(To + flPo)x = 2(1 + (7 - 1)Po)x 

Tox - 2x  = [2 (~ / -  1) - fl]Pox, (2.2) 

where  

To = A V *  + VA + C. 

In (2.2) To is a self-adjoint opera tor ,  whose  eigenvalues 

2 1 < 2 2 < 2 3 <  "'" < 2 ,  (2.3) 

are the zeros of  the unpe r tu rbed  po lynomia l  P,,(x) of degree n. For  7 = 1 the eigenvalue p rob lem 
(2.2) is the p rob lem 

(To + flPo)x = 2x, (2.4) 
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where  flPo is a pe r tu rba t ion  of rank  one. In the case n tends to infinity the opera to r  V is the 
unilateral  shift ope ra to r  on  an abs t rac t  separable  Hi lber t  space H with the o r t hono rma l  basis e,, 
n = 0, 1, 2, . . . .  Fo r  more  details of  the t runca ted  shift V see [5].  It is k n o w n  that  if To is self-adjoint 
(not necessarily in a f ini te-dimensional  Hi lber t  space) with a discrete spec t rum then be tween  every 
distinct pair  of  eigenvalues (2i, 2i+ 1) of  To there is precisely one  eigenvalue of  To + flPo in one of  
the intervals [2i, 2i+ 1) or  (2i, 2~+ 1] or  (2~, 2/+ 1) [4]. Here  the possible  case for the opera to r s  To and 
To + /3  Po to have a c o m m o n  eigenvalue is excluded because  of  a peculiar i ty of  the pe r tu rba t ion  Po. 
This peculiari ty is expressed in the fol lowing lemma. 

L e m m a  2.1. Let fl ~ 2(7 - 1), and assume that x satisfies (2.2) with some real 2 ~ O. Then 2 is 
a regular point o f  the operator To. 

Proof. Let )~ be an eigenvalue of  To, i.e. 

Toxo = 2Xo, Xo 4: 0. (2.5) 

Then scalar p roduc t  mult ipl icat ion of  (2.2) by Xo gives 

(2(~ -- 1) - fl)(Pox, Xo) = 0 

o r  

(Pox, Xo) = (x, eo) (eo, Xo) = 0. 

This is impossible  because  (x, eo) ~ 0 and (Xo, eo) ¢ 0. []  

N o w  with a slightly modif ied version of  the m e t h o d  used in [4] we prove  the following theorem. 

Theorem 2.2. Let fl ~ 2(7 - 1). Then )~ ~ 0 satisfies (2.2) with some x va O, if  and only i f2 is a zero of  
the function 

~o(2) = 1 - [2(7 - 1) - fl] ((To - 21 ) - ' eo ,  eo), (2.6) 

from which (1.8)follows. 

Proof.  Let  2 be a zero of  (2.6), i.e. 

1 -- [2(7 -- 1) -- fl] ((To -- M)- leo ,  eo) = 0 

o r  

(eo, eo) -- [~(7 - 1) - fl] ((To - 2 I ) - l e o ,  eo) = 0 

o r  

(eo, eo - [2(7 - 1) - fl] (To - 2 I ) - l e o )  = 0. 
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T h e  last  m e a n s  t h a t  the  e l e m e n t  

Y = eo --  [2(7 -- 1) - - / ? ] ( T o  -- 2 I ) - 1 e o  (2.7) 

is o r t h o g o n a l  to  eo, i.e. (y, eo) = 0. T h u s  f r o m  (2.7) 

- eo + y = [ 2 ( 7  - 1) - / ? ] ( T o  - 2 1 ) - 1 P o ( -  eo  + y)  (2.8) 

because  Po( - eo + y) = - eo. F r o m  (2.8) we see t ha t  x = - eo + y is d i f ferent  f r o m  the  ze ro  
e l e m e n t  a n d  satisfies (2.2). C o n v e r s e l y  let 2 4 : 0  sat isfy (2.2). T h e n  because  o f  L e m m a  2.1, 2 is 
a r e g u l a r  p o i n t  o f  To,  i.e. (To  - 2 I ) - 1  exists  as an  o p e r a t o r  on  H ,  a n d  we have  

x = [£(7 - 1) - fi] (To  - 2 I ) - 1  Pox (2.9a) 

o r  

x = [2(7 -- 1) - - / ? ]  (To  - 2 I ) -  l(x, eo)eo (2.9b) 

o r  

x = (x, eo) [2(7 - 1) - fl] (To  - 21) -  1 eo. (2.9c) 

F r o m  (2.2) (x, eo) -¢ 0 because  o t h e r w i s e  (x, e l )  = 0, ( x ,  e 2 )  = 0 . . . .  , (x,e,_ 1) = 0 a n d  x = 0. T h u s  
f r o m  (2.9) we see t ha t  

(x, eo) = (x, eo) [2(7 -- 1) - - / ? ]  ( (To -- 2I)  leo,  eo) 

a n d  2 is a z e ro  o f  the  f u n c t i o n  (2.6). E x p a n d i n g  the  e l emen t  (To  - 2 I ) -  leo in t e rms  o f  the  c o m p l e t e  
o r t h o n o r m a l  sy s t em Yk, k = 1, 2, . . . ,  n, of  To and  the  e igenva lues  2k, i.e. 

(To  - 2 I ) - 1 e o  = (To  - 2I)- leo,  Yk)Yk = ~ (eo,(To -- 2I)-lyk)Yk 
k = l  k = l  

= eo, yk y k =  yk)y , 
k = l  k = l  ,~k  - -  

we f ind easi ly  t ha t  (2.6) c an  be t a k e n  in the  f o r m  (1.8), w h e r e  0-2 = [(yk, eo)[2 a n d  

n ?/ 

1 = Ileoll2 = ~, [(eo, Yk)[2= Z a~. 
k = l  k = l  

[ ]  

R e m a r k  2.3. A d d i n g  a n d  s u b t r a c t i n g  the  t e r m  (7 - 1) E ~ =  l"~'k 0-2 in (1.8) a n d  us ing  the  r e l a t i on  
~ =  1 0-k 2 ---- 1, the  r e l a t i on  (1.8) fo r  y ~ 1 can  be wr i t t en  in the  f o r m  

" 
~ ( 2 ) = 7 + ( 7 - 1 )  Z 

k = l  "~'k - -  /]" 
(2.1o) 
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3. Interlacing of  zeros 

Theorem 3.1. For f l ¢  0 and y = 1 the zeros 2* of  F*(x) are real and simple and interlaced with the 
zeros ~.k of  F,  (x) as 

~'1 '< '~'* < ) '2 < "'" < /~n < /~n $ (3.1) 

for fl > 0 and 

2 " < 2 1 < 2 " <  ..- < 2 " < 2 ,  (3.2) 

for fl < O. 

Proof.  Fo r  fl > 0 and  7 = 1 we observe from the funct ion 

" d 
(p(~t) = 1 + flk~= 1 2k -- 2' (3.3) 

tha t  in the interval (2,, + oo) there exists at least one zero of ~o(2). In fact we have 
~o( + oo) = lim ~.. + ~ q~(2) = 1 and  lim~-.x,-0 q)(2) = - oo because 2, - 2 < 0. So by the inter- 
mediate  theorem there exists a zero of q9(2) in (2~, + oo ). Also from (3.3) by the intermediate  
theorem it follows that  between two successive zeros of F,(x), 2i and  2i+ 1, there exists at least one 

* * . zero of F*(x). Thus  we prove the existence of n real and  different zeros of F*(x), 21,22,  .. , 2*, 
such that  relat ion (3.1) holds. Fo r  fl < 0 we also have the existence of n different zeros of F*(x). The 
n - 1 zeros lie between the zeros 2k of the po lynomia l  F,(x). The first zero 2* lies in the interval 
( -  oo ,21) because ~0( - oo) = l i m x . -  ~ ~o(2) = 1 and  lim~.-.).,-0 (p(2) = - oo. Thus  we obta in  
relat ion (3.2). []  

Remark  3.2. Theorem 3.1 has been proved by Chihara  in I-2] by a different method.  

Theorem 3.3. Let fl = 0, ~ ~ 0 and let two successive parts in the sum (2.10) have the same sign. Then 
between two successive zeros of  F,(x) there exists at least one zero of  F*(x). 

Proof.  This follows f rom (2.10) by the intermediate  theorem. [] 

Theorem 3.4. Let fl = 0, Y > 1 and let all zeros )~k of  F,(x) be positive. Then the zeros o f  F,(x) and the 
zeros 2~ of  F*(x) are interlaced as 

,~* < /~1 < ~,* < . - - < , ~ , n *  < , ~ n .  (3.4) 

Proof.  The existence of n - 1 zeros follows from Theorem 3.3, and  the existence of ~,*, in the 
interval ( - oo ,21), follows from (2.10) because for y > 1, q~( - oo) = limA-. - oo q~(2) = 7 > 0 and  
l im~.~. ,_o ~o(2) = ~ .  [ ]  
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T h e o r e m  3.5. Let 
(a) - 1) < 

(b) 9/(7 - 1) < 
(c) ill(7 - 1) > 

be satisfied. Then 

one of  the three sets of  conditions, 
2 1 , 7 > 1 ,  
2 1 , 7 < 0 ,  
2 , , 0 < 7 <  1, 
the zeros 2~ of  F*(x) and the zeros 2k of  F,(x) are interlaced as 

2 " < 2 1 < 2 " <  ... < 2 * < 2 , .  

Proof. The proof  of the existence of n - 1 different zeros follows from Theorem 3.3 because 
(fl/(7 - 1)) - 2k have the same sign. The existence of 2~' in the interval ( - ~ ,21) follows because 

(a) for 7 > 1, ~p( - ~ )  = 7 > 0 and lima_z,-oqg(2) = - ~ ,  
(b) for 7 < 0, q~( - ~ )  = 7 < 0 and l ima_~,_o ~o(2) = + 0o and 
(c) for 0 < 7 < 1, q~( -  ~ )  = 7 > 0 and limz~z._oq~(2) = - ~ ,  

s i n c e 7 - - 1 < 0 , ( f l / ( 7 - - 1 ) ) - - 2 k > 0 V k = l , 2  . . . . .  n and 2 1 -  2 >O. [] 

In the same way we can easily prove the following. 

T h e o r e m  3.6. Let one of  the three conditions, 
(a) f l / ( 7 - 1 ) < 2 1 , 0 < 7 < 1 ,  
(b) /V(7  - 1) > 2. ,  < o, 
(c) fl/(7 - 1) > 2,, 7 > 1, 

be satisfied. Then the zeros 2k of  F,(x) and the zeros 2* of  F*(x) are interlaced as 

21 < 2? < 22 < . - - <  2n ,~ 2n*. 

Remark 3.7. In [9] it was proved that the conclusions of Theorems 3.5 and 3.6 hold true if in the 
conditions (a), (b), (c) the numbers 21 and 2, are replaced by (1 and nx, where [(1, nl] is the true 
interval ofor thogonal i ty  of F,(x). Moreover  in [9] it was assumed that (1 > - ~ and nl < + ~ ,  
which restrict the class of the perturbed polynomials F,(x). 

Remark 3.8. During the conference Prof. Galliano Valent informed us that the results of Slim 1-9] 
were also proved by Allaway 1-1] in his Ph.D. thesis in 1972, which was never published. 

4. The  special  case  7 = 0 

This case has not been studied previously by other authors because in that case one of the terms 
1 + (7 - 1)6,,o of relation (1.6) vanishes, and the degree of the polynomial F*(x) defined by the 
recurrence relation (1.6) is unpredictable. However  from function (2.10), which in this case takes the 
form 

n 

 o(2) = X + ;k)G  k=l 2 k - - 2  ' (4.1) 

we obtain the following result. 
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Theorem 4.1. Suppose that ? = 0 and fl > - f ~ k ,  k = 1,2, . . . ,  n, or fl < - " ~ k ,  k = 1,2, ... , n. Then 
the degree o f  the polynomial F*(x )  is n - 1 and has real and simple zeros, which lie between the n zeros 

o f  F.(x) .  

Proof. F rom (4.1), using the intermediate theorem, we establish the existence of n - 1 different real 
zeros of the polynomial  F*(x) .  On the other hand, from the recurrence relation we see easily that 
the degree of F*(x )  cannot be greater than n - 1. [] 
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