Perturbation of the coefficients in the recurrence relation of a class of polynomials

E.K. Ifantis*, P.D. Siafarikas
Department of Mathematics, Faculty of Science, University of Patras, Patras 26110, Greece

Received 23 October 1992; revised 12 April 1993

Abstract

Let $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ be a system of polynomials satisfying the recurrence relation $$
P_{-1}(x)=0, \quad P_{0}(x)=1, \quad P_{n+1}(x)+h_{n} P_{n-1}(x)+c_{n} P_{n}(x)=x P_{n}(x),
$$ where h_{n}, c_{n} are real sequences and $h_{n}>0, n=0,1,2, \ldots$. The co-recursive polynomials $\left\{P_{n}^{*}(x)\right\}_{n=0}^{\infty}$ satisfy the same recurrence relation except for $n=1$, where $P_{1}^{*}(x)=\gamma x-c_{0}-\beta, \gamma \neq 0$. It is well known that the problem of determining the zeros of $P_{n}(x)$ is equivalent to the problem of determining the eigenvalues of a generalized eigenvalue problem $T f=\lambda A f$, where T and A are symmetric matrices. In this paper the problem of determining the zeros of the co-recursive polynomials is reduced to a perturbation problem of the operators T and A perturbed by perturbations of rank one. A function $\varphi(\lambda)=\varphi\left(\lambda, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ is found, $k=1,2, \ldots, n$, whose zeros are the zeros of $P_{n}^{*}(x)$, and λ_{k} are the zeros of the polynomial $P_{n}(x)$ of degree n, for $\gamma \neq 0$. This function unifies many results concerning interlacing between the zeros of $P_{n}(x)$ and $P_{n}^{*}(x)$ for $\gamma \neq 0$. Moreover we obtain from this function similar results in the unstudied case $\gamma=0$.

Keywords: Co-recursive polynomials; Perturbations of rank one

1. Introduction

Consider the polynomials $R_{n}(x)$ of degree n which are defined by

$$
\begin{align*}
& R_{n+1}(x)+R_{n-1}(x)=2 x\left(1-\alpha \delta_{n, 0}\right) R_{n}(x), \quad n=0,1, \ldots, \tag{1.1}\\
& R_{-1}(x)=0, \quad R_{0}(x)=1,
\end{align*}
$$

where $0 \leqslant \alpha<1, \delta_{n, 0}=1$ for $n=0$ and $\delta_{n, 0}=0$ for $n \neq 0$. For $\alpha=\frac{1}{2}$ and $\alpha=0$ these polynomials are the Tchebichef polynomials of the first and second kind, respectively. More precisely, the Tchebichef polynomials $C_{n}(x)$ are obtained from (1.1) by setting $C_{n}(x)=R_{n}(x), n=0,1,2, \ldots$, and

[^0]$a=\frac{1}{2}$ or $\alpha=0$. The polynomials (1.1) may also be defined by
\[

$$
\begin{equation*}
R_{n}(x)=2 \alpha \cos n \varphi+(1-2 \alpha) \frac{\sin (n+1) \varphi}{\sin \varphi}, \quad \cos \varphi=x, \quad n=0,1,2, \ldots \tag{1.2}
\end{equation*}
$$

\]

This is a variational connection between the two kinds of Tchebichef polynomials and was for us the first motivation to study perturbations of the coefficients of the general form of orthogonal polynomials:

$$
\begin{align*}
& P_{n+1}(x)+h_{n} P_{n-1}(x)+c_{n} P_{n}(x)=x P_{n}(x) \tag{1.3}\\
& P_{-1}(x)=0, \quad P_{0}(x)=1, \quad h_{n}>0 \text { and } c_{n} \text { real sequence. }
\end{align*}
$$

Later it was brought to our attention that such perturbations were studied by other authors in the past $[1,2,8,9]$ because of their applications in several problems of physics and harmonic analysis. In 1957 Chihara [2] studied the following perturbed polynomials,

$$
\begin{equation*}
P_{n+1}^{*}(x)+h_{n} P_{n-1}^{*}(x)+\left(c_{n}+\beta \delta_{n, 0}\right) P_{n}^{*}(x)=x P_{n}^{*}(x), \quad \beta \neq 0 \tag{1.4}
\end{equation*}
$$

which he called co-recursive orthogonal polynomials. Among others he proved that the zeros x_{j}, $j=1,2, \ldots, n$, of $P_{n}(x)$ and x_{j}^{*} of $P_{n}^{*}(x)$ are mutually separated,

$$
\begin{equation*}
x_{j-1}<x_{j-1}^{*}<x_{j}<x_{j}^{*}, \quad j=2,3, \ldots, n, \quad \beta>0, \tag{1.5}
\end{equation*}
$$

with the roles of x_{j} and x_{j}^{*} reversed for $\beta<0$.
Recently Slim [9] has studied the more general case

$$
\begin{align*}
& F_{n+1}^{*}(x)+h_{n} F_{n-1}^{*}(x)+\left(c_{n}+\beta \delta_{n, 0}\right) F_{n}^{*}(x)=x\left(1+(\gamma-1) \delta_{n, 0}\right) F_{n}^{*}(x) \tag{1.6}\\
& F_{-1}^{*}(x)=0, \quad F_{0}^{*}(x)=1, \quad h_{n}>0, \quad \beta \neq 0, \quad \gamma \neq 0 . \tag{1.7}
\end{align*}
$$

He has proved that all the zeros of (1.6) are real and simple for $\gamma \neq 0$ and he found a series of sufficient conditions in order that relation (1.5) be satisfied.

There is a case where the polynomials $F_{n}(x)$ and $F_{n}^{*}(x)$ have the same zeros. This is the case where $\beta \neq 0, \gamma \neq 1$ and $\beta=(\gamma-1) \lambda_{k}$, where λ_{k} is any zero of $F_{n}(x)$. We assume here that $\beta \neq(\gamma-1) \lambda_{k}, k=1,2, \ldots, n$, and prove that the number λ is a zero of the polynomial $F_{n}^{*}(x)$ defined recursively by (1.6) and (1.7) if and only if $\lambda_{k} \neq \lambda$ and λ is a zero of the function

$$
\begin{equation*}
\varphi(\lambda)=1-(\lambda(\gamma-1)-\beta) \sum_{k=1}^{n} \frac{\sigma_{k}^{2}}{\lambda_{k}-\lambda} \tag{1.8}
\end{equation*}
$$

where σ_{k} are real numbers such that $\sum_{k=1}^{n} \sigma_{k}^{2}=1$. This result unifies many results concerning interlacing between the zeros of $F_{n}(x)$ and $F_{n}^{*}(x)$ for $\gamma \neq 0$. Moreover we obtain from (1.8) similar results for the case $\gamma=0$, which has not been studied until now. In that case the degree of $F_{n}^{*}(x)$ is unpredictable. We find conditions in order that $F_{n}^{*}(x)$ is of degree $n-1$ and has real and simple zeros which lie between the n zeros of $F_{n}(x)$.

2. Reduction of the problem of zeros of $F_{n}^{*}(x)$ to the problem of the zeros of (1.8)

The relation (1.6), by setting $\alpha_{n}=\sqrt{h_{n+1}}$ and $F_{n}^{*}(x)=\sqrt{h_{1} h_{1} \ldots h_{n}} Q_{n}(x), F_{0}^{*}(x)=Q_{0}(x)$, can be reduced to

$$
\begin{equation*}
\alpha_{n} Q_{n+1}(x)+\alpha_{n-1} Q_{n-1}(x)+\left(c_{n}+\beta \delta_{n, 0}\right) Q_{n}(x)=x\left(1+(\gamma-1) \delta_{n, 0}\right) Q_{n}(x), \tag{2.1}
\end{equation*}
$$

where the polynomials $Q_{n}(x)$ and $F_{n}^{*}(x)$ have the same zeros.
According to an abstract setting [6,7] λ is a zero of the polynomial $Q_{n}(x)$ if and only if it is an eigenvalue of the problem

$$
\left(A V^{*}+V A+C+\beta P_{0}\right) x=\lambda\left(1+(\gamma-1) P_{0}\right) x
$$

in the space H_{n}.
In (2.1) H_{n} is a finite-dimensional Hilbert space with the orthonormal basis e_{k}, $k=0,1, \ldots, n-1, A$ and C are the diagonal operators $A e_{k}=\alpha_{k} e_{k}, C e_{k}=c_{k} e_{k}, k=0,1, \ldots, n-1$, V is the truncated shift ($V e_{k}=e_{k+1}, k=0,1, \ldots, n-2, V e_{n-1}=0$), V^{*} the adjoint of $V\left(V^{*} e_{k}=e_{k-1}, V^{*} e_{0}=0\right)$ and P_{0} is the orthogonal projection of the subspace spanned by the element e_{0}, i.e. $P_{0} x=\left(x, e_{0}\right) e_{0}, x \in H_{n}$. For completeness we give below the proof of the above statement.

Let λ be an eigenvalue of the problem (2.1 α). Since $\alpha_{k} \neq 0, k=0,1,2, \ldots, n-1$, we have $\left(x, e_{0}\right) \neq 0$, because otherwise $\left(x, e_{1}\right)=\left(x, e_{2}\right)=\cdots=\left(x, e_{n-1}\right)=0$, i.e. $x=0$. So we normalize x by setting $\left(x, e_{0}\right)=1$. Then from (2.1 α) we find $\left(x, e_{1}\right)=Q_{1}(\lambda),\left(x, e_{2}\right)=Q_{2}(\lambda), \ldots,\left(x, e_{n-1}\right)=Q_{n-1}(\lambda)$. Since $V e_{n-1}=0$, scalar product multiplication of (2.1α) by e_{n-1} leads to

$$
\alpha_{n-2} Q_{n-2}(\lambda)+c_{n-1} Q_{n-1}(\lambda)=\lambda Q_{n-1}(\lambda),
$$

which together with (2.1 α) gives $Q_{n}(\lambda)=0$.
Conversely if $Q_{n}(\lambda)=0$, then it is easy to see that the vector $x=\sum_{k=0}^{n-1} Q_{k}(\lambda) e_{k}, Q_{0}(\lambda)=1$, satisfies (2.1 α). Note that $x \neq 0$ because $Q_{0}(\lambda)=1$.

We write the problem (2.1 α) in the form

$$
\left(T_{0}+\beta P_{0}\right) x=\lambda\left(1+(\gamma-1) P_{0}\right) x
$$

or

$$
\begin{equation*}
T_{0} x-\lambda x=[\lambda(\gamma-1)-\beta] P_{0} x, \tag{2.2}
\end{equation*}
$$

where

$$
T_{0}=A V^{*}+V A+C .
$$

In (2.2) T_{0} is a self-adjoint operator, whose eigenvalues

$$
\begin{equation*}
\lambda_{1}<\lambda_{2}<\lambda_{3}<\cdots<\lambda_{n} \tag{2.3}
\end{equation*}
$$

are the zeros of the unperturbed polynomial $P_{n}(x)$ of degree n. For $\gamma=1$ the eigenvalue problem (2.2) is the problem

$$
\begin{equation*}
\left(T_{0}+\beta P_{0}\right) x=\lambda x \tag{2.4}
\end{equation*}
$$

where βP_{0} is a perturbation of rank one. In the case n tends to infinity the operator V is the unilateral shift operator on an abstract separable Hilbert space H with the orthonormal basis e_{n}, $n=0,1,2, \ldots$. For more details of the truncated shift V see [5]. It is known that if T_{0} is self-adjoint (not necessarily in a finite-dimensional Hilbert space) with a discrete spectrum then between every distinct pair of eigenvalues $\left(\lambda_{i}, \lambda_{i+1}\right)$ of T_{0} there is precisely one eigenvalue of $T_{0}+\beta P_{0}$ in one of the intervals $\left[\lambda_{i}, \lambda_{i+1}\right)$ or $\left(\lambda_{i}, \lambda_{i+1}\right]$ or $\left(\lambda_{i}, \lambda_{i+1}\right)$ [4]. Here the possible case for the operators T_{0} and $T_{0}+\beta P_{0}$ to have a common eigenvalue is excluded because of a peculiarity of the perturbation P_{0}. This peculiarity is expressed in the following lemma.

Lemma 2.1. Let $\beta \neq \lambda(\gamma-1)$, and assume that x satisfies (2.2) with some real $\lambda \neq 0$. Then λ is a regular point of the operator T_{0}.

Proof. Let λ be an eigenvalue of T_{0}, i.e.

$$
\begin{equation*}
T_{0} x_{0}=\lambda x_{0}, \quad x_{0} \neq 0 \tag{2.5}
\end{equation*}
$$

Then scalar product multiplication of (2.2) by x_{0} gives

$$
(\lambda(\gamma-1)-\beta)\left(P_{0} x, x_{0}\right)=0
$$

or

$$
\left(P_{0} x, x_{0}\right)=\left(x, e_{0}\right)\left(e_{0}, x_{0}\right)=0 .
$$

This is impossible because $\left(x, e_{0}\right) \neq 0$ and $\left(x_{0}, e_{0}\right) \neq 0$.

Now with a slightly modified version of the method used in [4] we prove the following theorem.
Theorem 2.2. Let $\beta \neq \lambda(\gamma-1)$. Then $\lambda \neq 0$ satisfies (2.2) with some $x \neq 0$, if and only if λ is a zero of the function

$$
\begin{equation*}
\varphi(\lambda)=1-[\lambda(\gamma-1)-\beta]\left(\left(T_{0}-\lambda I\right)^{-1} e_{0}, e_{0}\right), \tag{2.6}
\end{equation*}
$$

from which (1.8) follows.

Proof. Let λ be a zero of (2.6), i.e.

$$
1-[\lambda(\gamma-1)-\beta]\left(\left(T_{0}-\lambda I\right)^{-1} e_{0}, e_{0}\right)=0
$$

or

$$
\left(e_{0}, e_{0}\right)-[\lambda(\gamma-1)-\beta]\left(\left(T_{0}-\lambda I\right)^{-1} e_{0}, e_{0}\right)=0
$$

or

$$
\left(e_{0}, e_{0}-[\lambda(\gamma-1)-\beta]\left(T_{0}-\lambda I\right)^{-1} e_{0}\right)=0 .
$$

The last means that the element

$$
\begin{equation*}
y=e_{0}-[\lambda(\gamma-1)-\beta]\left(T_{0}-\lambda I\right)^{-1} e_{0} \tag{2.7}
\end{equation*}
$$

is orthogonal to e_{0}, i.e. $\left(y, e_{0}\right)=0$. Thus from (2.7)

$$
\begin{equation*}
-e_{0}+y=[\lambda(\gamma-1)-\beta]\left(T_{0}-\lambda I\right)^{-1} P_{0}\left(-e_{0}+y\right) \tag{2.8}
\end{equation*}
$$

because $P_{0}\left(-e_{0}+y\right)=-e_{0}$. From (2.8) we see that $x=-e_{0}+y$ is different from the zero element and satisfies (2.2). Conversely let $\lambda \neq 0$ satisfy (2.2). Then because of Lemma $2.1, \lambda$ is a regular point of T_{0}, i.e. $\left(T_{0}-\lambda I\right)^{-1}$ exists as an operator on H_{n} and we have

$$
\begin{equation*}
x=[\lambda(\gamma-1)-\beta]\left(T_{0}-\lambda I\right)^{-1} P_{0} x \tag{2.9a}
\end{equation*}
$$

or

$$
\begin{equation*}
x=[\lambda(\gamma-1)-\beta]\left(T_{0}-\lambda I\right)^{-1}\left(x, e_{0}\right) e_{0} \tag{2.9b}
\end{equation*}
$$

or

$$
\begin{equation*}
x=\left(x, e_{0}\right)[\lambda(\gamma-1)-\beta]\left(T_{0}-\lambda I\right)^{-1} e_{0} . \tag{2.9c}
\end{equation*}
$$

From (2.2) $\left(x, e_{0}\right) \neq 0$ because otherwise $\left(x, e_{1}\right)=0,\left(x, e_{2}\right)=0, \ldots,\left(x, e_{n-1}\right)=0$ and $x=0$. Thus from (2.9) we see that

$$
\left(x, e_{0}\right)=\left(x, e_{0}\right)[\lambda(\gamma-1)-\beta]\left(\left(T_{0}-\lambda I\right)^{-1} e_{0}, e_{0}\right)
$$

and λ is a zero of the function (2.6). Expanding the element $\left(T_{0}-\lambda I\right)^{-1} e_{0}$ in terms of the complete orthonormal system $y_{k}, k=1,2, \ldots, n$, of T_{0} and the eigenvalues λ_{k}, i.e.

$$
\begin{aligned}
\left(T_{0}-\lambda I\right)^{-1} e_{0} & \left.=\sum_{k=1}^{n}\left(T_{0}-\lambda I\right)^{-1} e_{0}, y_{k}\right) y_{k}=\sum_{k=1}^{n}\left(e_{0},\left(T_{0}-\lambda I\right)^{-1} y_{k}\right) y_{k} \\
& =\sum_{k=1}^{n}\left(e_{0}, \frac{1}{\lambda_{k}-\lambda} y_{k}\right) y_{k}=\sum_{k=1}^{n} \frac{1}{\lambda_{k}-\lambda}\left(e_{0}, y_{k}\right) y_{k},
\end{aligned}
$$

we find easily that (2.6) can be taken in the form (1.8), where $\sigma_{k}^{2}=\left|\left(y_{k}, e_{0}\right)\right|^{2}$ and

$$
1=\left\|e_{0}\right\|^{2}=\sum_{k=1}^{n}\left|\left(e_{0}, y_{k}\right)\right|^{2}=\sum_{k=1}^{n} \sigma_{k}^{2}
$$

Remark 2.3. Adding and subtracting the term $(\gamma-1) \sum_{k=1}^{n} \lambda_{k} \sigma_{k}^{2}$ in (1.8) and using the relation $\sum_{k=1}^{n} \sigma_{k}^{2}=1$, the relation (1.8) for $\gamma \neq 1$ can be written in the form

$$
\begin{equation*}
\varphi(\lambda)=\gamma+(\gamma-1) \sum_{k=1}^{n} \frac{\sigma_{k}^{2}\left(\beta /(\gamma-1)-\lambda_{k}\right)}{\lambda_{k}-\lambda} . \tag{2.10}
\end{equation*}
$$

3. Interlacing of zeros

Theorem 3.1. For $\beta \neq 0$ and $\gamma=1$ the zeros λ_{k}^{*} of $F_{n}^{*}(x)$ are real and simple and interlaced with the zeros λ_{k} of $F_{n}(x)$ as

$$
\begin{equation*}
\lambda_{1}<\lambda_{i}^{*}<\lambda_{2}<\cdots<\lambda_{n}<\lambda_{n}^{*} \tag{3.1}
\end{equation*}
$$

for $\beta>0$ and

$$
\begin{equation*}
\lambda_{1}^{*}<\lambda_{1}<\lambda_{2}^{*}<\cdots<\lambda_{n}^{*}<\lambda_{n} \tag{3.2}
\end{equation*}
$$

for $\beta<0$.

Proof. For $\beta>0$ and $\gamma=1$ we observe from the function

$$
\begin{equation*}
\varphi(\lambda)=1+\beta \sum_{k=1}^{n} \frac{\sigma_{k}^{2}}{\lambda_{k}-\lambda}, \tag{3.3}
\end{equation*}
$$

that in the interval $\left(\lambda_{n},+\infty\right)$ there exists at least one zero of $\varphi(\lambda)$. In fact we have $\varphi(+\infty)=\lim _{\lambda \rightarrow+\infty} \varphi(\lambda)=1$ and $\lim _{\lambda \rightarrow \lambda_{n}-0} \varphi(\lambda)=-\infty$ because $\lambda_{n}-\lambda<0$. So by the intermediate theorem there exists a zero of $\varphi(\lambda)$ in $\left(\lambda_{n},+\infty\right)$. Also from (3.3) by the intermediate theorem it follows that between two successive zeros of $F_{n}(x), \lambda_{i}$ and λ_{i+1}, there exists at least one zero of $F_{n}^{*}(x)$. Thus we prove the existence of n real and different zeros of $F_{n}^{*}(x), \lambda_{1}^{*}, \lambda_{2}^{*}, \ldots, \lambda_{n}^{*}$, such that relation (3.1) holds. For $\beta<0$ we also have the existence of n different zeros of $F_{n}^{*}(x)$. The $n-1$ zeros lie between the zeros λ_{k} of the polynomial $F_{n}(x)$. The first zero λ_{1}^{*} lies in the interval $\left(-\infty, \lambda_{1}\right)$ because $\varphi(-\infty)=\lim _{\lambda \rightarrow-\infty} \varphi(\lambda)=1$ and $\lim _{\lambda \rightarrow \lambda_{1}-0} \varphi(\lambda)=-\infty$. Thus we obtain relation (3.2).

Remark 3.2. Theorem 3.1 has been proved by Chihara in [2] by a different method.

Theorem 3.3. Let $\beta=0, \gamma \neq 0$ and let two successive parts in the sum (2.10) have the same sign. Then between two successive zeros of $F_{n}(x)$ there exists at least one zero of $F_{n}^{*}(x)$.

Proof. This follows from (2.10) by the intermediate theorem.

Theorem 3.4. Let $\beta=0, \gamma>1$ and let all zeros λ_{k} of $F_{n}(x)$ be positive. Then the zeros of $F_{n}(x)$ and the zeros λ_{k}^{*} of $F_{n}^{*}(x)$ are interlaced as

$$
\begin{equation*}
\lambda_{1}^{*}<\lambda_{1}<\lambda_{2}^{*}<\cdots<\lambda_{n}^{*}<\lambda_{n} . \tag{3.4}
\end{equation*}
$$

Proof. The existence of $n-1$ zeros follows from Theorem 3.3, and the existence of λ_{1}^{*}, in the interval ($-\infty, \lambda_{1}$), follows from (2.10) because for $\gamma>1, \varphi(-\infty)=\lim _{\lambda \rightarrow-\infty} \varphi(\lambda)=\gamma>0$ and $\lim _{\lambda \rightarrow \lambda_{1}-0} \varphi(\lambda)=\infty$.

Theorem 3.5. Let one of the three sets of conditions,
(a) $\beta /(\gamma-1)<\lambda_{1}, \gamma>1$,
(b) $\beta /(\gamma-1)<\lambda_{1}, \gamma<0$,
(c) $\beta /(\gamma-1)>\lambda_{n}, 0<\gamma<1$,
be satisfied. Then the zeros λ_{k}^{*} of $F_{n}^{*}(x)$ and the zeros λ_{k} of $F_{n}(x)$ are interlaced as

$$
\lambda_{1}^{*}<\lambda_{1}<\lambda_{2}^{*}<\cdots<\lambda_{n}^{*}<\lambda_{n} .
$$

Proof. The proof of the existence of $n-1$ different zeros follows from Theorem 3.3 because $(\beta /(\gamma-1))-\lambda_{k}$ have the same sign. The existence of λ_{1}^{*} in the interval $\left(-\infty, \lambda_{1}\right)$ follows because
(a) for $\gamma>1, \varphi(-\infty)=\gamma>0$ and $\lim _{\lambda \rightarrow \lambda_{1}-0} \varphi(\lambda)=-\infty$,
(b) for $\gamma<0, \varphi(-\infty)=\gamma<0$ and $\lim _{\lambda \rightarrow \lambda_{1}-0} \varphi(\lambda)=+\infty$ and
(c) for $0<\gamma<1, \varphi(-\infty)=\gamma>0$ and $\lim _{\lambda \rightarrow \lambda_{n}-0} \varphi(\lambda)=-\infty$, since $\gamma-1<0,(\beta /(\gamma-1))-\lambda_{k}>0 \forall k=1,2, \ldots, n$ and $\lambda_{1}-\lambda>0$.

In the same way we can easily prove the following.
Theorem 3.6. Let one of the three conditions,
(a) $\beta /(\gamma-1)<\lambda_{1}, 0<\gamma<1$,
(b) $\beta /(\gamma-1)>\lambda_{n}, \gamma<0$,
(c) $\beta /(\gamma-1)>\lambda_{n}, \gamma>1$,
be satisfied. Then the zeros λ_{k} of $F_{n}(x)$ and the zeros λ_{k}^{*} of $F_{n}^{*}(x)$ are interlaced as

$$
\lambda_{1}<\lambda_{1}^{*}<\lambda_{2}<\cdots<\lambda_{n}<\lambda_{n}^{*} .
$$

Remark 3.7. In [9] it was proved that the conclusions of Theorems 3.5 and 3.6 hold true if in the conditions (a), (b), (c) the numbers λ_{1} and λ_{n} are replaced by ζ_{1} and n_{1}, where $\left[\zeta_{1}, n_{1}\right]$ is the true interval of orthogonality of $F_{n}(x)$. Moreover in [9] it was assumed that $\zeta_{1}>-\infty$ and $n_{1}<+\infty$, which restrict the class of the perturbed polynomials $F_{n}(x)$.

Remark 3.8. During the conference Prof. Galliano Valent informed us that the results of Slim [9] were also proved by Allaway [1] in his Ph.D. thesis in 1972, which was never published.

4. The special case $\gamma=0$

This case has not been studied previously by other authors because in that case one of the terms $1+(\gamma-1) \delta_{n, 0}$ of relation (1.6) vanishes, and the degree of the polynomial $F_{n}^{*}(x)$ defined by the recurrence relation (1.6) is unpredictable. However from function (2.10), which in this case takes the form

$$
\begin{equation*}
\varphi(\lambda)=\sum_{k=1}^{n} \frac{\left(\beta+\lambda_{k}\right) \sigma_{k}^{2}}{\lambda_{k}-\lambda}, \tag{4.1}
\end{equation*}
$$

we obtain the following result.

Theorem 4.1. Suppose that $\gamma=0$ and $\beta>-\lambda_{k}, k=1,2, \ldots, n$, or $\beta<-\lambda_{k}, k=1,2, \ldots, n$. Then the degree of the polynomial $F_{n}^{*}(x)$ is $n-1$ and has real and simple zeros, which lie between the n zeros of $F_{n}(x)$.

Proof. From (4.1), using the intermediate theorem, we establish the existence of $n-1$ different real zeros of the polynomial $F_{n}^{*}(x)$. On the other hand, from the recurrence relation we see easily that the degree of $F_{n}^{*}(x)$ cannot be greater than $n-1$.

Acknowledgements

The authors wish to express their thanks to the referees for their helpful remarks and suggestions.

References

[1] W.R. Allaway, The identification of a class of orthogonal polynomial sets, Ph.D. Thesis, Univ. Alberta, Canada, 1972.
[2] T.S. Chihara, On co-recursive orthogonal polynomials, Proc. Amer. Math. Soc. 8 (1957) 899-905.
[3] J.M. Cohen and A.R. Trenholme, Orthogonal polynomials with a constant recursion formula and an application to harmonic analysis, J. Funct. Anal. 59 (1984) 175-184.
[4] H. Hochestadt, One dimensional perturbations of compact operators, Proc. Amer. Math. Soc. 37 (1973) 465-467.
[5] E.K. Ifantis, A theorem concerning differentiability of eigenvectors and eigenvalues with some applications, Appl. Anal. 28 (1988) 257-283.
[6] E.K. Ifantis and P.D. Siafarikas, Differential inequalities on the greatest zero of Laguerre and ultraspherical polynomials, Actas del VI Simposium on Polinomios Orthogonales y Aplicationes, Gijon (1989) 187-197.
[7] E.K. Ifantis and P.D. Siafarikas, On the zeros of a class of polynomials including the generalized Bessel polynomials, J. Comput. Appl. Math. 49 (1993) 103-109.
[8] F. Marcellán, J.S. Dehesa and A. Ronveaux, On orthogonal polynomials with perturbed recurrence relations, J. Comput. Appl. Math. 30 (1990) 203-212.
[9] H.A. Slim, On co-recursive orthogonal polynomials and their application to potential scattering, J. Math. Anal. Appl. 136 (1988) 1-19.

[^0]: * Corresponding author.

 0377-0427/95/\$09.50 (C) 1995 Elsevier Science B.V. All rights reserved
 SSDI 0377-0427(93)E0242-E

