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Abstract

We embed general f (R) inflationary models in minimal supergravity plus matter, a single chiral super-
field �, with or without another superfield S, via a Jordan frame Einstein+scalar description. In particular, 
inflationary models like a generalized Starobinsky one are analyzed and constraints on them are found. We 
also embed the related models of conformal inflation, also described as Jordan frame Einstein+scalar mod-
els, in particular the conformal inflation from the Higgs model, and analyze the inflationary constraints on 
them.
© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Inflation is the leading cosmological model for the initial stages of the evolution of our Uni-
verse. On the other hand, one of the best models for particle physics at higher energies than the 
ones we currently probe at accelerators involves supersymmetry. Including gravity in the picture, 
we expect that physics at high energies has as an effective theory given by supergravity. So it is 
natural to look for inflation in supergravity, and yet obtaining good supergravity models of infla-
tion is notoriously difficult, and generally involves some type of fine-tuning. For instance, until 
recently there were various negative results (“no-go theorems”) for the simplest set-up, for mini-
mal (N = 1) supergravity coupled to matter in the form of a single chiral superfield, see e.g. [1,2]. 
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Recently however, models embedding rather general potentials within N = 1 supergravity with 
one chiral superfield were proposed [3,4], as well as ways to embed general potentials within 
N = 1 supergravity with one chiral superfield (�), plus another one (S) stabilized at zero [2]. 
Also, a special class of models that has been called α-attractors can be embedded in N = 1
supergravity with one chiral superfield [5,6].

In this paper we are interested in the embedding in minimal supergravity plus matter of Jordan 
frame Einstein+scalar models, which can be written as Einstein+scalar with a potential. One 
such class of models are the f (R) models. We will show that a generic f (R) model can be 
written as a Einstein+scalar model, and reversely, any Einstein+scalar with potential model can 
be written in f (R) form. In particular, we will analyze several inflationary potentials from the 
point of view of f (R) and of the minimal supergravity embedding. In the constraints, we will 
use the results of the Planck [7] and WMAP [8] experiments, but not the value of the tensor to 
scalar ratio r from BICEP2 [9], since there is uncertainty surrounding it [10,11] and recently the 
joint Planck and BICEP2 paper drastically modified the result [12].

We will also consider another class of Jordan frame Einstein+scalar models that goes under 
the name of conformal inflation. These are models with two scalar fields and local Weyl symme-
try, found in [13,14], following earlier work by [15–20]. These models generically give rise to 
the same predictions as the Starobinsky model [21], since the asymptotic Einstein-frame scalar 
potential in the inflationary region is the same. In [22] it was considered the possibility that the 
inflaton is also the Higgs, since by now the Higgs is the only discovered scalar [23,24], and 
moreover it was found that with some rather unusual choices for an arbitrary function we can get 
a generalized type of Starobinsky model in the inflationary region (the idea of Higgs inflation has 
a long history; for the present discussion we note that the Bezrukov–Shaposhnikov model [25]
admits a Weyl-symmetric formulation [26]). In this paper we will see that we can actually get 
any potential of the “new inflation” type, and we will investigate the embedding in supergrav-
ity of these conformal Higgs inflation models, and their relation to f (R) models. Note that the 
generalized Starobinsky model was considered before, for instance in [27,28], and in the context 
of supergravity with two chiral superfields in [29–31]. After the paper first appeared on arXiv, 
I became aware of other papers dealing with issues related to the ones described in this paper: in 
[32] it was considered a supersymmetrization of R + Rn Starobinsky-like models, in [33] it was 
shown that the α-attractors later embedded in supergravity in [5,6] can also be related to f (R)

models coupled to an auxiliary vector field, and in [34] it was analyzed the relation between 
f (R) models and generalized versions of the Starobinsky model.

The paper is organized as follows. In section 2 we will first show that a general f (R) action 
can be obtained from Einstein–Hilbert plus a dynamical scalar, and then embed them in minimal 
supergravity. In section 3 we will focus on examples relevant for inflation and consider infla-
tionary constraints on them. In section 4 we change the focus to conformal inflation models, 
and show how to embed them in minimal supergravity. In section 5 we consider the set-up of 
conformal inflation coming from the Higgs, inflationary models related to it, and inflationary 
constraints on them, and in section 6 we conclude.

2. General f (R) from minimal supergravity

2.1. f (R) actions as EH plus dynamical scalar

There is a general procedure for writing an f (R) action as a usual Einstein–Hilbert one plus a 
dynamical scalar field. For instance, in the case of a monomial correction to the Einstein–Hilbert 
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action, it was described e.g. in [22]. One writes a first order form for the f (R) action, in terms 
of an action linear in R, with an auxiliary scalar. When going to the Einstein frame, the auxil-
iary scalar becomes dynamical, and acquires a nontrivial potential. The procedure is not unique 
(though of course the result written in terms of a canonical scalar ϕ is).

We start with a slightly different construction for the R + Rp+1 action than in [22], which is 
easier to generalize. It is easier to start with the action linear in R and with an auxiliary scalar α,

S = M2
Pl

2

∫
d4x

√−g [R(1 + αp) − βαq ]. (2.1)

Varying with respect to α, we obtain

R = β
q

p
αq−p ⇒ α =

[
p

qβ
R

] 1
q−p

, (2.2)

and substituting back in the action we obtain

S = M2
Pl

2

∫
d4x

√−g

{
R + R

q
q−p

β
p

q−p

[(
p

q

) p
q−p −

(
p

q

) q
q−p

]}
. (2.3)

It is clear that by varying β and q and p, we can obtain any coefficient and power for the mono-
mial correction.

In particular, a case that would be experimentally favored for the present day Universe, with 
the monomial being approximately a cosmological constant, i.e. q = ε � 1 (and p = 1) gives

S =
∫

d4x
√−g [R(1 + α) − βαε] ↔ S �

∫
d4x

√−g [R − βR−ε]. (2.4)

However, as we shall shortly see, this does not give a good inflationary potential.
The equivalence to an Einstein–Hilbert action plus dynamical scalar is obtained by first defin-

ing the Einstein metric

gE
μν = [1 + αp]gμν ≡ �−2gμν , (2.5)

and then using the general formula for a Weyl rescaling in d dimensions

R[gμν] = �−2
[
R[gE

μν] − 2(d − 1)g
μν
E ∇E

μ ∇E
ν ln�

− (d − 2)(d − 1)g
μν
E (∇E

μ ln�)∇E
ν ln�

]
, (2.6)

thus obtaining the Einstein plus scalar action

S = M2
Pl

2

∫
d4x

√−gE

[
R[gE] − 3

2
g

μν
E

∇E
μ αp∇E

ν αp

[1 + αp]2
− 2V (α)

]
, (2.7)

where the potential is given by

2V (α) = βαq

[1 + αp]2
, (2.8)

and the canonical scalar ϕ is defined by

αp = e

√
2
3

ϕ
MPl − 1. (2.9)



H. Nastase / Nuclear Physics B 903 (2016) 118–131 121
Note that specializing to the case p = 1, q = ε � 1, we obtain

2V (ϕ) = β

(
e

√
2
3

ϕ
MPl − 1

)ε

e
−2
√

2
3

ϕ
MPl , (2.10)

which it’s clear that doesn’t give a good inflationary potential, despite the naive expectation based 
on the form of the f (R) action (2.4).

We can use the case p = 1 and generalize the construction to an action with a general f (R)

correction to the Einstein–Hilbert term. Again starting with the action with an auxiliary field

S = M2
Pl

2

∫
d4x

√−g [R(1 + α) − βg(α)] , (2.11)

we can solve for α, giving R = βg′(α), or

α = (g′)−1
(

R

β

)
, (2.12)

and substituting in the action we get

S = M2
Pl

2

∫
d4x

√−g

[
R

(
1 + (g′)−1

(
R

β

))
− βg

(
(g′)−1

(
R

β

))]
, (2.13)

which means that the action describes an f (R) model with

f (R) = R(g′)−1
(

R

β

)
− βg

(
(g′)−1

(
R

β

))
. (2.14)

Via the same change to the Einstein metric (2.5), the action is again (2.7), but now with p = 1
and

2V = βg(α)

(1 + α)2
= βe

−2
√

2
3

ϕ
MPl g

(
e

√
2
3

ϕ
MPl − 1

)
, (2.15)

and a canonical scalar defined by α = e

√
2
3

ϕ
MPl − 1.

It seems that any function f (R) should be describable in terms of some function g(R) via 
(2.14), though I have not been able to prove it. What is indeed clear is that reversely, any potential 
V (ϕ) can be derived from a g(X), given by

g(X) = (X + 1)2

β
V

(
MPl

√
3

2
ln(X + 1)

)
(2.16)

and thus from an f (R) given by (2.14).
In particular, a generalized Starobinsky model was defined in [22] implicitly, via the action

S = M2
Pl

2

∫
d4x

√−g
[
R(1 + α)b − βα2b

]
, (2.17)

leading to the potential

2V = β
(α)2b

[1 + α]2b
= β

[
1 − e

−
√

2
3

φ
bMPl

]2b

� β

[
1 − 2be

−
√

2
3

φ
bMPl

]
, (2.18)

where the approximation is for ϕ → ∞, and the canonical scalar is defined by α = e

√
2
3

φ
bMPl − 1. 

We could now write down explicitly g(X), though not f (R).
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2.2. Embeddings in minimal supergravity

Single chiral superfield
In [4] (see also [3]), a way to embed general inflationary potentials in minimal supergravity 

plus a single chiral superfield was described. We will see that it can be applied to our case. 
Consider the Kähler potential (we put MPl = 1 for simplicity whenever we consider superfields)

K = −3 ln

[
1 + � + �̄√

3

]
, (2.19)

and consider the canonical inflaton ϕ to be the imaginary part of �, while the real part is stabi-
lized at zero, 〈Re�〉 = 0, i.e.

ϕ = √
2Im�. (2.20)

Then the kinetic term of � is canonical,

L = −∂μ�̄∂μ� , (2.21)

and then the general N = 1 supergravity plus chiral superfield potential formula,

V = eK
[
g��̄|D�W |2 − 3|W |2

]
, (2.22)

with D�W = ∂�W + (∂�K)W , becomes simply

V (ϕ) = |∂�W(iIm�|2 = (Ŵ ′(ϕ))2 , (2.23)

where

W(�) = 1√
2
Ŵ (−√

2i�) , (2.24)

if Ŵ is a real function of its argument.
For the generalized Starobinsky model (2.18), we get the derivative of Ŵ

Ŵ ′(ϕ) =√β/2

[
1 − e

−
√

2
3

ϕ
b

]b

, (2.25)

which gives the superpotential

W(�) =
√

3β/2

2
(−1)1−be

−
√

2
3 �

2F1(−b,−b,1 − b; e
√

2
3

�
b ). (2.26)

For the general f (R) in (2.14), with scalar potential (2.15), we obtain

Ŵ ′(ϕ) =√β/2e
−
√

2
3 ϕ

√
g

(
e

√
2
3 ϕ − 1

)
, (2.27)

leading to the superpotential

W(�) =√β

∫
d�e

−
√

2
3 �

√
g

(
e

√
2
3 � − 1

)
. (2.28)
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Two chiral fields
In [2], another way to embed inflationary models in minimal supergravity was considered, 

with two superfields � and S, but the second being stabilized at zero, 〈S〉 = 0. The Kähler 
potential is

K = −α log(� + �̄ − SS̄) , (2.29)

and the superpotential is

W = Sf (�). (2.30)

From the general N = 1 supergravity formula

V = eK
[
gij̄ (DiW)Dj̄ W̄ − 3|W |2

]
, (2.31)

with X ≡ � + �̄ − SS̄, we get at S = 0,

V (S = 0) = eKgSS̄ |DSW |2 = X1−α

α
|f |2. (2.32)

We see that we have to take R = Re� as the inflaton, with the canonical inflaton ϕ being found 
from g��̄ = α/(4R2) as

R = e

√
2
α
ϕ
. (2.33)

For the generalized Starobinsky model, equating (2.18) with (2.32), we obtain the superpo-
tential

W(�,S) = S2
α−3

2
√

αβ�
α−1

2

(
1 − �

−
√

α
3

1
b

)b

. (2.34)

The Starobinsky case α = 3, b = 1, for the coefficient β = 3, gives

W = 3S(� − 1). (2.35)

Note however that from (2.32), various α’s give various potentials for Im� corresponding to the 
same V (ϕ).

For the general f (R) defined by the function g(R), the potential (2.15) equated with (2.32)
gives the superpotential

W = S
√

αβ/2(2�)
α−1

2 �
−
√

α
3

√
g

(
�

√
α
3 − 1

)
. (2.36)

For α = 3, the form becomes simpler,

W =√6βS
√

g(� − 1). (2.37)

Considering the monomial function,

g(X) = Xa

a
, (2.38)

giving

f (R) = a − 1

a

R
a

a−1

1
a−1

, (2.39)

β
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the superpotential is

W(�,S) =√6βS
(� − 1)a/2

√
a

. (2.40)

3. Inflationary f (R) models and constraints

We can now specialize to inflationary models of the f (R) type. We have already seen the 
superpotentials (2.26) and (2.34) for the generalized Starobinsky model. Another possibility is 
to take a potential that is simply

V = β

[
1 − ce

−
√

2
3

αϕ
MPl

]
. (3.1)

This corresponds to the function

g(X) = (X + 1)2[1 − c(X + 1)−α] , (3.2)

which via (2.37) leads to the two chiral superfield superpotential

W(�,S) =√6βS�
√

1 − c�−α , (3.3)

and via (2.28) leads to the single chiral superfield superpotential

W(�) =
√

β

2

⎧⎨
⎩−

√
6

α

√
1 − ce

−
√

2
3 α� + � +

√
6

α
log

⎡
⎣1 +

√
1 − ce

−
√

2
3 α�

⎤
⎦
⎫⎬
⎭ . (3.4)

The W(�, S) superpotential can be thought of as summing an infinite series of quantum cor-
rections to the classical W ∼ S� piece.

As explained in [22], defining the usual inflationary parameters

ε = M2
Pl

2

(
V ′(ϕ)

V (ϕ)

)2

η = M2
PlV

′′(ϕ)

V (ϕ)

Ne = −
ϕf∫

ϕ0

dϕ/MPl√
2ε

, (3.5)

we find that ε � η and

ns − 1 � 2η; r = 16ε = 2

α2
(ns − 1)2; Ne = 2

1 − ns

. (3.6)

For example, Ne = 50 gives ns = 0.9600 and Ne = 60 gives ns = 0.9667, both compatible with 
the Planck+WMAP result 0.9603 ± 0.0073 [7]. Since there is uncertainty in the determination 
of r , the initial result of BICEP2 [9] being modified, we will not consider r for excluding models.

The generalized Starobinsky model (2.18) corresponds to the function

g(X) = (X + 1)2[1 − (X + 1)−
1
b ]2b , (3.7)
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so in particular the Starobinsky model, with b = 1, corresponds to g(X) = X2. The analysis at 
large ϕ is the same as the above, for α = 1/b. The constraint on ns is the same, and only on r is 
modified, but as we said we will not consider it for the purpose of excluding models.

As we saw, we can derive any potential from an g(X), and thus from an f (R). In particular, 
for the usual power law chaotic inflation, with

V = λpφp , (3.8)

which gives as usual

ε = p2

2

(
MPl

ϕ∗

)2

η = p(p − 1)

(
MPl

ϕ∗

)2

Ne,∗ � 1

2p

(
ϕ∗
MPl

)2

, (3.9)

so

ns − 1 = −6ε + 2η = −p + 2

2Ne,∗
; r = 16ε = 4p

Ne,∗
, (3.10)

we obtain the function

g(X) = (X + 1)2 lnp(X + 1) , (3.11)

which for general p has a derivative g′(X) = p(X + 1) lnp−1(X + 1) + 2(X + 1) lnp(X + 1) that 
is not so easy to invert in order to obtain f (R) explicitly.

For the simplest model, p = 1, g′(X) can be inverted only approximately. For X + 1 very 
small or very large, we have

X + 1 + 2(X + 1) ln(X + 1) = ±y ⇒ X � −1 + ±y

1 + 2 ln(y)
, (3.12)

so

f (R) � −R + R2

β(1 + 2 ln(R/β))2

[
ln(R/β) + ln(2 ln(R/β))

]
, (3.13)

and the Einstein–Hilbert term cancels. We see that in the f (R) picture, this simplest of models, 
EH term plus a free scalar with a linear potential, already looks quite complicated.

The class of monomial chaotic inflation potentials (3.8) can be embedded in supergravity via 
(2.37) with the superpotential

W(�,S) =√6βS� lnp/2 � , (3.14)

and via (2.28) with the superpotential

W = (2/3)p/4√λp

p/2 + 1
�p/2+1 , (3.15)

so even powers p are obtained from simple polynomial superpotentials.
The chaotic inflation monomials are again viable experimentally, p = 2 giving 1 −ns = 2/Ne

as the Starobinsky model, only with a different r , r = 8/Ne.
Other examples of inflationary potentials can be treated similarly.
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4. Conformal inflation from minimal supergravity

Models of conformal inflation are models with two real scalars and a local Weyl symmetry, 
as well as a SO(1, 1) invariance at large field values. They have been defined in [13,14]. The 
extension described here was found in [22].

One starts with the Einstein-scalar action in a Jordan frame

S = 1

2

∫
d4x

√−g

[
∂μχ∂μχ − ∂μφ∂μφ + χ2 − φ2

6
R − 2V

]
, (4.1)

where both the kinetic terms and the potential V are invariant under the local Weyl symmetry

gμν → e−2σ(x)gμν; χ → eσ(x)χ; φ → eσ(x)φ , (4.2)

allowing the elimination of one of the scalars through gauge fixing. In particular, a gauge choice 
(Einstein gauge) leading to the Einstein frame is

χ = √
6MPl cosh

ϕ√
6MPl

; φ = √
6MPl sinh

ϕ√
6MPl

. (4.3)

The kinetic terms are invariant under the SO(1, 1) symmetry acting on (χ, φ), and one im-
poses the same symmetry at large χ and φ for the potential V . This fixes

V = λf (φ/χ)[φ2 − h(φ/χ)χ2]2 , (4.4)

with h(1) = 1.
Considering the models with f ≡ 1 in Einstein gauge, the Einstein frame potential is

V = 36λM4
Pl

[
sinh2 ϕ√

6MPl
− h

(
tanh

ϕ√
6MPl

)
cosh2 ϕ√

6MPl

]2

. (4.5)

Then, using the embedding with a single chiral superfield, we obtain the superpotential

W(�) = 3
√

λM2
Pl

∫
d�

[
sinh2 �√

6MPl
− h

(
tanh

�√
6MPl

)
cosh2 �√

6MPl

]
, (4.6)

and using the embedding with two chiral superfields, we obtain the superpotential

W(�,S) = 6
√

λαM2
PlS(2�)

α−1
2

⎡
⎣ (�/MPl)

√
α
3 + (�/MPl)

−
√

α
3 − 2

4

− h

⎛
⎝ (�/MPl)

1
2

√
α
3 − (�/MPl)

− 1
2

√
α
3

(�/MPl)
1
2

√
α
3 + (�/MPl)

− 1
2

√
α
3

⎞
⎠ (�/MPl)

√
α
3 + (�/MPl)

−
√

α
3 + 2

4

⎤
⎦ .

(4.7)

For α = 3, we obtain

W(�,S) = 12
√

3λM3
PlS

[
(�/MPl − 1)2

4
− h

[
�/MPl − 1

�/MPl + 1

]
(�/MPl + 1)2

4

]
. (4.8)

We see that in W(�), at small � we have a renormalizable superpotential,

W(�) �√λ/2
∫

d�

[
�2 − h

(
�√

)(
6M2

Pl + �2
)]

, (4.9)

6MPl
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so we can think of the large � function as a UV completion. In W(�, S), for α = 3, we have 
again a renormalizable superpotential.

5. Conformal inflation from the Higgs models and constraints

As explained in [22], the conformal inflaton ϕ can be thought to be related to the Higgs, 
specifically by φ = √

H †H . In that case we want to obtain the Higgs potential at small energies, 
which means we need h(0) � ω2, where ω � 246 GeV/

√
6MPl, and the function h(x) must give 

subleading corrections at small energies, so in the simplest case, of a polynomial plus a constant, 
thus

h(x) = ω2 + (1 − ω2)xn , (5.1)

with n > 2. Then, at small x, we get

V � λ[ϕ2 − (246 GeV)2]2 , (5.2)

plus higher corrections, as we want. With the above h(x), the superpotential W(�) at small field, 
including the first correction, is

W(�) � √
λ/2(

√
6MPl)

3

[
1

3

(
�√
6MPl

)3

− ω2 �√
6MPl

− 1

n + 1

(
�√
6MPl

)n+1
]

, (5.3)

and the superpotential W(�, S), including the first correction, is

W(�,S) � 12
√

αλM3
Pl�S

[
(�/MPl − 1)2

4
− ω2 (�/MPl + 1)2

4
− 1

4

(�/MPl − 1)n+2

(�/MPl + 1)n

]
,

(5.4)

and one could easily see such superpotentials for the Higgs field appearing in specific models.
For generic embedding functions f (x) and h(x) (that are not too singular), one obtains the 

Starobinsky model, for instance for (5.1) one obtains at ϕ → ∞,

V (ϕ) � 9(n − 2)2λM4
Pl

[
1 − 2ne

−
√

2
3

ϕ
MPl

]
. (5.5)

If the functions admit a Taylor expansion at x = 1, we will obtain the Starobinsky model, so we 
must look for functions that have a different behavior there.

In order to avoid the Starobinsky model by having a faster deviation than e−
√

2
3

ϕ
MPl from the 

asymptotic constant potential, it is easier to construct functions f (x), for the same h(x) as above. 
For example, one way to generate a generalized Starobinsky model is via a function

f (x) = 1 + C

[
ln

2

1 + xp

]α

, (5.6)

with p > 2. Indeed, then at ϕ → ∞ we obtain

f (x) � 1 + Cpαe
−
√

2
3

αϕ
MPl , (5.7)

and for ϕ → 0 we get

f (x) � 1 + C lnα 2 − αC lnα−1 2

(
ϕ√

)p

. (5.8)

6MPl
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Then, if α < 1, the deviation from the asymptotic constant at ϕ → ∞ is larger than the deviation 
due to h(x), hence it dominates. We see now that the more precise condition on the function 
f (x) is f (1 − x) − 1 ∝ xα1 and f (x) − 1 ∼ c1 + c2x

p , with α1 �= 1 and p > 2, for x → 0.
We can also generate an inflationary potential of the type

V = V0

(
1 − K

(
MPl

ϕ

)p)
, (5.9)

which lead to the slow-roll inflationary parameters

ε = 1

2

(
pK

(
MPl

ϕ∗

)p+1
)2

� |η|

η = −(p + 1)K

(
MPl

ϕ∗

)p+2

Ne,∗ = 1

p(p + 2)K

(
ϕ∗
MPl

)p+2

, (5.10)

and thus to the observables

1 − ns � −2η = 2(p + 1)

p(p + 2)

1

Ne,∗

r = 16ε = 8p2K
2

p+2

[p(p + 2)] 2p+2
p+2

1

N

2p+2
p+2

e,∗
. (5.11)

Such inflationary potentials are obtained for instance from the function

f (x) = 1 − C ln−p

(
1 − xq

2q

)
, (5.12)

with q > 2, which gives at ϕ → ∞

f (x) � 1 − C

(
−
√

3

2

)p (
MPl

ϕ

)p

, (5.13)

and at ϕ → 0

f (x) � 1 − C(− ln(2q))−p

(
1 − p

ln(2q)

(
ϕ√

6MPl

)q)
. (5.14)

Since the power law is a larger deviation from the asymptotic constant than the exponential, the 
correction at ϕ → ∞ coming from this f (x) dominates over the correction coming from h(x).

For the power law deviation, 1 −ns = 2(p + 1)/[p(p + 2)Ne] is not ruled out only for p = 1, 
for which we obtain ns = 1 − 4/(3Ne), giving 0.9733 for Ne = 50, still within 2σ of the central 
value for Planck+WMAP. Already for p = 2, the Ne = 50 value is ns = 0.9850, more than 3σ

away from the central value.
We have given examples of just exponential and power law deviations from the asymptotic 

constant at ϕ → ∞, but it is not hard to see that through appropriate choosing of the functions 
f (x) and g(x) we can get to any inflationary potential of the “new inflation” type (deviation 
from an asymptotic constant value for the potential), though generically (i.e., for functions with 
Taylor expansion at x = 1), we get the Starobinsky model.
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But in order to judge the naturalness of the model, from the point of view of the embedding 
into supergravity, the issue is how natural (i.e., simple and likely to be obtained as an effective 
theory) is the superpotential? We will just give examples of the asymptotic behaviors. For the 
generic Starobinsky asymptotic behavior in (5.5), the asymptotic value of W(�) is

W(�) = 3

√
λ

2
(n − 2)M3

Pl

[
�

MPl
− 2n

√
3

2
e
−
√

2
3

�
MPl

]
, (5.15)

and of W(�, S) is

W(�,S) = 3(n − 2)
√

λαM2
PlS�

α−1
2

[
1 − n�

−
√

α
3

]
, (5.16)

and a similar one for the generalized Starobinsky model. For the asymptotic behavior in (5.9), 
the asymptotic value of W(�) is

W(�) = MPl

√
V0

2

[
�

MPl
− K

2(p + 1)

(
MPl

�

)p+1
]

, (5.17)

and of W(�, S) is

W(�,S) =√αV0S�
α−1

2

[
1 − K

(√
α

2
ln

�

MPl

)−p
]

. (5.18)

These behaviors are natural enough, though one would need to construct models that can inter-
polate between these behavior and the Higgs behaviors at small field.

6. Conclusions

In this paper we have embedded Jordan frame Einstein+scalar models in minimal supergrav-
ity in two ways, using the constructions of [4] and [2]. We have seen that a generic f (R) model 
can be written as a Einstein+dynamical scalar model, and reversely any inflationary potential 
can be written as f (R), and embedded these models in N = 1 supergravity, and considered the 
inflationary constraints on them. We have also seen that conformal inflation from the Higgs mod-
els can also be embedded in N = 1 supergravity, and are compatible with any kind of inflationary 
potential of “new inflation” type, and considered inflationary constraints on them.

We see that the simplicity and/or naturalness of inflationary models depend on the point of 
view, and how one intends to derive them from a more fundamental theory. An f (R) model 
might look simple, yet the Einstein frame+scalar picture might be complicated, or reversely 
a simple Einstein frame picture can correspond to a complicated f (R). A conformal inflation 
model might look simple, but the Einstein frame+scalar picture can be complicated. In the end, 
if these models come from minimal supergravity, we should ask how likely it is to have such a 
supergravity model as an effective action, perhaps coming from a more fundamental (e.g. string) 
theory? We can only answer this question in specific UV complete models, but the goal of this 
paper was to set up the problem in a way that can be addressed, by relating various Jordan frame 
Einstein+scalar models to the Einstein frame and embedding them in minimal supergravity plus 
matter.
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