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Abstract

Mayer cluster expansion is an important tool in statistical physics to evaluate grand canonical partition
functions. It has recently been applied to the Nekrasov instanton partition function of N = 2 4d gauge
theories. The associated canonical model involves coupled integrations that take the form of a generalized
matrix model. It can be studied with the standard techniques of matrix models, in particular collective field
theory and loop equations. In the first part of these notes, we explain how the results of collective field theory
can be derived from the cluster expansion. The equalities between free energies at first orders is explained
by the discrete Laplace transform relating canonical and grand canonical models. In a second part, we study
the canonical loop equations and associate them with similar relations on the grand canonical side. It leads
to relate the multi-point densities, fundamental objects of the matrix model, to the generating functions of
multi-rooted clusters. Finally, a method is proposed to derive loop equations directly on the grand canonical
model.
© 2014 The Author. Published by Elsevier B.V.

1. Introduction

The AGT correspondence [1] implies a relation between the canonical partition function of
a β-ensemble and the grand canonical partition function of a generalized matrix model. The
former represents a correlator of Liouville theory, according to the proposal of Dijkgraaf and
Vafa [2], further investigated in [3–11]. The latter describes the instanton partition function of
a 4d N = 2 supersymmetric gauge theory in the Ω-background, as derived using localization
techniques in [12]. Here the term ‘generalized matrix model’ do not pertain to a matrix origin

Funded by SCOAP3.Open access under CC BY license.
E-mail address: jebourgine@apctp.org.

http://dx.doi.org/10.1016/j.nuclphysb.2014.01.017
0550-3213 © 2014 The Author. Published by Elsevier B.V. Funded by SCOAP3.Open access under CC BY license.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.nuclphysb.2014.01.017
http://www.elsevier.com/locate/nuclphysb
mailto:jebourgine@apctp.org
http://dx.doi.org/10.1016/j.nuclphysb.2014.01.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2014.01.017&domain=pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


J.-E. Bourgine / Nuclear Physics B 880 (2014) 476–503 477
for the model, but instead refers to a set of models that can be studied using techniques initially
developed in the realm of matrix models. Among these techniques, the topological recursion
[13] exploits the invariance of the integration measure to derive a tower of nested equations
satisfied by the correlators of the model. These equations, referred as loop equations, are solved
employing methods from algebraic geometry. This technique has recently been extended to a
wide spectrum of coupled integrals models in [14].

In a suitable limit of the β-ensemble, AGT-equivalent to the Nekrasov–Shatashvili (NS) limit
of the Ω-background [15], loop equations are no longer algebraic but first order linear differential
equations.1 In this context, the β-ensemble is a natural quantization of the Hermitian matrix
model, to which it reduces at β = 1. The first element of this tower of differential equations has
been mapped to the TQ relation derived in [16–18] that describes the dual SUSY gauge theory
in the NS limit [19–22]. It is then natural to ask about the existence of a structure similar to loop
equations on the gauge side of the correspondence.2 But so far, the loop equation technique has
not been applied to grand canonical matrix models. On the other hand, the cluster expansion of
Mayer and Montroll [26] has been successfully employed to derived an effective action relevant
to the NS limit [15]. Can we relate this cluster expansion to the topological expansion of a
generalized matrix model? Is there an equivalent of the loop equations technique on the grand
canonical side? And more generally, how do canonical and grand canonical coupled integrals
relate to each other? These are the issues we propose to address in these notes.

For this purpose, we consider the following grand canonical generalized matrix model,

ZGC(q̄) =
∞∑

N=0

q̄N

N !ZC(N), ZC(N) =
∫
RN

N∏
i=1

Q(φi)
dφi

2iπ

N∏
i,j=1
i<j

K(φi − φj ). (1.1)

In analogy with the Nekrasov partition function, integrals are understood as contour integrals
over the real line. The potential Q(x) and the kernel K(x) are free of singularities over the
real axis.3 We propose to study the expansion of ZGC(q) when the kernel is close to one. More
precisely, we assume the form

K(x) = 1 + εf (x), ε → 0, (1.2)

with f an even function, non-vanishing at x = 0. Although the results of these notes are very
general, what we have in mind for the function f is typically

f (x) = 1

x2 − γ 2
, Imγ �= 0. (1.3)

It is crucial for our considerations that f is independent of ε. In this way, we exclude a class of
models more relevant to the study of Nekrasov partition functions. For instance, setting ε = γ 2,
one recovers the model proposed by J. Hoppe in [27]. This model is a one-parameter version
of the Nekrasov partition function that depends on two Ω-background equivariant deformation
parameters ε1 and ε2 [28,29]. As ε → 0, it exhibits a phenomenon referred as instanton clustering

1 Except for the first (planar) equation, which is a Riccati equation, therefore non-linear. It is equivalent to a Schrödinger
equation, i.e. a linear differential equation of second order.

2 Such a structure should be related to the invariance of Nekrasov partition functions under transformations representing
the SHc algebra uncovered in [23] (see also [24,25]).

3 In the case of real singularities, a prescription should be given to move away the poles from the contour by a small
imaginary shift.
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Fig. 1. First orders in the Mayer expansion of the free energy.

in the context of SUSY gauge theories [15]. It corresponds to poles coming from the kernel and
pinching the integration contour. Such poles should be avoided by a deformation of the contour,
picking up the corresponding residues. As a result, terms of the ε-expansions we are considering
are reshuffled and the results presented here are no longer valid.

These notes are organized as follows. In the second section, we compare the Mayer cluster
expansion of the grand canonical model with the collective field theory describing the large
N limit of the canonical model. Taking the coupled limit ε → 0 and N → ∞ with Nε fixed,
we derive relations between the free energies at first orders. These relations are a consequence
of the fact that the grand canonical partition function is the discrete Laplace transform of the
canonical one. We go on with the study of the canonical loop equations. We show that they relate
to graphical identities between generating functions of rooted clusters. Such generating functions
show up in the Mayer expansion and are identified with the multi-point densities. Finally, we
present a technique to derive directly the grand canonical loop equations. The main results are
summarized in the concluding section.

2. Comparison of the free energies at first orders

2.1. Mayer expansion of the grand canonical model

The cluster expansion was introduced by Mayer and Montroll as a way to compute the free
energy knowing the form of the interaction between particles [26] (see also the book [30] and
the excellent review by Andersen [31]). It allows to derive the equation of state for various types
of fluids. To do so, the kernel is expanded in ε, which corresponds to strength of molecular
interactions in the case of non-ideal gases. The terms of the series consist of coupled integrals
with the kernel f instead of K , and their expression is encoded into clusters. Here, a cluster is a
set of vertices connected by at most one link. The partition function is a sum over disconnected
clusters, but after taking the logarithm the summation is restricted to connected ones. We denote
by Cl a generic connected cluster with l vertices, E(Cl) the set of its links (or edges) and V (Cl)

the set of vertices. To each vertex i of a cluster is associated an integration over the particle of
coordinate φi with measure q̄Q(φi) dφi/2iπ . The edge 〈ij〉 between particles i and j represents
the kernel εf (φi − φj ). Thus, the logarithm of the partition function writes

logZGC(q̄) =
∞∑
l=0

q̄ l
∑
Cl

1

σ(Cl)

∫ ∏
i∈V (Cl)

Q(φi)
dφi

2iπ

∏
〈ij〉∈E(Cl)

εf (φi − φj ), (2.1)

where the symmetry factor σ(Cl) is the cardinal of the group of automorphism for the cluster, i.e.
the number of permutations of vertices that leave Cl invariant. The first terms of the expansion
and their symmetry coefficients are given in Fig. 1.

The Mayer expansion (2.1) is an expansion at small (bare) fugacity q̄ . We would like to re-
formulate it as a q̄-exact expansion in the parameter ε. We will also renormalize the fugacity,
keeping q = q̄ε fixed. By analogy, q̄ would encode the gauge coupling constant of the Nekrasov
partition function, and the Mayer cluster expansion is an expansion upon the number of instan-
tons. More precisely, q̄ would correspond to qgauge(ε1 + ε2)/ε1ε2 and should be renormalized
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Fig. 2. The leading order free energy as a sum over trees.

Fig. 3. First terms in the expansion of the rooted tree generating function Y0(x).

by a factor ε2 in the NS limit ε2 → 0. In this context, the ε-expansion we study corresponds
to an expansion in the Ω-background parameter ε2, or in the AGT dual, to the semi-classical
expansion of Liouville correlators.

Since each link brings a factor of ε, at first order only the clusters with a minimal number of
links contribute. These clusters, denoted Tl , have a tree structure, with l − 1 links for l vertices.
Thus, at first order in ε the free energy is given by the following sum over trees,

F (0)
GC(q) = lim

ε→0
ε logZGC(q̄)

=
∞∑
l=0

ql
∑
Tl

1

σ(Tl)

∫ ∏
i∈V (Tl)

Q(φi)
dφi

2iπ

∏
〈ij〉∈E(Tl)

f (φij ), (2.2)

where we used the shortcut notation φij = φi − φj . Note that we have renormalized the free
energy by a factor of ε, which is reminiscent of the volume of the Ω-background ε1ε2 by which
the prepotential should be multiplied in order to be finite in the R

4 limit ε1, ε2 → 0. The first
terms of this expansion are given in Fig. 2.

To evaluate F (0)
GC, it is convenient to consider the generating function of rooted trees T x

l ,
defined as

Y0(x) = qQ(x)

∞∑
l=0

∑
T x

l

1

σ(T x
l )

∫ ∏
i∈V (T x

l �{x})
qQ(φi)

dφi

2iπ

×
∏

〈ij〉∈E(T x
l �{x})

f (φij )
∏

〈xi〉∈E(T x
l )

f (x − φi), (2.3)

where with a slight abuse of notations we denoted the root and its coordinate by the same letter x.
The first order terms of this expansion are given in Fig. 3. This function is interpreted as a
tree-level dressed vertex. We should also emphasize that ‘rooting’ a tree, or marking a vertex,
reduces the symmetry factor σ(T x

l ) � σ(Tl) since automorphisms are now constraint to leave
the root, or the marked vertex, invariant.

The function Y0(x) obeys an integral equation that can be obtained as follows. Let us assume
that the root x is directly connected to p vertices, and sum over the possible numbers p. Each of
these p vertices is the root of a new tree, and we deduce the relation,

Y0(x) = qQ(x)

∞∑
p=0

1

p!
(∫

dy

2iπ
f (x − y)Y0(y)

)p

, (2.4)
R
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Fig. 4. Graphical representation of the recursion relation obeyed by Y0.

graphically represented on Fig. 4. The symmetry factor p! takes into account the possibility of
permuting the p vertices. Performing the summation, and taking the logarithm, we obtain the
integral equation satisfied by Y0,

log

(
Y0(x)

qQ(x)

)
=
∫
R

dy

2iπ
f (x − y)Y0(y). (2.5)

It remains to relate the free energy to the generating function Y0. This is done using the
following formula due to B. Basso, A. Sever and P. Vieira [32],4

F (0)
GC(q) =

∫
R

Y0(x)
dx

2iπ
− 1

2

∫
R2

dx

2iπ

dy

2iπ
Y0(x)Y0(y)f (x − y). (2.6)

It is easy to see that both terms in the RHS will produce a sum over clusters weighted by the same
integrals as in (2.2), but with different symmetry factors. A combinatorial proof of this formula
is given in Appendix A.

It is useful to reformulate the previous expression (2.6) of the free energy at first order as the
value of an effective action SGC[Y0] at its extremum Y ∗

0 ,

F (0)
GC(q) = SGC

[
Y ∗

0

]
, such that

δSGC

δY0

∣∣∣∣
Y0=Y ∗

0

= 0. (2.7)

This action is obtained after introducing the integral equation (2.5) into (2.6),

SGC[Y0] = 1

2

∫
R2

dx

2iπ

dy

2iπ
Y0(x)Y0(y)f (x − y) −

∫
R

dx

2iπ
Y0(x)

[
logY0(x) − 1

]

+
∫
R

dx

2iπ
Y0(x) log

(
qQ(x)

)
. (2.8)

It is remarkable that the saddle point equation derived from this action is nothing else than the
integral equation (2.5). It is also worth noticing that when instanton clustering phenomenon is
taken into account, one arrive at a similar expression, with logarithms replaced by dilogarithms
in the second term. For instance, the effective action derived by Nekrasov and Shatashvili to
describe N = 2 SYM reads

SNS[ρ] = 1

2

∫
ρ(x)ρ(y)G(x − y) +

∫ [
Li2
(
1 − e−ρ(x)

)− ρ(x) log
(
1 − e−ρ(x)

)]
dx

+
∫

ρ(x) log
(
qQ(x)

)
dx, (2.9)

4 This very useful formula was brought to my knowledge by B. Basso. So far, we were unable to find a proper reference
in the previous literature. However, similar considerations were presented in [33].
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Fig. 5. Pure cycle clusters.

where we used the notations of [15]. Expanding the middle term in ρ, we recover at the order
o(ρ2) the action (2.8) obtained previously. This type of ‘cut-off’ term for the action has been
studied in [22].

Subleading order
We now focus on F (1)

GC, the second order term in the ε-expansion of the free energy at fixed q ,

ε logZGC(q̄) =
∞∑

k=0

εkF (k)
GC(q). (2.10)

At this order, clusters that contribute have l links for l vertices, which means that they have
exactly one cycle. Such clusters will be denoted Sl . The relevant terms of the Mayer expansion
for the free energy are

F (1)
GC(q) =

∞∑
l=3

ql
∑
Sl

1

σ(Sl)

∫ ∏
i∈V (Sl)

Q(φi)
dφi

2iπ

∏
〈ij〉∈E(Sl)

f (φij ). (2.11)

The q-expansion starts here at l = 3 since at least three vertices are needed to form a cycle. As
we go to higher orders in ε, more vertices will be needed to form the cycles, leading to a higher
first order term in q . Thus, F (0)

GC fully determines the q-expansion of the free energy up to order

O(q2), and F (0)
GC + εF (1)

GC up to O(q3).
To evaluate the summation over clusters Sl , we first consider the clusters depicted on Fig. 5,

and for which all vertices belong to the cycle. Such clusters have a symmetry factor of σ(Sl) = 2l

due to the invariance under l rotations, and a reflexion symmetry. Their contribution writes

1

2l

∫ l∏
i=1

f (φi − φi+1)qQ(φi)
dφi

2iπ
, (2.12)

where indices are taken modulo l.
All the clusters of type Sl may be obtained by dressing the vertices of a pure cycle cluster

by appropriate trees. Summing over the dressing possibilities boils down to replace qQ(φ) in
the formula (2.12) by the tree-level dressed vertex Y0(φ). The expression for the free energy
correction follows,

F (1)
GC(q) =

∞∑ 1

2l

∫ l∏
f (φi − φi+1)Y0(φi)

dφi

2iπ
. (2.13)
l=3 i=1
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This is actually the expansion of the logarithm of a Fredholm determinant where the first two
terms are missing. Taking the exponential, we find

eF
(1)
GC(q̄) = e− 1

2 f (0)
∫

dx
2iπ

Y0(x)√
det
[
δ(x − y) − 1

2iπ
f (x − y)Y0(y)

]
× exp

(
−1

4

∫
dx

2iπ

dy

2iπ
Y0(x)Y0(y)f (x − y)2

)
. (2.14)

The two missing terms correspond to a tadpole (a vertex with a link looping back to it) and two
vertices doubly connected.

2.2. Collective field theory of the canonical model

The action (2.8) obtained above describes a Dyson gas of particles with the non-singular inter-
action f at β = 0 [34]. It is also the effective action of a collective field theory for a generalized
matrix model at large N [35]. We will show here that the corresponding matrix model is simply
the canonical model ZC defined in the introduction (up to minor corrections). The fact that grand
canonical and canonical models share the same effective action further leads to relate the rooted
vertex generating function at tree level Y0 with the collective field at large N .

At first order in ε, the canonical partition function is equivalent to

ZC(N, ε) 	
∫ N∏

i=1

Q(φi)
dφi

2iπ

N∏
i,j=1
i<j

eεf (φij ). (2.15)

The collective field is by definition a generating function of invariants under the permutation of
eigenvalues. It is convenient to use the eigenvalue density,

ρ0(x) = 1

N

N∑
i=1

δ(x − φi), (2.16)

that has been normalized to one. It is usual for matrix models to assume that in the large N

limit, eigenvalues condense into a finite union of connected sets, typically a union of intervals
for Hermitian matrices. This set Γ is the support of a continuous eigenvalue density ρ0 obtained
as the large N limit of the finite densities defined in (2.16). Depending on the explicit form of
potential and interaction, this assumption might not be valid. We will nonetheless work in this
framework, the results derived following this approach being consistent with those obtained on
the grand canonical model.

In the collective field theory approach, the canonical free energy is given at first order by the
extrema of an effective action SC,

eNZC(N, ε) 	 eNSC[ρ∗
0 ], ∂x

δSC

δρ0(x)

∣∣∣∣
ρ0=ρ∗

0

= 0. (2.17)

The factor eN has been introduced here to facilitate later comparison with the previous subsec-
tion. The canonical action is a sum of three terms,
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SC[ρ0] = 1

2
εN

∫
f (x − y)ρ0(x)ρ0(y) dx dy +

∫
ρ0(x) log

(
Q(x)

2iπ

)
dx

−
∫

ρ0(x)
[
logρ0(x) − 1

]
dx. (2.18)

The derivation of the first two terms is rather straightforward since it is sufficient to write down
the integrand of (2.15) in an exponential form, and replace the sum over eigenvalues by integrals
of the density. The third term corresponds to the entropic term introduced by Dyson in [34]. It is a
Gibbs factor, coming from the fact that the Coulomb gas charges are indistinguishable. Following
[35,36], it is re-derived in the Appendix C as a Jacobian in the change of measure from the
discrete set of variables dφi to the functional integral over D[ρ0]. In the case of Hermitian matrix
models, such entropic factors cancel with the energetic term coming from the regularization of
the kernel at coinciding eigenvalues. However, here f (x) is finite at x = 0 and cancellation does
not occur.5

Comparing (2.18) and (2.8), we deduce that the effective actions are equivalent, upon the
identification of Y0(x) with the density 2πiρ0(x), and provided we set ε = 1/N . However, by
definition the density ρ0 is normalized to one, and this identification would require Y0 to have
also a unite norm. To resolve this issue, we introduce the norm α of Y0 and identify as follows,

Y0(x) = 2iπαρ0(x), with α =
∫

Y0(x)
dx

2iπ
. (2.19)

This identification requires to set Nε = α = O(1) in the limit N → ∞ and ε → 0. This relation
signifies that the summation (1.1) defining the grand canonical model is dominated at ε → 0 by
the term with N = α/ε variables. Similarly, the Nekrasov partition function expressed as a sum
over Young tableaux is dominated in the Seiberg–Witten limit ε1, ε2 → 0 by a partition with
N ∼ 1/ε1ε2 boxes [38,39]. It also justifies the approach of [16–18,40,22] to the study of the NS
limit.

Under the previous identification between the dressed vertex Y0 and the density ρ0, canonical
and grand canonical actions are related through

SC[ρ0] = 1

α
SGC[Y0] + log(α/q). (2.20)

The term proportional to logq is missing from the action (2.18), but it can be introduced by hand,
exploiting the fact that the density ρ0 is normalized to one. In this case, logq plays the role of a
Lagrange multiplier imposing the unit norm.

The two actions SC and SGC produce equivalent equations of motions, and the free energies
satisfy at first order

F (0)
C + logq = 1

α
F (0)

GC(q) + logα − 1,

with F (0)
C = lim

N→∞
1

N
logZC(N, ε = α/N). (2.21)

Since FC depends on N but not on q , and the opposite for FGC, this relation only holds for a
specific value of N(q) or q(N). More comments on this will follow in the next subsection where
this relation is re-derived by exploiting the fact that ZGC is the discrete Laplace transform of ZC.

5 In the case of β-ensemble, there is also no cancellation, and these terms are responsible for the presence of the
resolvent derivative in the loop equation [37].



484 J.-E. Bourgine / Nuclear Physics B 880 (2014) 476–503
One loop determinant
The subleading, or genus one, correction to the free energy can also be computed in the frame-

work of the collective field theory. There are two types of corrections. The first one corresponds
to amend the canonical action by a subleading term δSC, and the second type to the Gaussian
fluctuations around the saddle point. The modification of the action is due to an earlier kernel
approximation that should now be refined. Indeed, at the second order in ε the approximation
(2.15) of ZC is no longer acceptable and must be replaced by

ZC(N, ε) 	 e− 1
2 Nεf (0)

∫ N∏
i=1

Q(φi)
dφi

2iπ

N∏
i,j=1

e
1
2 εf (φij )− 1

4 ε2f (φij )2
. (2.22)

The correction to the kernel is responsible for an additional contribution to the canonical action,

δSC = −1

4
ε2N

∫
f (x − y)2ρ0(x)ρ0(y) dx dy, (2.23)

which reproduces the term in the second exponential of the expression (2.14) for F (1)
GC(q̄), pro-

vided we set again εN = α. The first exponential corresponds to the factor in front of the integrals
in (2.22), and comes from the diagonal part of the kernel.

It is well known that the integration of Gaussian fluctuations around the classical solution
produces the inverse square root of (minus) the Hessian matrix determinant,

det

[
− δ2SC

δρ0(x)δρ0(y)

]
= e− ∫

log ρ0(x) dx det
[
δ(x − y) − εNρ0(x)f (x − y)

]
. (2.24)

The prefactor involving the integral of logρ0(x) cancels with the sub-leading order of the en-
tropic term computed in Appendix C, formula (C.10). The remaining determinant reproduces the
one which appears in (2.14), upon the identification Y0(x) = 2iπαρ0(x) and εN = α. Gathering
all contributions, we find

eF
(1)
C = e− 1

2 αf (0) e− 1
4 α2

∫
f (x−y)2ρ0(x)ρ0(y) dx dy

√
det[δ(x − y) − αρ0(x)f (x − y)] . (2.25)

Comparing with (2.14), we conclude that the sub-leading contributions to the free energy of both
models are equal. Again, this equality holds only for a specific value of q(N) or N(q).

2.3. Discrete Laplace transform at large N

The observed relations between free energies at first orders originate in the discrete Laplace
transform, also called Z-transform, performed in (1.1) to define the grand canonical model. This
transformation can be inverted by considering a contour integral over q = q̄ε circling the origin,

ZC(N, ε) = N !
∮
0

dq

2iπq
q−NεNZGC(q̄, ε). (2.26)

In the large N limit, it is possible to evaluate the integral using a saddle point technique [41], and
the relation between grand canonical and canonical free energies is a simple Legendre transform,

N
(
FC(N, ε) + 1 − log(Nε)

)	 ε−1FGC(q, ε) − Nμ. (2.27)
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On the LHS, the additional terms are due to the factor 1/N ! and can be absorbed in the definition
of FC(N, ε). Under this transformation, the number of particles N and the chemical potential
μ = logq are conjugate variables. They are related through the saddle point equation,

q∂qFGC(q, ε) = Nε. (2.28)

This equation can be solved in terms of N(q) and (2.27) provides the grand canonical free energy
knowing the canonical one. Inverting the Legendre transform, FC can be derived from FGC with
μ = −∂N(NFC − N logN).

In the previous considerations, ε was a simple spectator. The novelty in these notes is to tune
the parameter ε toward zero as the number of particles is sent to infinity, keeping εN = α fixed.
The Legendre transformation (2.27) survives this limit and produces the relation (2.21) between
first orders free energies. In this limit, the conjugate variables are α and μ. It is also interesting
to note that the saddle point Eq. (2.28) gives the normalization condition for the dressed vertex
Y(x),

q∂qFGC(q, ε) =
∫

Y(x)
dx

2iπ
= α. (2.29)

The dressed vertex is the generating function of connected rooted clusters. Its expression is given
by (2.3) after replacing the summation over rooted tree by a general summation over rooted clus-
ters Cx

l with appropriate ε factors. The first equality in (2.29) is shown in the Appendix B using
the Mayer expansion (2.1) of the free energy. It is the equivalent of the Matone relation for SUSY
gauge theories [42]. The normalization condition expands in ε, providing refined approximations
for the saddle point q∗ = q∗

0 (α) + εq∗
1 (α) + · · · .

In order to investigate the subleading orders, we need to introduce some notation for the large
N expansion of the canonical model at ε = α/N with α fixed,

FC(N,α/N) = 1

N
logZC(N,α/N) =

∞∑
n=0

N−nF (n)
C (α). (2.30)

Let us emphasize that this expansion is different from the standard topological expansion at
fixed ε. It is the reason why the one-loop term in (2.25) is not only given by the determinant but
also contains corrective terms to the action. The inverse discrete Laplace transform (2.26) with
the constraint εN = α specializes to

eNFC(N,α/N) = αNN !
NN

∮
0

dq

2iπq
e−N [log q−α−1FGC(q,α/N)]. (2.31)

At sub-leading order, this integral is approximately equal to

eNFC(N,α/N) = αNe−N 1

iq∗√d
e−N [log q∗−α−1FGC(q∗,α/N)] + O(1/N), (2.32)

with q∗(α) solution of the normalization condition (2.29), and

d = ∂2
q

[
logq − α−1FGC(q)

]∣∣
q=q∗ . (2.33)

This quantity d can be expressed in terms of the norm n of the two points grand canonical density
ρ̄(x, y), defined in (2.45), using a formula derived in Appendix B,

n =
∫

ρ̄(x, y) dx dy = (q∂q)2FGC(q). (2.34)
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At the saddle point, we have n = −(q∗)2αd . Expanding (2.32) in ε, we obtain at second order
the following relation between free energies,

F (1)
C =F (1)

GC

(
q∗

0

)− 1

2
log(n0/α). (2.35)

To retrieve the equality previously observed among the free energies at subleading order, we
have to assume that the norm n0 of ρ̄0(x, y) is equal to α at the saddle point. It implies that the
tree-level propagator Y0(x, y), which is the generating function of bi-rooted trees, has a vanishing
norm (see (2.46) below). It is however possible that we missed a factor in our treatment of the
canonical partition function, in particular when we discarded the zero-mode in Appendix C. This
is why we will remain cautious and keep the critical value of n0 arbitrary in the following.

Density and dressed vertex
The comparison of the effective actions led us to propose an identification between the tree-

level dressed vertex of the grand canonical model and the large N eigenvalue density associated
to the canonical model. This identification can also be derived by general considerations involv-
ing the discrete Laplace transform. It will be done here in two steps. First we have to relate the
dressed vertex Y(x) to a grand canonical density ρ̄(x). Then, we will exploit the inverse Laplace
transformation to deduce an equality between canonical and grand canonical densities at first
order.

To complete our program, we need to define the grand canonical vev of an operator O(x),

〈
O(x)

〉= 1

ZGC(q̄)

∞∑
N=0

q̄N

N !ZC(N) 〈N |O(x)|N〉 . (2.36)

It is expressed in terms of the canonical vevs,

〈N |O(x)|N〉 = 1

ZC(N)

∫
RN

O(x)

N∏
i=1

Q(φi)
dφi

2iπ

N∏
i,j=1
i<j

K(φi − φj ), (2.37)

where the operator depends on N fields in a permutation invariant manner. We focus on the
density operator, and consider the sourced partition function

ZGC[J ] =ZGC

〈
exp

(∫
dxJ (x)D(x)

)〉
, D(x) =

∑
i

δ(x − φi). (2.38)

The grand canonical density is defined as

ρ̄(x) = ε
〈
D(x)

〉= ε
δ logZGC[J ]

δJ (x)

∣∣∣∣
J=0

. (2.39)

Introducing the source term J in the partition function corresponds to replace the potential by
Q(φ) → eJ (φ)Q(φ), as can be seen from

ZGC[J ] =ZGC

〈∏
i

eJ (φi)

〉
. (2.40)

Thus, the Mayer expansion also applies to the sourced quantity, leading to (2.1) with eJ (φi)

inserted into the product over vertices. From this expression, we compute the derivative
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δ logZGC[J ]
δJ (x)

∣∣∣∣
J=0

=
∞∑
l=0

q̄ l
∑
Cl

l

σ (Cl)

Q(x)

2iπ

∫ ∏
i∈V (Cl)\{x}

Q(φi)
dφi

2iπ

∏
〈ij〉∈E(Cl)

εf (φij ).

(2.41)

The identity (B.3) demonstrated in Appendix B allows to replace the clusters summation by a
summation over rooted clusters. In doing so, we obtain exactly the dressed vertex

δ logZGC[J ]
δJ (x)

∣∣∣∣
J=0

= 1

2iπε
Y (x), (2.42)

and we deduce from (2.39) the identity Y(x) = 2iπρ̄(x) at the level of one marked point. It is
easy to check that this identification is compatible with the property (2.29) by computing the
norm of the density ρ̄(x) from the definition (2.39).

It remains to take the Laplace transform. The canonical density is by definition

ρ(x) = 1

N
〈N |D(x)|N〉 , (2.43)

it reduces to the collective field at large N , ρ(x) 	 ρ0(x). Hence, ZGCρ̄ is related to αZCρ by
a discrete transformation similar to (1.1). Using a saddle point technique, we find at subleading
order the relation ρ̄0(x) = αρ0(x), in agreement with the proposed identification between Y0
and ρ0. It is also possible to derive this relation considering the inverse Laplace transform of the
sourced partition function. It implies a Legendre relation of the type (2.27) among sourced free
energies. Taking the functional derivative with respect to the source J , we recover the relation
between one-point density. One has to be careful because the saddle point depends on the source.
But, contrary to the case of 2-points densities treated below, the dependence vanishes here.

Higher point densities and cluster generating functions
The previous argument generalizes to a higher number of marked vertices and multi-points

densities. The two points grand canonical density defined as the connected correlator6

ρ̄(x, y) = δ2FGC[J ]
δJ (x)δJ (y)

∣∣∣∣
J=0

= ε
〈
D(x)D(y)

〉
c
, (2.45)

relates to the full propagator Y(x, y), generating function of bi-rooted trees, as

ρ̄(x, y) = 1

(2iπ)2
Y(x, y) + 1

2iπ
δ(x − y)Y (x). (2.46)

This identity is obtained by taking the second derivative of the sourced free energy FGC[J ].
The additional term in the RHS of this relation corresponds to coinciding eigenvalues in the
decomposition

ε−1ρ̄(x, y) =
〈∑
i �=j

δ(x − φi)δ(y − φj )

〉
c

+
〈∑

i

δ(x − φi)δ(y − φi)

〉
. (2.47)

6 Since the partition function behave at small ε as ZGC ∼ e
ε−1F (0)

GC , we have the factorization property [33],

〈
D(x)D(y)

〉= 〈
D(x)

〉〈
D(y)

〉+ 〈
D(x)D(y)

〉
c

with
〈D(x)D(y)〉c
〈D(x)〉〈D(y)〉 = O(ε). (2.44)

It ensures that ρ̄(x, y) = O(1).
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The second term in the RHS produces a delta function of x − y times the one-point density, and
Y(x, y) corresponds to the non-diagonal terms.

The second part of the argument exploits the fact that the sourced partition functions are
also related through a discrete Laplace transform. But now the saddle point q∗ depends on the
source J , for instance

δq∗

δJ (x)

∣∣∣∣
J=0

= −q∗

n

∫
ρ̄(x, y) dy. (2.48)

At leading order, the sourced free energies satisfy Eq. (2.21). Taking twice the derivative with
respect to the source, we obtain the relation between two points densities at first order,

αρ0(x, y) = ρ̄0(x, y) − 1

n0

∫
ρ̄0(x,u) du

∫
ρ̄0(y, v) dv, (2.49)

where ρ0(x, y) is the leading order of the canonical two points connected density

ρ(x, y) = δ2FC[J ]
δJ (x)δJ (y)

∣∣∣∣
J=0

= 1

N
〈N |D(x)D(y)|N〉c . (2.50)

The second term in (2.49) is due to the dependence of the saddle point in the source. This expres-
sion is compatible with the requirement of vanishing norm for the connected correlator ρ0(x, y).

At higher points, we expect relations similar to (2.46) to hold between multi-rooted clusters
generating functions and grand canonical densities. They can be derived by performing higher
derivations of the free energy with respect to the source. On the other hand, the relation between
canonical and grand canonical densities becomes increasingly complicated and cannot be worked
out easily using this method, even at the planar order.

3. Loop equations

In the previous section, we have compared canonical and grand canonical models at the level
of free energies. We have shown how to recover the collective field theory description of the
canonical model from the cluster expansion of the grand canonical partition function. This com-
parison was restricted to the two first orders in large N and small ε. On the canonical side, it
is possible compute higher order terms by employing the recursive technique of loop equations.
This technique, originally developed for matrix models, has recently been extended to a large
class of models to which ZC belongs [14].7 Our goal in this section is to map these loop equa-
tions to similar relations among objects pertaining to the cluster expansion. These objects are the
n-points Y -functions, generating functions of n-rooted clusters. We have already encountered the
cases n = 1 and n = 2, corresponding respectively to the dressed vertex Y(x) and the propagator
Y(x, y).

Loop equations for the canonical densities are obtained in the following manner. First, the
invariance of the measure allows to write a set of linear relations among (non-connected) correla-
tors. These correlators are decomposed into connected parts. The connected correlators involved
are resolvents, i.e. multiple Cauchy transforms of the densities. As such, they have a branch cut
along the support Γ of the densities in each of their variables. Taking the discontinuities of the

7 Our model corresponds to the special case β = 0 and ρ = 1 in their notations. For this value of β , and depending on
the explicit expression for the kernel, some of the assumptions considered in their paper may not be satisfied. This would
have to be checked case by case.
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previous equations, we are able to derive a set of coupled integral equations among densities.
These equations can be expanded in large N , and solved recursively. The recursion involves both
the genus, that is the order in N−1 and the number of points. At this level, loop equations also
depends on the derivative of densities. They can be integrated with a little bit of algebra. The re-
sulting ‘primitive’ equations no longer contain the densities derivative. In the process, a constant
of integration appears. It is fixed by imposing a vanishing norm to the n-points densities with
n > 1.

Grand-canonical densities also obey the canonical loop equations. Indeed, those equations are
linear in the (non-connected) canonical correlators, and valid for any N . They can be summed
over N with appropriate coefficients to produce equations among grand canonical correlators.
Next, these correlators are decomposed into connected parts. We must emphasize that the con-
nected grand canonical correlators are no-longer the discrete Laplace transform of canonical
ones. These connected correlators are also the resolvents associated to the multi-points grand
canonical densities. For ε infinitesimal, these densities are assumed to be continuous on a con-
nected support, just like the canonical ones. The discontinuity process still works, leading to the
same ‘derivative’ loop equations. Densities are then expanded in ε, which plays a role equivalent
to the large N topological expansion for the canonical model. After integration, we recover the
same integral equations, but with different constant of integrations since grand canonical and
canonical densities have a different norm.

In this section, the strategy is as follows. We first provide the derivation of the canonical
loop equation, and re-write them in the integrated form. Then, we compare this equation with
a relation among Y -functions derived using the Mayer expansion. We deduce from the relation
between Y and ρ̄ that this density obey the integrated canonical loop equation. We conclude that
the Y -function relations are the equivalent of loop equations. Finally, a technique to derive the
loop equation for grand canonical densities is presented in Section 3.4.

3.1. One-point density at leading order and rooted trees

The simplest loop equation is derived from the identity

0 =
N∑

k=1

∫ N∏
i=1

dφi

∂

∂φk

[
1

z − φk

N∏
i=1

Q(φi)

2iπ

N∏
i,j=1
i<j

K(φij )

]
. (3.1)

It produces an equation satisfied by the resolvent W(z) which is the Cauchy transform of the
density ρ(x),

W(z) =
∫

ρ(x)dx

z − x
= 1

N

〈
N

∣∣∣∣
N∑

i=1

1

z − φi

∣∣∣∣N
〉
. (3.2)

We will also need to introduce an auxiliary quantity P(z) defined as

P(z) = 1

N

〈
N

∣∣∣∣
N∑

k=1

V ′(z) − V ′(φk)

z − φk

∣∣∣∣N
〉
, V (z) = log

Q(z)

2iπ
, (3.3)

with V (z) the standard ‘matrix model’ potential. Then, the first loop equation takes the form
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P(z) = −W ′(z) + V ′(z)W(z) + N

∫
R2

k(x − y)

z − y

(
ρ(x)ρ(y) + 1

N
ρ(x, y)

)
dx dy (3.4)

with the shortcut notation k(x) = ∂x logK(x) for the logarithmic derivative of the kernel.
We have assumed that the eigenvalues condense on the support Γ of ρ in the large N limit. It

implies that W(z) has a branch cut on Γ , with a discontinuity given by −2iπρ(x). On the other
hand, by construction P(z) is not singular over Γ . Thus, taking the discontinuity of the loop
equation (3.4) over Γ allows to eliminate P(z) and write an equation involving only densities,

ρ′(x) = ∂x log
(
Q(x)

)
ρ(x) +

∫
R

k(x − y)
(
Nρ(x)ρ(y) + ρ(x, y)

)
dy. (3.5)

The next step is to expand the density at large N , we denote ρn the term of order O(N−n). At
the first order, the dependence in the two points density drops, and we find an integral equation
for ρ0 which is precisely the equation of motion (2.17) derived from the canonical action SC.
Integrating once, we recover the integral equation (2.5) obeyed by Y0,

log

(
2iαπρ0(x)

Q(x)

)
= α

∫
f (x − y)ρ0(y) dy + γ0, (3.6)

provided we choose the integration constant γ0 to be logq . A priori, the unit norm constraint
over the density should fix this integration constant. However, it is very non-trivial to impose this
condition in practice due to the complicated form of the integral equation. At the saddle point,
Y0(x) = 2iπρ̄0(x) = 2iπαρ0(x) and γ0 = logq∗

0 (α).

3.2. Two-points density at leading order and bi-rooted trees

The subleading order of the first loop equation contains the two points density at first order
ρ0(x, y). To compute this quantity, we need a second loop equation, derived from the identity

0 =
N∑

k=1

∫ N∏
i=1

dφi

∂

∂φk

[
1

z − φk

N∑
l=1

1

w − φl

N∏
i=1

Q(φi)

2iπ

N∏
i,j=1
i<j

K(φij )

]
. (3.7)

It provides an equation satisfied by the two points resolvent W(z,w) and involving an auxiliary
quantity P(z,w),

W(z,w) = 1

N

〈
N

∣∣∣∣
N∑

i,j=1

1

z − φi

1

w − φj

∣∣∣∣N
〉
c

,

P (z,w) = 1

N

〈
N

∣∣∣∣
N∑

i=1

V ′(z) − V ′(φi)

z − φi

N∑
j=1

1

w − φj

∣∣∣∣N
〉
c

. (3.8)

This equation also involves the three-points density, but this dependence drops at leading order.
The first loop equation (3.4) can be used to simplify the result, which gives
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P(z,w) = −∂zW(z,w) + ∂w

(
W(z) − W(w)

z − w

)
+ V ′(z)W(z,w)

+ N

∫
k(x1 − x2)

(z − x2)(w − x3)

[
ρ(x1, x3)ρ(x2) + ρ(x2, x3)ρ(x1)

+ 1

N
ρ(x1, x2, x3)

]
dx1 dx2 dx3. (3.9)

Just like P(z), P(z,w) has not branch on Γ for its variable z, and will be eliminated by taking
the discontinuity of the equation. In this process, the difference of resolvents must be regularized
at coincident values as follows,8

W(x) − W(y)

x − y
→ −(2iπ)2δ(x − y)ρ(x). (3.11)

Taking the discontinuity over the variable z and w, extracting the first order and integrating once,
we get

ρ0(x, y) = ρ0(x)δ(x − y) + αρ0(x)

∫
duf (x − u)ρ0(u, y) + γ00(y)ρ0(x), (3.12)

with the integration constant γ00(y) that may depend on y. This degree of freedom is fixed by
imposing that ρ0(x, y) is a symmetric function of its parameters, and has zero norm since it is a
connected density.

We would like to recover the loop equation (3.12) using the Mayer expansion. According to
our previous discussion in Section 2.3, this equation should be obeyed by the tree-level propaga-
tor Y0(x, y), generating function of bi-rooted tree. Let us recall its definition,

Y0(x, y) = Y0(x)

∞∑
l=1

Ȳl(x, y),

Ȳl+1(x, y) = Y0(y)

∫ l∏
i=1

Y0(φi)
dφi

2iπ
f (x − φ1)f (φ12) · · ·f (φl−1 l )f (φl − y), (3.13)

where Y0(x)Ȳl+1(x, y) is the generating function of bi-rooted trees such that the roots are con-
nected through a chain of l intermediate vertices (and l + 1 links). We should also supply the
definition of the first member of this set of functions, Ȳ1(x, y) = f (x − y)Y0(y), obtained when
the roots are directly connected.9 Contrary to the functions Ȳl(x, y), Y0(x, y) is a symmetric
function of x and y. The functions Ȳl obey an obvious recursion relation that is interpreted as
attaching to the vertex x a new rooted vertex z,

8 To derive this contact term, we take a test function r(x) regular on the branch cut Γ , and consider∫
Γ

r(y) dy Discy Discx
W(x) − W(y)

x − y
= 2iπρ(x)

∮
Γ

r(y)

x − y
dy = −(2iπ)2ρ(x)r(x), (3.10)

since x belongs to the integration contour.
9 Note that the free energy at subleading order can be expressed using Ȳl (x, y) if we merge the two roots in order to

build a cycle,

F (1)
GC(q̄) =

∞∑
l=3

1

2l

∫
dx

2iπ
Ȳl (x, x). (3.14)
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Ȳl+1(z, y) =
∫

f (z − x)Ȳl(x, y)Y0(x)
dx

2iπ
. (3.15)

In this process, x is still ‘marked’ in the sense that it is determined uniquely being the first vertex
attached to z on the path to y, but we will not consider it as a ‘root’ anymore, preferring the
endpoint z. Summing over l, we deduce the integral equation obeyed by Y0(x, y),

Y0(x, y) = f (x − y)Y0(x)Y0(y) + Y0(x)

∫
f (x − z)Y0(z, y)

dz

2iπ
. (3.16)

Making use of the relation (2.46) between the grand canonical two points density ρ̄(x, y) and
the propagator Y(x, y), we deduce that at first order in ε, α−1ρ̄0(x, y) obey the integrated loop
equation (3.12) with a vanishing integration constant γ00(y) = 0,

ρ̄0(x, y) = ρ̄0(x)δ(x − y) + ρ̄0(x)

∫
duf (x − u)ρ̄0(u, y). (3.17)

The relation (2.49) between ρ0(x, y) and ρ̄0(x, y) is compatible with the loop equations (3.12)
and (3.17). This can be shown by taking the q-derivative of the equation (2.5) satisfied by ρ̄0(x) =
Y0(x)/2iπ ,

q∂qρ̄0(x) = ρ̄0(x) + ρ̄0(x)

∫
f (x − u)q∂qρ̄0(u) du,∫

ρ̄0(x, y) dy = q∂qρ̄0(x). (3.18)

The second equality is a consequence of (B.7) and (2.46). We deduce the expression of γ00(y) at
the saddle point,

γ00(y) = − 1

n0

∫
ρ̄0(y,u) du. (3.19)

3.3. One-point density at subleading order and rooted 1-cycles

To obtain the equation satisfied by the genus one correction to the 1-point density ρ1(x), we
examine the first loop equation (3.5) at subleading order. Again, the result can be simplified using
the first order result (3.6), and integrated, leading to

ρ1(x)

ρ0(x)
= α

∫
f (x − y)ρ1(y) dy − 1

2
α2
∫

f (x − y)2ρ0(y) dy + s(x), (3.20)

where s(x) contains the contribution of the two points density,

s′(x) = α

ρ0(x)

∫
f ′(x − y)ρ0(x, y) dy. (3.21)

Eq. (3.12) obtained upon the 2-points density can be used to simplify the expression (3.21) and
integrate it, leading to the following loop equation for ρ1(x),10

10 Eq. (3.12) has originally be obtained in the form

∂x

(
ρ0(x, y)

)
= δ′(x − y) + α

∫
duf ′(x − u)ρ0(u, y). (3.22)
ρ0(x)
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Fig. 6. Equation satisfied by the one-cycle dressed vertex, empty circles represent tree-level dressed vertices.

ρ1(x)

ρ0(x)
= α

∫
f (x − y)ρ1(y) dy − 1

2
α2
∫

f (x − y)2ρ0(y) dy

+ 1

2

α

ρ0(x)

∫
f (x − y)

[
ρ0(x, y) + γ00(y)ρ0(x)

]
dy + γ1, (3.24)

where the integration constant γ1 is fixed by a normalization condition.
The integrated loop equation (3.24) we have obtained for ρ1(x) should be compared to the

equation satisfied by Y1(x), the generating function of rooted clusters with exactly one cycle,

Y1(x) = Y0(x)

∫
f (x − y)Y1(y)

dy

2iπ
+ 1

2

∫
Y0(x, y)f (x − y)

dy

2iπ

− 1

2
Y0(x)

∫
f (x − y)2Y0(y)

dy

2iπ
. (3.25)

In this expression, represented graphically on Fig. 6, the first term corresponds to the case where
x does not belong to the cycle. Hence, there is a vertex y, directly linked to x such that if we
remove this link, the cycle is present in the cluster rooted by y. In the second term, x directly
belongs to the cycle. In this case, we choose a vertex y from the cycle and directly connected
to x. Cutting the link x − y, we obtain a bi-rooted tree. In the process, we gain a symmetry
factor 1/2 due to the choice of y. Finally, the third term correspond to trees of Y0(x, y) for
which x and y are directly related. For those clusters, x and y cannot get an extra link, and their
contribution must be withdrawn from the previous term. Comparing (3.24) and (3.25), we deduce
that ρ̄1(x) = Y1(x)/2iπ satisfies the loop equation (3.24) with vanishing integration constants
γ1 = γ00(y) = 0.

3.4. Yet another way to derive grand canonical loop equations

Another possibility to establish grand canonical loop equations is to start from the definition
of the density ρ̄(x) and make use of the δ-function to fix one of the integration variables. The
canonical correlator of N variables reduces to a correlator of N − 1 variables, and after summa-
tion over N we obtain an equation satisfied by the grand canonical density,

2iπρ̄(x) = qQ(x)

〈∏
i

K(x − φi)

〉
. (3.26)

At first order in ε, it is possible to use the factorization property

Integrating this expression multiplied by f (x − y) over y, and then using the primitive relation (3.12) to simplify the
result, we obtain the identity∫

f (x − y)∂x

(
ρ0(x, y)

ρ0(x)

)
dy =

∫
f ′(x − y)

[
ρ0(x, y)

ρ0(x)
− γ00(y)

]
dy, (3.23)

since f ′(0) = 0. This identity is then plugged into the expression (3.21) of s′(x).
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〈
k∏

i=1

K(x − φi)

〉
	 〈

eε
∑

i f (x−φi)
〉	 exp

{
ε

〈∑
i

f (x − φi)

〉}
. (3.27)

The sum over φi can be replaced by an integral over density ρ(x). Expanding (3.26) in ε,
and keeping only the first order, we deduce that ρ̄0(x) satisfies the integral equation (2.5) with
Y0(x) = 2iπρ̄0(x).

At the subleading order in ε, the factorization property becomes〈∏
i

K(x − φi)

〉
= eε〈∑i f (x−φi)〉

[
1 − 1

2
ε2
〈∑

i

f (x − φi)
2
〉

+ 1

2
ε2
〈∑

i,j

f (x − φi)f (x − φj )

〉
c

+ O
(
ε2)]. (3.28)

In the RHS bracket, the first term comes from the expansion of logK , the last term is the first
order correction to the factorization property. Replacing sum over variables φi with densities,
and expanding in ε, we get at the second order an equation satisfied by the subleading correction
to ρ̄(x),

ρ̄1(x)

ρ̄0(x)
=
∫

f (x − u)ρ̄1(u) du − 1

2

∫
f (x − u)2ρ̄0(u) du

+ 1

2

∫
f (x − u)f (x − v)ρ̄0(u, v) dudv, (3.29)

where we have used the first order equation to simplify the result. Using Eq. (3.17) to deal with
the last term, this loop equation reproduces Eq. (3.25) obtained from the cluster expansion upon
the identification Y(x) = 2iπρ̄(x) and (2.46) of the densities.

The same argument can be repeated for the two points density. Fixing an integration variable
using the operator D(x) in the two-point correlator, we find

ε
〈
D(x)D(y)

〉= δ(x − y)ρ̄(x) + qQ(x)

2iπ

〈
D(y)

∏
i

K(x − φi)

〉
, (3.30)

where the result has been simplified using the first loop equation (3.26). From the factorization
property〈

D(y)
∏
i

K(x − φi)

〉
	
〈∏

i

K(x − φi)

〉(〈
D(y)

〉+ ε

〈∑
i

f (x − φi)D(y)

〉
c

)
, (3.31)

we recover at subleading order in ε Eq. (3.17) satisfied by the two points density ρ̄0(x, y).

4. Concluding remarks

In these notes we compared the cluster expansion of a grand canonical model with the stan-
dard matrix model treatment of its canonical partition function. At tree level, the grand canonical
free energy is given by the minimum of an effective action which is identical to the one provided
by the collective field theory approach applied to the canonical model. The correspondence ex-
tends to the level of one-loop corrections, where the sum over one-cycle clusters reproduces the
expansion of the Fredholm determinant computed from the integration over Gaussian fluctua-
tions in the collective field theory. The matching of free energies can be explained by the discrete
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Laplace transform relating canonical and grand canonical models. Introducing a source term, we
were also able to find the relation satisfied by the one-point and two points densities.

We continued with the study of canonical loop equations, and realized that a similar set of
equations can be derived from the cluster expansions. Instead of n-point connected densities,
these equations involve the generating functions of n-rooted clusters, denoted Y . Using these
equations, and the relation between Y -functions and densities derived earlier, we verified that
grand canonical densities also obey the canonical loop equations. It implies that the whole loop
equation structure is present in the cluster expansion, and takes the form of graphical relations
among clusters. Finally, we proposed a method to derive directly this set of loop equations within
the grand canonical model.

Our study is restricted to the first two orders in the large N and small ε expansion. The
generalization to higher orders still needs to be done, and the general form of loop equations to be
worked out. Once the full set of equations identified, it may be possible to apply the topological
recursion to the grand canonical model.

Another important point that remains is the description of instantons clustering relevant to
the instanton partition function of N = 2 SUSY gauge theories. The dual description grand-
canonical/canonical may allow a better understanding of this phenomenon. A possible appli-
cation for this work could be the derivation of the subleading correction in ε2 to the partition
function, and the investigation of its presumed integrable properties. In this scope, it is tempting
to assume that the instanton clustering in SYM is entirely described by the effective action (2.9),
and conjecture that the subleading order is given by the associated determinant,

eF
(1)
NS = 1√

det
[
δ(x − y) + (

1 − eρ(x)
)
G(x − y)

]e 1
2

∫
dx log(eρ(x)−1)− 1

2

∫
dx log ρ(x)

× exp

(
1

2
G(0)

∫
dx
(
1 − eρ(x)

)− 1

4

∫
dx dy

(
1 − eρ(x)

)(
1 − eρ(y)

)
G(x − y)2

)
.

(4.1)

This proposal is very naive, but it could be tested using the AGT correspondence with the
β-ensemble representation of Liouville correlators.

The grand canonical model we studied has a very specific form of interaction and may not
be relevant to statistical systems. It would be interesting to consider more physical models. One
may also wonder if the topological reduction employed in this context have a matrix model
analogue. Nevertheless, the results presented here are very general and could be relevant for a
large spectrum of problems. They have deep connections with integrable models and the TBA
equation [32]. They play a role in the computation of light-like Wilson loops at strong coupling in
N = 4 SYM [43]. They may also be applied to the study of 3-points function of scalar operators
in this theory [44,45].
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Appendix A. Demonstration of the tree level free energy formula

In this appendix, we give a demonstration for the formula (2.6) where the sum over tree
clusters Tl is given by the difference of the two terms,

A =
∫
R

Y0(x)
dx

2iπ
, and B = 1

2

∫
R2

dx

2iπ

dy

2iπ
Y0(x)Y0(y)f (x − y). (A.1)

It is easy to see that both terms expand as a sum of tree clusters Tl , weighted as in (2.2), but with
different symmetry factors. The second term B contains trees with at least one link, associated
to the function f present in the integral (A.1), which we call the main link. Such clusters are
formed by gluing two trees along this main link. To all the terms in the expansion of A and B

correspond a term of the summation (2.2). On the other hand, a single term in (2.2) corresponds
to many terms of A and B series, since a tree Tl can be rooted from any of its vertices, leading to
l terms in A, and has l − 1 links that can be associated to the main link of a B-term.11 The fact
that the formula (2.6) holds has to do with the property that a tree Tl has exactly l links for l − 1
vertices.

The strategy we follow is to consider the terms in A and B cluster expansions that can be
identified with a given cluster Tl of the summation (2.2). The corresponding terms in A are
obtained by rooting the vertices of the cluster Tl . In the same way, terms from the B-expansion
are derived from edging the links of the tree Tl . We then show that cancellation occurs between
terms of A and B expansions due to the coincidence of symmetry factors. The remaining term
provides the contribution of Tl to the free energy with the correct symmetry factor.

A.1. Example: chain of vertices

It is better to understand what is going on over a few examples. Here we focus on linear
trees, i.e. chains of vertices, denoted Rl . To facilitate the argument, vertices will be numbered
according to their order in the chain, from left to right. We further call ith link the edge linking
the vertices i and i + 1. These chains appear in the free energy expression (2.2) with a factor
σ(Rl) = 2 corresponding to a reflexion symmetry.

We start with the case of a chain with odd length, l = 2k + 1. In the A-expansion, Rl is
associated to k + 1 terms, corresponding to rooting the vertex i (or 2k + 1 − i) for i = 1, . . . , k

and the vertex k + 1. This procedure is depicted in Fig. 7 (left). The index i runs from one to k

since rooting the vertex i or 2k + 1 − i leads to the same tree. The first kth rooted trees obtained
in this way have a symmetry factor of one since they are composed of two branches of length
i − 1 and 2k + 1 − i joining at the root. The remaining rooted tree, associated to the central
vertex, has the symmetry factor 2 since now both branches have the same length and can thus be
exchanged.

Now, let us turn to the B-expansion. We consider the B term having the ith link of Rl as its
main link. This B-term corresponds to a rooted chain of i vertices glued to another rooted chain

11 This is true up to identification of automorphic clusters, which is necessary to avoid over-counting. However, it turns
out that this does not play any role in our cancellation argument.



J.-E. Bourgine / Nuclear Physics B 880 (2014) 476–503 497
Fig. 7. Rooting a vertex (left) and edging a link (right) of a chain of l vertices.

of 2k+1− i vertices through the main link. It is represented on Fig. 7 (right). Its symmetry factor
is one since the two trees on both sides of the main link have symmetry factor one and different
length. We also have to take into account a ‘chirality’ factor of two counting the possibility of
exchanging the two trees. This factor two is canceled by the factor 1/2 in the definition of B .
Here again we choose i running only from one to k since we get the same term after exchanging
i → 2k + 1 − i. Since the first kth A-terms are canceled by the B-terms, it remains only the
contribution from the central vertex. As already mentioned, this contribution is weighted by 1/2,
thus providing the correct symmetry factor for the free energy cluster.

There is a lesson to learn from this example. As we will see later, it is possible to associate
uniquely a link to each vertex but one by a recursive procedure. The corresponding terms in the
A- and B-expansions cancel, and only the last vertex contributes. The rooted tree of this vertex
has the same symmetry factor than the original cluster.

However, a subtlety may appear. It is illustrated by our second example, the case of a chain
with even length Rl=2k . Rooting the tree Rl from the vertex i (or 2k − i) with i = 1, . . . , k, we
obtain a tree with two branches of length i − 1 and 2n − i. These rooted trees have symmetry
factor equal to one. Then, we consider the i-th edges with i = 1, . . . , k − 1. They give B-terms
consisting of two rooted chain, of length i and 2k− i, glued through the main link. The symmetry
factor is one, and there is a chirality factor of two, again eliminated by the factor 1/2. On the
other hand, the central link, numbered k, is associated to two rooted trees of the same length k,
and in such a case there is no chirality since right and left side of the B-terms are the same. We
note that the (k − 1)th first A-terms are eliminated by the chiral B-terms, and the last A-term
gets subtracted by a half of its value, which corresponds to the B-term having the central edge
as its main link. The difference A−B thus reproduces the symmetry factor 2 needed for the free
energy.

A.2. General case

We now consider an arbitrary tree Tl and associate recursively to each vertex a unique link,
to which it connects directly, using the following procedure. First, the leaves, i.e. the vertices
connected to only one other vertex, are naturally associated to the only link that end on them.
Then, we remove those leaves in order to obtain a strictly smaller tree to which we repeat the
procedure. At the end of the recursion, only two configurations may arise. In the first case, as for
the odd chain, only a single vertex remains, all others are uniquely associated to a link. In the
second case, typically for the even chain, a set of two vertices connected by a link remains. In
this configuration, there is an ambiguity in the choice of the vertex to associate to the remaining
link.
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Fig. 8. Rooted tree obtained after rooting the vertex x, and its associated link (highlighted). It consists of two rooted
subtrees, T1 by x and T2 by y, linked by the B-term main edge. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

As a second step, we argue that the A-term of a rooted vertex and the B-term of the cluster
edged from the associated link cancel. To do so, we have to show that the rooted tree have the
same symmetry factor than the tree with associated edge as main link. Let us take the B-term
associated to an edge of the cluster Tl which is not the final stage of the previous procedure.
It consists of two rooted tree T (1) and T (2), with symmetry factors σ1 and σ2, such that the
total factor is σ1σ2. We will see that these two composing trees are always different, so there
is no symmetry enhancement. This object is chiral, which cancel the factor 1/2 in front of the
B integral. It is associated to a rooted tree in the A-series which is displayed in Fig. 8. By
construction, the rooted vertex x is an ending point of the main edge (in yellow on the figure).
It is attached to the tree with the smallest deepness, i.e the smallest maximal distance between
the leaves and the root.12 The trees T1 and T2 cannot have the same deepness, otherwise the
procedure of associating the vertex to an edge would not be unique. The main edge still increases
the deepness of the deep tree on the right by one, and no symmetry enhancement can occur. Thus,
the symmetry factor for the A-term is also σ1σ2. This shows the cancellation between A and B

terms.
It remains to study the final stage of the procedure. The simplest case is when only one vertex

remains. Then the symmetry factor of the rooted tree is equal to the one of the cluster Tl we
started from. Otherwise there would exist an automorphism exchanging the final vertex of Tl

with another one. But this is not possible as the root has been determined uniquely through the
procedure described above.

Finally, we consider the case where one edge and two vertices remain at the end of the re-
cursion. This edge connects two trees of a B-term with the same deepness, leaving to possibility
of the two tree to be identical. If they are not identical, we can choose any of the two vertices
to be the one associated with the remaining edge. Then, we can repeat the previous argument to
show that the corresponding A and B terms cancel. No symmetry enhancement happens due to
the fact that a node is added to one of the trees, thus incrementing its deepness. The rooted tree
associated to the last vertex has again the same symmetry factor than the initial cluster. Otherwise
it could be exchanged with the vertex we removed previously, meaning that the two trees where
actually the same. The case where the two trees are identical has already been encountered in the
example of the even chain. The B-term have symmetry factor 2σ 2

1 where σ1 = σ2 is the symme-
try factor of the composing trees, and we included the 1/2 prefactor which is no longer canceled
by the chirality. The two vertices related to this edge leads to the same rooted tree, which has

12 The couples vertex-link can be labeled by an integer n corresponding to the step of the recurrence at which vertex and
link have been associated. Then, in the tree rooted at x, the root is attached to the main edge, and to a tree of deepness
n − 1. On the other side of the main edge lies a tree with strictly larger deepness.
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the symmetry factor σ 2
1 . Taking the difference A − B , we get 1/σ 2

1 − 1/2σ 2
1 = 1/2σ 2

1 which is
exactly the symmetry factor of the initial cluster Tl , the factor of two taking into account the
possibility of reflexion with respect to the final edge.

Appendix B. Derivatives of the free energy from Mayer expansion

In this appendix, we give a proof of the formulas (2.29) and (2.34). First, examine the action
of q∂q on the grand canonical free energy expressed as a sum over clusters as in (2.1),

q∂qFGC = ε

∞∑
l=1

lq̄l
∑
Cl

1

σ(Cl)

∫ ∏
i∈V (Cl)

Q(φi)
dφi

2iπ

∏
〈ij〉∈E(Cl)

εf (φij ). (B.1)

The only effect of this operation is to multiply the cluster integrals by the number of vertices l.
This expression should be compared to the cluster expansion of the integral of Y(x). The inte-
gral of rooted clusters reproduces the cluster contributions of the free energy expansion, and we
should only be concerned about the symmetry factor. To a given cluster Cl of the free energy ex-
pansion corresponds l rooted clusters Cx

l obtained by rooting the vertices x ∈ V (Cl). However,
some of these rooted clusters are identical. To avoid over-counting these terms, we separate the
set of vertices into the sets Vk(Cl) of vertices producing equivalent rooted clusters,

V (Cl) =
⊔
k

Vk(Cl). (B.2)

As already mentioned, the integral contributions of integrated rooted clusters producing the same
cluster Cl are equal and can be factorized. Thus, in order to prove (2.29) we just need to establish

l

σ (Cl)
=
∑

k

1

σ(C
xk

l )
, xk ∈ Vk(Cl). (B.3)

Now, let us discuss the group of automorphisms of the cluster Cl , denoted Aut(Cl). Consider
one vertex x ∈ Cl and the group of automorphism for the rooted cluster Cx

l . It is obvious that
this group Aut(Cx

l ) is a subgroup of Aut(Cl) consisting of the automorphism of Cl that leave the
vertex x invariant. Those groups are subgroups of the group of permutations for the set vertices
Σ(V (Cl)) 	 Σl and can be decomposed into a product of transpositions.

We also need a formal definition of Vk(Cl). Two vertices x and y produce an identical rooted
cluster if and only if there exists an automorphism of Cl mapping one into the other. Suppose we
take an element xk ∈ Vk(Cl), then this set is the orbit of xk under the group of automorphisms,

Vk(Cl) = {
y ∈ V (Cl)/∃g ∈ Aut(Cl)/g.y = xk

}
= {

y ∈ V (Cl)/∃g ∈ Aut(Cl)/y = g.xk

}
. (B.4)

Note also that the groups of automorphisms for two vertices from Vk(Cl) are isomorphic,
Aut(Cx

l ) 	 Aut(Cy
l ), although they have a different representation on the cluster Cl .

Let g ∈ Aut(Cl) and x ∈ V (Cl). There is a unique k such that x ∈ Vk(Cl). From the definition
of Vk(Cl), g.x also belongs to Vk(Cl) and we denote this element xk . By construction τxxk

g

leaves the vertex x invariant since τxxk
is the transposition that exchanges x and xk . Therefore it

is an element of Aut(Cx) that we denote h, and we have g = τxx h. It means that given a vertex x,
l k
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any automorphism g can be decomposed uniquely into its action on x, given by τxxk
and another

automorphism that leaves x invariant, namely h.13 We deduce∣∣Aut(Cl)
∣∣= ∣∣Vk(Cl)

∣∣× ∣∣Aut
(
C

xk

l

)∣∣ ∀k, xk ∈ Vk(Cl), (B.5)

which implies (B.3).
The demonstration remains valid if we replace the cluster Cl by a rooted cluster Cx

l and the
rooted clusters C

xk

l with bi-rooted ones C
x,xk

l , and (B.3) becomes

l − 1

σ(Cx
l )

=
∑

k

1

σ(C
x,xk

l )
, (B.6)

since we now have only l − 1 unmarked vertices. We deduce the following relation between
rooted and bi-rooted generating functions,

q∂qY (x) =
∫

Y(x, y)
dy

2iπ
+ Y(x), (B.7)

which implies (2.34). Similar formulas can be obtained for a higher number of roots,

q∂qY (x1, . . . , xn) =
∫

Y(x1, . . . , xn, y)
dy

2iπ
+ nY (x1, . . . , xn). (B.8)

By recursion, it implies

qn∂n
qFGC =

∫
Y(x1, . . . , xn)

n∏
i=1

dxi

2iπ
. (B.9)

Appendix C. Derivation of the entropic term in the matrix model effective action

The Jacobian from the change of variable dφi to D[ρ] can be obtained using the Faddeev–
Popov approach. We consider

1 =
∫

D[ρ0]
∏
x

δ

(
ρ0(x) − 1

N

N∑
i=1

δ(x − φi)

)
, (C.1)

the product of delta functions can be represented with the help of a ghost field λ(x) and gives

1 =
∫

D[ρ0, λ]ei
∫

dx λ(x)ρ0(x)
N∏

i=1

e− i
N

λ(φi ), (C.2)

where 2π -factors were included in the measure D[λ]. It implies that

∫ N∏
i=1

dφi =
∫

D[ρ0, λ]ei
∫

dx λ(x)ρ0(x)

(∫
e− i

N
λ(φ)dφ

)N

. (C.3)

Or, introducing an effective action,

13 Unicity. Let us suppose that there exists ỹk ∈ Vk(Cl) with ỹk �= yk and h̃ ∈ Aut(Cx
l
) such that g = τxyk

h = τxỹk
h̃.

It implies that τxỹ τxy = hh̃−1 ∈ Aut(Cx) in contradiction with the fact that τxỹ τxy = (x yk ỹk) /∈ Aut(Cx).

k k l k k l
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∫ N∏
i=1

dφi =
∫

D[ρ0, λ]eS[ρ0,λ],

S[ρ0, λ] = i

∫
dx λ(x)ρ0(x) + N log

(∫
e− i

N
λ(x) dx

)
. (C.4)

At leading order, the integral over the ghost field can be evaluated as a saddle point. The equation
of motion implies

δS

δλ(x)
= 0 ⇒ ρ0(x) = γ e− i

N
λ(x), with γ −1 =

∫
e− i

N
λ(x) dx. (C.5)

After replacing λ(x) in the effective action, we notice that the γ -dependence drops since ρ0 is
normalized to one. We end up with the entropic term

∫ N∏
i=1

dφi =
∫

D[ρ0, λ]e−N
∫

dx ρ0(x) log ρ0(x). (C.6)

The subleading contribution is equal to the inverse of the square root of (minus) the Hessian
determinant. The Hessian matrix evaluated at the saddle point gives

δ2S

δλ(x)δλ(y)
= − 1

N
ρ0(x)

[
δ(x − y) − ρ0(y)

]
. (C.7)

The factor of 1/N may be absorbed in the integration measure and will be discarded. The re-
maining determinant is a Fredholm determinant that can be computed exactly,

det

[
− δ2S

δλ(x)δλ(y)

]
= e

∫
log ρ0(x) dx . (C.8)

In doing so, we removed a zero-mode associated to the unite norm of the density,

det
[
δ(x − y) − ρ0(y)

]= 1 −
∫

ρ0(y) dy. (C.9)

Thus, at the second order we have

∫ N∏
i=1

dφi =
∫

D[ρ0]e−N
∫

dx ρ0(x) log ρ0(x)− 1
2

∫
dx log ρ0(x), (C.10)

with factors 1/
√

2πN absorbed in the measure of integration (the factors 1/
√

2π cancel with the
ones coming from the saddle point integration in (2.25)).
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