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Abstract

The optimization of the Earth-moon trajectory using solar electric propulsion is presented. A feasible method is proposed to opti-

mize the transfer trajectory starting from a low Earth circular orbit (500 km altitude) to a low lunar circular orbit (200 km altitude). Due 

to the use of low-thrust solar electric propulsion, the entire transfer trajectory consists of hundreds or even thousands of orbital revolu-

tions around the Earth and the moon. The Earth-orbit ascending (from low Earth orbit to high Earth orbit) and lunar descending (from

high lunar orbit to low lunar orbit) trajectories in the presence of J2 perturbations and shadowing effect are computed by an analytic 

orbital averaging technique. A direct/indirect method is used to optimize the control steering for the trans-lunar trajectory segment, a 

segment from a high Earth orbit to a high lunar orbit, with a fixed thrust-coast-thrust engine sequence. For the trans-lunar trajectory

segment, the equations of motion are expressed in the inertial coordinates about the Earth and the moon using a set of nonsingular equi-

noctial elements inclusive of the gravitational forces of the sun, the Earth, and the moon. By way of the analytic orbital averaging tech-

nique and the direct/indirect method, the Earth-moon transfer problem is converted to a parameter optimization problem, and the entire 

transfer trajectory is formulated and optimized in the form of a single nonlinear optimization problem with a small number of variables

and constraints. Finally, an example of an Earth-moon transfer trajectory using solar electric propulsion is demonstrated. 

Keywords: trajectory optimization; solar electric propulsion; analytic orbital averaging technique; direct/indirect method 

1 Introduction
*

Since the Deep Space 1 spacecraft demon-

strated the first use of solar electric propulsion (SEP) 

for an interplanetary mission[1], the application of 

low-thrust propulsion for future space missions has 

been a popular research subject. More recently, the 

ESA Smart-1 spacecraft[2] launched in 2003 suc-

cessfully performed the first lunar mission using 

solar electric propulsion. It is well known that the 

spacecraft propelled by low-thrust SEP engines is 

capable of delivering a greater payload fraction 
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compared to the spacecraft using conventional 

chemical propulsion. However, the low-thrust con-

tinuous control profiles can not be approximated by 

the impulsive velocity differences. How to optimize 

low-thrust transfer trajectories becomes a new chal-

lenge to the mission designers who want to use SEP 

as the primary spacecraft propulsion.  

In the past two decades, lots of researches on 

low-thrust Earth-moon trajectories were conducted. 

For instance, Golan and Breakwell[3] investigated 

minimum-fuel lunar trajectories with the fixed 

transfer time by patching Earth- and moon-centered 

spirals at an intermediate point. Huelman[4] intro-

duced a power-limited optimal guidance law for 

Earth-moon transfers in a planar restricted three- 
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body dynamics. Piersion and Kluever[5] solved op-

timal Earth-moon trajectories using a three-stage 

approach. Later, they obtained a series of Earth- 

moon trajectories[6-8] in the classical restricted three- 

body dynamics. Herman and Conway[9] employed a 

parallel Runge-Kutta method to solve optimal 

Earth-moon transfers, which start from a circular 

orbit with 6.3 Earth radii and end at a two-lu-

nar-radii orbit. The initial thrust acceleration of 

10–4g0 (g0 is the Earth sea-level gravitational accel-

eration) yields a 32-day flight journey. Recently, 

Betts[10] obtained an optimal trajectory from a geo-

stationary transfer orbit (GTO) to a high elliptic lu-

nar orbit with the perilune radius of 2 378 km and 

the apolune radius of 11 738 km using the direct 

transcription method or collocation method, which 

creates a large-scale nonlinear optimization problem 

including 211 031 variables and 146 285 constraints. 

A less accurate approximate solution to this problem 

was obtained with the computational time of 

4.2×104 s (11.67 h) and the longer time is needed to 

obtain a more accurate solution.  

However, complete transfers from low Earth 

orbits (LEO) to low lunar orbits (LLO) using solar 

electric propulsion with or without consideration of 

significant shadowing effect still have not been 

solved in above-mentioned papers. In Refs.[7] and 

[8], Kluever and Piersion used the Edelbaum’s 

method to approximate the spirals from LEO to a 

high Earth orbit (HEO), and from a high lunar orbit 

(HLO) to LLO. Nevertheless, the Edelbaum’s 

method does not consider J2 perturbations and 

shadowing condition that significantly affects tra-

jectory evolution in relatively low-altitude orbits 

around the Earth and the moon. If Betts’ direct tran-

scription and the parallel Runge-Kutta method[9] are 

utilized to solve a long-duration transfer trajectory 

from LEO to LLO, the dimension of the nonlinear 

optimization problem would be much larger. In ad-

dition, it is difficult to consider the shadowing effect 

in the existing direct methods. 

This paper demonstrates a feasible method to 

compute the low-thrust Earth-moon trajectory from 

a low earth circular orbit (500 km altitude) to a low 

lunar circular orbit (200 km altitude). The transfer 

from HEO to HLO is computed by a direct/indirect 

method utilized by Kluever and Piersion[5-8], but the 

equinoctial elements in a four-body (the Earth, the 

moon, the sun, and the spacecraft) dynamics in-

cluding J2 perturbations are employed. Furthermore, 

the low-thrust spirals from LEO to HEO and from 

HLO to LLO are computed by an analytic orbital 

averaging technique (AOAT), in which the third- 

body perturbations are ignored but the significant J2

perturbations and shadowing effect are taken into 

account. The ephemeris of the Earth, the moon, and 

the sun are obtained using JPL planetary and lunar 

ephemerides[11]. The moon’s orbit around the Earth 

is not a planar circular orbit; the moon’s inclination 

varies between 18° and 28° every 15 years. The en-

tire trajectory is assumed to be a burn-coast-burn 

sequence, which is a good tradeoff between fuel 

consumption and transfer time. The optimal control 

problem for the Earth-moon transfer trajectory is 

converted to a parameter optimization problem that 

is in turn solved by nonlinear program-

ming—sequential quadratic programming (SQP). 

The entire transfer trajectory is optimized by a sin-

gle nonlinear SQP problem including only a few 

variables and constraints. 

2 Equations of Motion 

2.1 Definitions of ECI and MCI coordinates 

The ECI coordinate (Earth-centered inertial 

coordinate Oexeyeze, see Fig.1) refers to the J2000 

Earth equatorial frame that is defined by the mean 

orientation of the Earth’s equator and ecliptic orbit 

at the beginning of the year 2000. The Oexeye plane

is parallel to the mean Earth’s equator. The line 

formed by intersection of the ecliptic orbit plane and 

the Earth’s equatorial plane, defines the axis xe. The 

line, on the first day of autumn (starting from the 

sun to the center of the Earth) defines the positive 

direction of the axis xe, which is called the vernal 

equinox. The axis ze is perpendicular to the Oexeye

plane and points to the north. The axis ye completes 

the Cartesian coordinate using the right-handed 
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principle. The MCI coordinate, i.e. moon-centered 

inertial coordinate Omxmymzm (Fig.1) is parallel to 

Oexeyeze with different origins. In this paper, the 

equations of motion in both ECI and MCI coordi-

nates are expressed by a set of equinoctial ele-

ments[12-14], which avoid singularities when the or-

bit’s inclination and eccentricity equal to zero. 

Fig.1  Illustrations of ECI, MCI coordinates and thrust 

steering angles in the local rotating coordinate 

ORxRyRzR, where the axis xR is from the Earth to the 

spacecraft, the axis zR is perpendicular to the orbital 

plane, and the axis yR completes the Cartesian coor-

dinate ORxRyRzR following the right-handed principle, 

which is in the orbital plane and points to the veloc-

ity direction. 

2.2 Equations of motion in the ECI coordinate 

The equations of motion in the ECI coordinate 

for the Earth-departure trajectory are 

2 1T Earth moon sun( )J

T

m
x M D   (1) 

0 sp/( )m T g I  where 0 sp2 /( )T P g I   (2) 

where T[ ]p f g h k Lx is the vector of equinoctial 

elements in the ECI coordinate, and 
2 EarthJ ,

moon , and 
1sun are Earth J2 oblateness acceleration, 

moon’s perturbation, and sun’s perturbation respec-

tively in the ECI coordinate. The elements in the 

matrices M and D are given in Appendix A. Eq.(2) 

is the mass flow rate, where T is thrust amplitude, 

and P, Isp, and  are power, specific impulse and 

efficiency of the SEP system, respectively. The 

thrusting direction unit vector can be expressed in 

terms of local pitch and yaw steering angles 

T

T sin cos cos cos sin     (3) 

where the pitch angle ( ) is measured from the local 

horizon (the axis yR) to the projection of the thrust 

vector onto the orbit plane, and the yaw angle ( ) is 

measured from the orbit plane to the thrust vector 

(see Fig.1).  

The Earth gravitational parameter and Earth 

radius ( e and Re) define the non-dimensional 

units—distance, velocity, time, and acceleration—in 

the ECI coordinate as follows 

2e e
e e e e e e e

e e

, , , /
R

d R v t a R t
R v

  (4) 

The Earth J2 perturbations can be expressed in 

the rotating coordinate ORxRyRzR

2 EarthJ

2 2
e 2e e

4 2 2 2

2
e 2e e

4 2 2 2

2 2 2
e 2e e

4 2 2 2

3 12( sin cos )
1

2 (1 )

12 ( sin cos )( cos sin )

(1 )

6 (1 )( sin cos )

(1 )

J R h L k L

r h k

J R h L k L h L k L

r h k

J R h k h L k L

r h k

 (5) 

where r is the distance from the Earth center to the 

spacecraft. The gravitational accelerations of the 

sun and the moon expressed in the ECI coordinate 

can be written as 

1

sun sc e sun
sun sun 3 3

sun sc e sun

r r

r r
     (6) 

m sc e m
moon m 3 3

m sc e m

r r

r r
      (7) 

where sun scr  is the position vector from the sun to 

the spacecraft, e sunr  from the Earth to the sun,   

m scr  from the moon to the spacecraft, and e mr

from the Earth to the moon. The gravitational pa-

rameters of the sun and the moon are denoted by 

sun  and m , respectively. The vector 
1sun  and   

moon  in the ECI coordinate should  be  transformed 

to
1sun  and moon  in the local rotating coordinate. 

2.3 Equations of motion in the MCI coor-   

dinate

Likewise, the equations of motion in the MCI 

coordinate for the moon-capture trajectory are 
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2 22 2 T moon Earth sun 2( )J

T

m
x M D  (8) 

where T
2 2 2 2 2 2 2[ ]p f g h k Lx is the vector of 

equinoctial elements in the MCI coordinate, and 

2 moonJ , Earth , and 
2sun are moon J2 oblateness 

acceleration, Earth’s perturbation, and sun’s pertur-

bation respectively in the MCI coordinate. The ele-

ments in the matrices M2 and D2 are in the expres-

sions as in the matrices M and D, and the mass flow 

rate is the same as in Eq.(2). The local thrusting 

pitch and yaw steering angles have the same defini-

tions as in Eq.(3) but referenced in the MCI coordi-

nate. The moon’s gravitational parameter and 

moon’s radius ( m and Rm) also define the 

non-dimensional units in the MCI coordinate as 

follows

2m m
m m m m m m m

m m

, , , /
R

d R v t a R t
R v

  (9) 

The moon’s J2 perturbations have the same formula-

tion as in Eq.(5) with the substitutions of J2m, m,

and Rm  for J2e, e, and Re .  

The gravitational accelerations of the sun and 

the Earth expressed in the MCI coordinate can be 

written as 

2

sun sc m sun
sun sun 3 3

sun sc m sun

r r

r r
    (10) 

e sc m e
Earth m 3 3

e sc m e

r r

r r
      (11) 

where m sunr  is the position vector from the moon to 

the sun, e scr  from the Earth to the spacecraft, and   

m er  from the moon to the Earth. Also, 
2sun  and 

Earth  in the MCI coordinate should be transformed 

to
2sun  and Earth  in the local rotating coordinate. 

3 Five Segments of the Earth-moon  

   Trajectory 

The entire Earth-moon trajectory is divided 

into five segments: 

(1) Burn arc from LEO to HEO;  

(2) Burn arc from HEO to the start of the 

trans-lunar coast arc;  

(3) Trans-lunar coast arc;  

(4) Burn arc from the end of trans-lunar coast 

arc to HLO; 

(5) Burn arc from HLO to LLO.  

Fig. 2 illustrates trajectory segments, and Table 

1 summarizes perturbations, trajectory propagation 

methods, and inertial coordinates in different tra-

jectory segments. 

Fig. 2  Illustration of five trajectory segments. 

Table 1  Different trajectory segments 

Segment Perturbations 
Propagation 

method 
Coordinate 

(1)
Earth shadow,  

Earth J2
AOAT ECI 

(2) , (3) 
Earth J2, moon 

gravity, sun gravity

Numerical 

integration 
ECI 

(4)
Moon J2, Earth 

gravity, sun gravity

Numerical 

integration 
MCI

(5)
Moon shadow, 

moon J2
AOAT MCI 

It is well known that the low-thrust spirals 

from LEO to HEO and those from HLO to LLO 

consist of hundreds or even thousands of orbital 

revolutions, which requires a formidable amount of 

time to compute if trajectories are numerically inte-

grated. Segments (2)-(4) having relatively fewer 

orbital revolutions are easier to be numerically inte-

grated for moderate duration. Thus, the AOAT, a 

fast trajectory propagation algorithm, is used to 

compute the segments (1) and (5). For the segments 

(1)-(3), the trajectories in the ECI coordinate are 

propagated forward in time while those in segments 

(4) and (5) in the MCI coordinate backward in time. 

Since the gravitational forces of the sun, the Earth, 

and the moon in both ECI and MCI coordinates are 

considered, the optimization subroutine would 

automatically find the proper location to switch 

from the ECI coordinate to the MCI coordinate. 

Thus, it is not necessary to specify a fixed interme-

diate point requisite for the conventional patched 

conic method. 
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4 Computing Earth-orbit Ascending and 

   Lunar Descending Trajectories Using  

   AOAT 

The tangential steering along the velocity di-

rection is employed for the Earth-orbit ascending 

trajectory from LEO to HEO, while the anti-tan- 

gential steering for the lunar descending trajectory 

from HLO to LLO. Either the tangential or anti-tan- 

gential steering is the optimal control strategy to 

change the instantaneous rate of semi-major axis. 

The trajectory segments (1) and (5) computed by the 

AOAT are accurate only for relatively low orbits 

about an attracting body, where the J2 perturbations 

and significant shadowing effect are included, but 

the insignificant third-body perturbations are ig-

nored. The AOAT algorithm is described in Ref.[15] 

and also briefly presented in Appendix B. The pri-

mary advantage of the AOAT lies in the multi- 

revolution trajectories which can be quickly propa-

gated while maintaining satisfactory accuracy[15].

Note that the computational procedure of the moon- 

capture trajectory using anti-tangential thrust is op-

posite to that using tangential-thrust trajectory.  

Let the initial condition of classical orbit ele-

ments, mass, and time at LEO be 

(1) (1) (1) (1) (1) (1) (1)
t0 t0 t0  t0  t0 t0 t0, , , , , ,a e i m t

where the superscripts represent the segment index 

number and the subscript “t0” denotes the initial 

time of the corresponding trajectory segment. The 

AOAT propagates the tangential-thrust trajectory 

and determines the orbital elements, spacecraft mass, 

and flight time at a point where the semi-major axis 

is pre-defined by (1)
tfa  with the subscript “tf” denot-

ing the terminal time of the corresponding trajectory 

segment 
(1) (1) (1) (1) (1) (1) (1)
tf tf tf  tf  tf tf tf, , , , , ,a e i m t

Likewise, for the segment (5) that is propagated 

backward in time, if the terminal condition at LLO 

is
(5) (5) (5) (5) (5) (5) (5)
tf tf tf  tf  tf tf tf, , , , , ,a e i m t

The initial condition of the segment (5) can be ob-

tained by backward integrating anti-tangential- 

thrust trajectory to a point where the semi-major 

axis is pre-defined by (5)
t0a

(5) (5) (5) (5) (5) (5) (5)
t0 t0 t0  t0  t0 t0 t0, , , , , ,a e i m t

Note that the AOAT does not consider true anomaly, 

which is a variable to be optimized. 

5 Optimization Method for Trans-lunar  

   Trajectory Segments 

A direct/indirect method is used to obtain near 

optimal control steering for trans-lunar trajectory 

from HLO to HLO. Note that this method is em-

ployed to solve an Earth-orbit transfer (Zondervan, 

Wood, and Caughey[16]), low-thrust Earth-moon 

transfers in the classical restricted three-body dy-

namics (Kluever and Pierson[5-8]) as well as inter-

planetary transfers (Gao and Kluever[17]). In this 

paper, the direct/indirect method is used in terms of 

the equinoctial elements. According to the calculus 

of variation theory, the Hamiltonian of optimal con-

trol problem takes the following form 

T T
T p m

0 sp

T T
H

m g I
M f D   (12) 

where fp includes J2 perturbations and third-body 

perturbations (in both ECI and MCI coordinates).  
T

p f g h k L[ ]  is the costate vector asso-

ciated with the corresponding equinoctial elements, 

and m  the costate variable associated with the 

spacecraft mass. The optimal control steering direc-

tion unit vector is obtained by setting T/ 0H

with the constraint T 1.

T T
*
T T

[ ]M

M
           (13) 

Taking the partial derivative of the Hamiltonian 

with respect to the states, the costate equations are 

determined.  

T * T
T

pT T
p

H T

m

M D

x x x

fM
f M

x x
   (14) 

T * T
m T2 2

H T T

m m m
M M    (15) 

It indicates that the optimal control is governed 

by costate variables whose dynamics are given by 
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Eq.(19). For simplicity, the costate dynamics asso-

ciated with the two-body dynamic model is used to 

govern the control steering to make deriving deriva-

tives of fp with respect to the states unnecessary. In 

fact, the third-body perturbations are time-varying 

function without explicit derivatives with respect to 

equinoctial elements. However, the equations of 

motion do include perturbations. The initial costate 

variables or terminal costate variables need to be 

guessed to satisfy the necessary boundary con-

straints without regard to the transversality condi-

tion and time-varying condition, which should be 

considered in a classical two-point boundary-value 

problem. The optimal objective function and 

boundary conditions are all treated by nonlinear 

optimization programming. Since the costate vari-

able associated with mass do not affect the optimal 

control, the first six costate variables ( m is not used) 

could be used. Thus, for the segment (2), the state 

equations are Eq.(1) and Eq.(16) and the costate 

equation is Eq.(17).  

0 sp

T
m

g I
 where 

0 sp

2 P
T

g I
      (16) 

T * T
T

H M D

x x x
     (17) 

Likewise, for the segment (4), the state equa-

tions are Eq.(9) and Eq.(16), and the costate equa-

tion has the same form as in Eq.(17), but referenced 

in the MCI. The advantage of the direct/indirect 

method over the direct transcription method lies in 

fewer variables and constraints leading to saving on 

considerable time for computation. However, the 

costate variables needed to be integrated have no 

intuitive physical meaning, which makes optimiza-

tion problem much harder to converge although 

some techniques such as the adjoint-control trans-

formation[18] and the multiple-shooting technique[17]

are helpful in improving convergence robustness.  

The initial condition of the segment (2) can be 

denoted by state variables (2)
t0x  and costate vari-

ables
(2)
t0 , where (2)

t0x  expressed in equinoctial ele-

ments (2) (2) (2) (2) (2)
t0 t0 t0 t0 t0[ ]p f g h k is transformed from 

(1) (1) (1) (1) (1)
tf tf tf  tf  tf, , , ,a e i , and (2) (1)

t0 tfm m , (2) (1)
t0 tft t .

The initial values of true longitude (2)
t0L  and costate 

variables need to be guessed. The segment (3) does 

not integrate the costate equations since there is no 

thrust during the coast arc. The initial condition of 

the segment (3) is the terminal condition of the 

segment (2). In contrast, the segment (4) is inte-

grated backward, and the terminal condition of the 

segment (4) is state variables (4)
tfx  and costate vari-

ables
(4)
tf , where (4)

tfx in equinoctial elements 

(4) (4) (4) (4) (4)
tf tf tf tf tf[ ]p f g h k  are transformed from 

(5) (5) (5) (5) (5)
t0 t0 t0  t0  t0, , , ,a e i and (4) (5)

t0tfm m , (4) (5)
t0tft t .The

terminal values of true longitude (4)
tfL  and costate 

variables need to be guessed. Obviously, a complete 

trajectory should satisfy the following constraint 

(3) (3) (3) (3) (3) (3) (3) (3)
tf tf tf tf tf tf tf tf

(4) (4) (4) (4) (4) (4) (4) (4)
t0 t0 t0 t0 t0 t0 t0 t0

[ ]

[ ]

p f g h k L m t

p f g h k L m t

6 Formulation of Nonlinear Optimization

 Problem 

In the Section 4 and Section 5, the AOAT and 

the direct/indirect method are described, and the 

initial/ terminal conditions are specified for each 

burn segment. The next step is to formulate a pa-

rameter optimization problem that is in turn solved 

by nonlinear programming—sequential quadratic 

programming (SQP), in which the overall mission 

objective is to minimize the propellant consumption 

during the transfer. The SQP variables and con-

straints are summarized as follows 

22 SQP variables:   

11 variables in the forward trajectory propagation 

for segments (1)-(3): 

Segment (1): LEO departure date (1)
t0t , LEO’s (1)

t0 ;

Segment (2): six initial costate variables 
(2)
t0 for the 

Earth-departure burn arc, burn arc duration (2) (2)
t0tf -t t ,

HEO’s longitude angle (2)
t0L ;

Segment (3): coast arc duration (3) (3)
t0tf -t t .

11 variables in the backward trajectory propagation 

for segments (4) and (5): 

Segment (4): six terminal costate variables 
(4)
tf  for 

the moon-capture burn arc, burn arc duration (4)
tf -t

(4)
t0t , HLO’s longitude angle (4)

tfL ;
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Segment (5): LLO departure date (5)
tft , spacecraft 

mass at LLO (5)
tfm , LLO’s (5)

tf .

8 SQP equality constraints:  

6 constraints: terminal states of segment (3) = initial 

states of segment (4);  

1 constraint: date at the terminal time of segment  

(3) = date at the initial time of segment (4); 

1 constraint: mass at the terminal time of segment  

(3) = mass at the initial time of segment (4) . 

7 Comparison with Direct Transcription

    Method 

The direct transcription method parameterizes 

the control history using discrete nodes, which in-

evitably results in a large number of variables and 

constraints if the transfer contains much more revo-

lutions. In this paper, with the help of costate equa-

tions, the formulated SQP problem involves only 22 

variables and 8 constraints, which is generally re-

garded as a smaller dimensional nonlinear optimiza-

tion. Another focused point is the use of the AOAT, 

a semi-analytic method for trajectory propagation. 

Capable of propagating hundreds or even thousands 

of revolutions, it is much faster than precise nu-

merical integration.  

Compared with the direct transcription method, 

the proposed method reduces computational time by 

orders, especially for long-duration multi-revolution 

transfers. This makes it possible to optimize the en-

tire transfer trajectory as a single nonlinear optimi-

zation problem.  

8 Numerical Results 

An Earth-moon trajectory from a LEO with 

500 km altitude to a LLO with 200 km altitude is 

presented. First, the parameters of the spacecraft to 

be defined are: the input power of the solar electric 

propulsion P = 10 kW, the efficiency  = 0.65, the 

specific impulse Isp = 3 300 s, and the initial space-

craft mass set to be 1 000 kg. Thus, the calculated 

initial thrust-to-weight ratio (T/m0g0) equals to   

4.096 3×10–5. The parameters of the initial LEO and 

the terminal LLO are specified in Table 2. The ini-

tial Earth departure date is set to be Jan. 1, 2008. 

Note that the 90° inclination of the LLO is refer-

enced in the MCI coordinate defined in this paper. 

In fact, 90° might not be an ideal inclination of a 

LLO parking orbit for the spacecraft, which should 

take into account the moon’s obliquity angle, angle 

between the moon’s rotation axis and the Earth 

equatorial plane or ecliptic plane, and further de-

tailed analysis of lunar gravity field. Falling out of 

the scope of this paper, this problem will not be dis-

cussed.

Table 2 Initial LEO and terminal LLO 

Orbital elements Initial LEO Terminal LLO 

Semi-major axis 1.078 4 Re 1.115 1 Rm

Eccentricity  0.001 0.001 

Inclination/(°) 28.5 90.0 

Ascension of ascending node free free 

Argument of periapsis/(°) 0 0 

True anomaly free free 

As described in previous sections, the AOAT 

computes trajectory segment from the LEO to a 

HEO (aHEO = 10Re) in the ECI coordinate. It goes 

the same way for the AOAT to compute the trajec-

tory segment from the LLO to a HLO (aHLO = 2Rm)

in the MCI. As shown in Ref.[15], the lower the 

altitudes of HEO and HLO, the more accurate the 

solutions. However, the low attitudes might result in 

more revolutions for the trans-lunar trajectory seg-

ment, which will conceptually cause difficulties in 

converging if the indirect/direct method is used. But, 

if the number of revolution is not excessively large 

for instance under 50, the indirect/direct method still 

works well without too many troubles guessing ini-

tial costate variables. The indirect/direct method 

was once used to solve a lot of transfer problems 

with small numbers of revolutions[6-8]. On the base 

of previous researches and author’s experience in 

trajectory optimization, aHEO = 10Re and aHLO = 2Rm

are selected in the following example.  

The formulated parameter optimization prob-

lem has a small number of variables and constraints. 

However, it appears not easy to make initial guesses 

for 22 SQP variables to obtain converged solutions 

at the first run. As a result, the following steps are 
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taken to find out the final optimal solutions: 

Step 1  To generate a trajectory to rendezvous 

moon in the ECI coordinate with a burn-coast-burn 

engine sequence exclusive of the lunar perturbation. 

In this step, the lunar capture is not considered. 

Step 2  To remove the second burn and adjust 

the duration of the first burn and coast arcs to make 

the end of the coast arc in the vicinity of moon.  

Step 3  To generate a trajectory in the MCI 

coordinate to escape moon’s gravity and try differ-

ent values for SQP variables in the segments (4) and 

(5) to make 8 SQP equality constraints as close as 

possible.  

Step 4  To optimize the trajectories from the 

LEO to the LLO in a single SQP problem based on 

the solutions obtained from Step 3. 

After performing the Step 4, the obtained LEO- 

LLO trajectories are summarized in Table 3, which 

shows about 80 days left for the trans-lunar trajec-

tory from the HEO to the HLO. The Earth-orbit as-

cending trajectory takes about 161 days and the 

moon descending trajectory about 12 days. Through 

AOAT, are obtained about 1 009 orbital revolutions 

from the LEO to the HEO, and about 94 revolutions 

from the HLO to the LLO. It indicates that the tra-

jectories computed by the AOAT have majority of 

revolutions of the entire transfer trajectory, and take 

about almost half the transfer time. 

Table 3 Solutions for the LEO-LLO trajectories 

Mission parameters  Solutions 

LEO departure date Dec. 31, 2007 

HEO arrival date June 10,2008 

Duration from LEO to HEO/day 161.58 

1
st
 burn arc duration (trans-lunar)/day 50.32 

coast arc duration (trans-lunar)/day 9.49 

2
nd

 burn arc duration (trans-lunar)/day 19.42 

HLO arrival date Aug. 28, 2008 

LLO arrival date Sept. 9, 2008 

Duration from HLO to LLO/day 12.37 

Total transfer time/day 253.18 

Final mass at LLO/kg 791.31 

The time histories of semi-major axis, eccen-

tricity, and inclination in both ECI and MCI coor-

dinates are presented in Figs.3-5, respectively, from 

which it is clear that semi-major axis increases in 

the ECI coordinate and decreases in the MCI coor-

dinate. From the LEO to the HEO, the eccentricity 

is raised at first to about 0.16 followed by slightly 

falling and then quickly increasing. In the moon- 

capture phase, the eccentricity is about 0.14 at the 

HLO. The eccentricity does not change monotoni-

cally mainly because of the effect of shadow. With-

out the shadowing effect, the trajectory from the 

LEO to the HEO or from HLO to the LLO should 

be a near-circular transfer. The inclination change in 

the MCI coordinate is not significant since the 

spacecraft enters moon-capture trajectory with an 

optimally chosen orientation. Additionally, the 

transfer trajectories in the ECI coordinate are pre-

sented in Fig.6, and the lunar capture trajectory in 

Fig.7. The control steering direction angles in both 

ECI and MCI coordinates are presented in Fig.8 and 

Fig.9.

Fig.3  Time history of semi-major axis from LEO to LLO. 

Fig.4  Time history of eccentricity from LEO to LLO. 
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Fig.5  Time history of inclination from HEO to HLO.

Fig.6  Trajectory from HEO to HLO in the ECI coordinate. 

Fig.7  Moon-capture trajectory to HLO in the MCI coordi-

nate.

Fig.8  Time histories of control steering for trajectory from 

HEO to escape (ECI). 

Fig.9  Time histories of control steering for trajectory from 

capture to HEO (MCI). 

9 Conclusions 

A feasible method has been proposed to find 

preliminary solutions for Earth-moon transfer tra-

jectories from LEO to LLO using SEP. The shadow 

effects, oblateness of the Earth and the moon, the 

gravitational forces of the sun, the Earth, and the 

moon are all taken into consideration, and the tra-

jectories are solved using a practical, complex three- 

dimensional dynamic model. The JPL planetary and 

lunar ephemerides are utilized to compute precise 

positions of involved celestial bodies. The signifi-

cant shadowing effect at relatively low altitude or-

bits is considered to highlight the use of solar elec-

tric propulsion. By means of AOAT and the di-

rect/indirect method, the optimal orbit transfer 

problem can be converted to a parameter optimiza-

tion problem that only involves a small number of 

SQP variables and constraints. The main advantage 

of the proposed method lies in its provision of a 

more efficient algorithm to optimize long-duration, 

multi-revolution transfer trajectories while keeping 

the solution satisfactorily accurate. The obtained 

solutions can be used as a good initial guess for 

further trajectory optimization problems in high- 

fidelity dynamic models. 
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Appendix A: Matrices M and D

The elements of matrices M, D expressed by 

equinoctial elements are as follows 

11 12 13

21 22 23

31 32 33

41 42 43

51 52 53

61 62 63

M M M

M M M

M M M

M M M

M M M

M M M

M

11 0M , 12

2 p p
M

w
, 13 0M , 21 sin

p
M L

22

1
[( 1) cos ]

p
M w L f

w
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23 ( sin cos )
p g

M h L k L
w

31 cos
p

M L , 32

1
[( 1)sin ]

p
M w L g

w

33 ( sin cos )
p f

M h L k L
w

41 42 0M M ,
2

43 cos
2

p s
M L

w

51 52 0M M ,
2

53 sin
2

p s
M L

w

61 62 0M M , 63

1
( sin cos )

p
M h L k L

w

2

T
6 6[0 0 0 0 0 ] ,

w
D D p

p
D

where 1 cos sinw f L g L ,  is the Earth gravi-

tational parameter, and 2 2 21s h k . The equi-

noctial elements can be obtained in terms of classi-

cal orbital elements (a, e, i, , , ):
2(1 )p a e , cos( )f e , sin( )g e ,

tan( / 2) cosh i , tan( / 2)sink i ,

L  where  is true anomaly. 

Appendix B: Analytic Orbital Averaging Tech-

nique

In this section, equations are deduced in the 

ECI coordinate, which in the MCI coordinate can be 

deduced likewise. In order to obtain the analytic 

incremental changes using tangential-thrust in 

classical orbital elements, it is preferable to start 

with the Gauss planetary equations[17]:

2 2d 2 sin 2

d * *
r

a a e a p
f f

t h h r
        (B1) 

d 1 1
sin [( ) cos ]

d * *
r

e
p f p r re f

t h h
  (B2) 

d cos ( )sin

d * *
r

p p r
f f

t h e h e
     (B3) 

d 1
[ (cos ) (1 )sin ]

d
r

E na r
f e f

t r nae a
  (B4) 

where 2(1 )p a e , *h p , 3/n a , and r

/(1 cos )p e . When the thrust acceleration ( rf

and f ) is much smaller than the gravitational ac-

celeration, the derivative of eccentric anomaly with 

respect to time is approximated by removing the 

thrust term 

d

d

E na

t r
              (B5) 

After transforming eccentric anomaly E to true 

anomaly  by 

2sin 1
sin

1 cos

E e

e E
 , 

cos
cos

1 cos

E e

e E
  (B6) 

the derivatives of the first five classical orbital ele-

ments (a, e, i, , , ) with respect to eccentric 

anomaly can be computed by dividing the Gauss 

planetary equations (B1)-(B4) by Eq.(B5): 

3
2d 2

sin 1
d

r

a a
f e E f e

E
     (B7) 

2
2

2 2

d
(1 )sin (2cos

d

cos ) 1

r

e a
f e E f E

E

e e E e  (B8) 

2
2

2

d d
cos (cos ) 1

d d

(2 cos )sin

r

a
i f E e e

E E e

f e e E E  (B9) 

The thrust is so low that it can be assumed that over 

an orbital arc the classical orbital elements and ac-

celeration are kept constant. The steering that 

maximizes the rate of semi-major axis (i.e., tangen-

tial steering) can be derived by setting (d / d ) /a E

0  and 2 2(d / d ) / 0a E

2

2 2 2 2

sin 1
sin ,cos

1 cos 1 cos

e E e

e E e E
 (B10) 

The analytic expressions for integrals with re-

spect to eccentric anomaly are:  

f f

0 0

3
2 2

in

d 2
d 1 cos d

d

E E

E E

a a
E f e E E

E
  (B11) 

f f

0 0

f
f

0
0

2
2 2 2

in

2 2 2 2

d 2
d (1 ) 1 cos d

d

1 1 cos  d [ln(sin 1 cos )]

E E

E E

E E

EE

e a
E e f e E E

E e

e E E E e E e

 (B12) 

f

0

f

0

2
2

in2

2 2 1

d 2
d 1

d

1 cos sin ( cos )

E

E

E

E

a
E e f

E e

e E e E    (B13) 
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where fin is acceleration amplitude. Note that it is 

unable to find analytic expressions for the terms 

f

0

2 21 cos d
E

E
e E E  and 

f

0 2 2

1
d

1 cos

E

E
E

e E
. The 

following approximations can be utilized for these 

functions to be integrated. 

2 2 2 2 21 cos 1 (1 1 )sine E e e E  (B14) 

2 2

2 2

2 2 2 2

2 2 2

1
1 cos

1 cos

cos cos

1 cos 1

e E
e E

e E e E

e E e c
    (B15) 

To make the functions and their approxima-

tions as close as possible, c = 0.8 is chosen by way 

of trial-and-error tests. The corresponding integrals 

are then obtained in the following analytic forms: 

f

0

f

0

2 2

2 2

1 cos d

1 (1 1 )(0.5 0.25sin 2 )

E

E

E

E

e E E

e E e E E  (B16) 

f f

0 0

f

0

2 2

2 2

2

2

1
1 cos d d

1 cos

0.5 0.25sin 2
1

E E

E E

E

E

e E E E
e E

e
E E

e c
 (B17) 

Furthermore, the averaging changes of orbital 

elements due to J2 perturbation are as follows: 

d d d
0

d d d

a e i

t t t
        (B18) 

2
e

2 2 2 2

d 3
cos

d 2 (1 )

R
J n i

t a e
   (B19) 

2
2e

2 2 2 2

d 3
(5cos 1)

d 4 (1 )

R
J n i

t a e
    (B20) 

The increments in classical orbital elements and 

time including J2 perturbations and cylindrical 

shadow[20] per revolution are approximated as: 

en

ex

d d 2
d

d d

E

E
E

E t n

z z
z        (B21) 

2
t

n
               (B22) 

where z = [ a, e, i, , , ]. The mass loss per 

revolution is computed by Earth shadow entrance 

and exit angles.  

en en ex ex2
0 sp

2 1
[ ( sin sin )]

( )

P
m E e E E e E

ng I

(B23)

With [ ]t my z and [ ]t my z , the 

elements in the (i+1)th revolution is computed only 

in terms of the elements in the (i)th revolution  

1i i iy y y             (B24) 

A terminal semi-major axis can be specified for the 

stop condition of the orbital averaging. The states at 

the terminal semi-major are obtained by interpolat-

ing the orbital elements during the last revolution  

tf
tf 1

1

( )i
i i i

i i

a a

a a
y y y y       (B25)


