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ABSTRACT

We prove non-Archimedean analogs of results of NoguchI and Winkelmann showing algebraic degen­
eracy of rigid analytic maps to projective varieties omitting an effecllve divisor with sufficiently many
meducible components relative to the rank of the group they generate in the Neron-Severi group ofthe
variety.

1. INTRODUCTION

Dufresnoy [7] (or see [9, §3.10]) proved that a holomorphic map from the complex
plane C that omits n + k hyperplanes in general position in projective space pn
must be contained in a linear subspace of dimension at most njk, Noguchi and
Winkelmann [16] generalized this result to show that a holomorphic curve in
an arbitrary projective manifold (or more generally a compact Kiihler manifold)
omitting sufficiently many irreducible hypersurfaces relative to the rank of the
group generated by their cohomology classes must be algebraically degenerate. This
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puts the Dufresnoy theorem in context and clarifies the roll played by the rank of
the Neron-Severi group. Noguchi and Winkelmann's precise result is the following
theorem.

Theorem (Noguchi/Winkelmann). Let M be a compact Kahler manifold of di­
mension m. Let {D, };=l be £ irreducible hypersurfaces in general position. Let r
be the rank of the group generated by {cl (Di HT=I' Let W be a closed subvariety
of M of dimension n and irregularity q. Suppose there exists an algebraically
non-degenerate holomorphic map from the complex plane C to W that omits each
ofthe D, that does not contain all ofW. Then

(i) #{W n D i i= W} + q :::; n + r;
(ii) If£ > m and in addition each ofthe Di are ample, then

m
n:::;--max{O,r -q}.

£-m

Here, Cl denotes the first Chern class, and the irregularity q is the dimension
of the space of holomorphic I-forms on a desingularization of W, which is the
dimension of the Albanese variety. When the irregularity exceeds the dimension,
Bloch [3] (or see [17] for a rigorous proof) proved all holomorphic curves
are algebraically degenerate by showing the image in the Albanese variety is
degenerate. This was extended by Noguchi (and by Noguchi and Winkelmann
in the non-algebraic Kahler case) - see the references in [16] - to conclude
that a holomorphic map from C omitting an effective divisor D such that the
logarithmic irregularity with respect to D, i.e., the dimension of the space of
logarithmic I-forms with poles along D, exceeds the dimension. This was again
done by composing with the quasi-Albanese morphism, but this time since the
quasi-Albanese variety need not be compact, there are additional difficulties.

Our purpose here is to explain the rigid analytic analog of the Noguchi-Winkel­
mann theorem for non-Archimedean analytic maps, at least in the case ofprojective
algebraic varieties. The non-Archimedean analog of Bloch's theorem was proven by
Cherry in [5]. Modulo the standard constructions of Albanese and Picard varieties
as in [10], it is then a routine matter to conclude analogous algebraic degeneracy
results.

One could perhaps argue that the natural category for us to work in is that
of complete rigid analytic spaces, rather than projective varieties. However, the
Albanese map is crucial for our arguments, and as far as we know, this has not
been worked out for non-algebraic rigid analytic spaces. Since we restrict ourselves
to projective varieties, we do not hesitate to appeal to algebraic results when
convenient, even when there are alternative approaches that work for more general
rigid analytic spaces.

Let F be an algebraically closed field complete with respect to a non-Archime­
dean absolute value and of arbitrary characteristic. Throughout, a variety will
mean an algebraic variety defined over F, and a morphism will mean an algebraic
morphism defined over F. We will use Al to denote the affine line over F and A1x
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to denote Al \ {OJ. We will use Gm to denote the multiplicative group, which as
an analytic space or a variety is of course the same thing as A I x. Analytic will
mean rigid analytic over F. One can think concretely by thinking ofan analytic map
from A I (resp. A I X) to an algebraic variety X as given by a solution to the defining
equations of X in formal power series (resp. formal Laurent series) with coefficients
in F and converging for arbitrary positive radii.

2. NON-ARCHIMEDEAN ANALYTIC MAPS TO SEMI-ABELIAN VARIETIES

We begin by recalling the main results of [5] and extending them to semi-Abelian
varieties.

Theorem 2.1. Any analytic map from A I to a semi-Abelian variety must be
constant.

Proof. The proof is essentially the argument on p. 401 of [5]. What was actually
shown in [5] was that an analytic map into the extension of an Abelian variety
with good reduction by a torus must be constant. This was then used with the
semi-Abelian uniformization theorem to show that an analytic map to an arbitrary
Abelian variety must be constant. Once one has this, the same argument repeated
then gives that an analytic map from A I to an arbitrary semi-Abelian variety must
be constant. 0

In characteristic zero, Theorem 2.1 can also be proven by the method of [6].

Corollary 2.2. If X is a variety admitting a non-constant morphism to a semi­
Abelian variety, then any analytic map from A I to X is algebraically degenerate.

Corollary 2.3. IfX is a non-singular projective variety in characteristic zero with
positive irregularity, then any analytic map from A I to X must be algebraically
degenerate.

For the case of surfaces, Corollary 2.3 was pointed out in [4].

Proof of Corollary 2.3. Since we assume X to be non-singular, the Albanese map
is a morphism, see e.g., [10, Ch. 2], and since we have assumed characteristic zero,
the dimension of the Albanese variety is the same as the irregularity. 0

Corollary 2.4. If X is a projective variety admitting a non-constant rational
map to an Abelian variety, then any analytic map from AI to X is algebraically
degenerate.

Proof. Let ¢ : X -+ A be a non-constant rational map to an Abelian variety and let
f be an analytic map from A I to X. The idea is that ¢ 0 f is a meromorphic mapping
from A1 to A and hence analytic, unless f is contained in the indeterminacy locus
of¢, whence degenerate. The corollary then follows from the theorem.

483

to denote A I \ {O}. We will use Gm to denote the multiplicative group, which as
an analytic space or a variety is of course the same thing as A I x. Analytic will
mean rigid analytic over F. One can think concretely by thinking ofan analytic map
from A I (resp. A I X) to an algebraic variety X as given by a solution to the defining
equations of X in formal power series (resp. formal Laurent series) with coefficients
in F and converging for arbitrary positive radii.

2. NON-ARCHIMEDEAN ANALYTIC MAPS TO SEMI-ABELIAN VARIETIES

We begin by recalling the main results of [5] and extending them to semi-Abelian
varieties.

Theorem 2.1. Any analytic map from A I to a semi-Abelian variety must be
constant.

Proof. The proof is essentially the argument on p. 401 of [5]. What was actually
shown in [5] was that an analytic map into the extension of an Abelian variety
with good reduction by a torus must be constant. This was then used with the
semi-Abelian uniformization theorem to show that an analytic map to an arbitrary
Abelian variety must be constant. Once one has this, the same argument repeated
then gives that an analytic map from AI to an arbitrary semi-Abelian variety must
be constant. D

In characteristic zero, Theorem 2.1 can also be proven by the method of [6].

Corollary 2.2. IfX is a variety admitting a non-constant morphism to a semi­
Abelian variety, then any analytic map from A I to X is algebraically degenerate.

Corollary 2.3. IfX is a non-singular projective variety in characteristic zero with
positive irregularity, then any analytic map from A I to X must be algebraically
degenerate.

For the case of surfaces, Corollary 2.3 was pointed out in [4].

Proof of Corollary 2.3. Since we assume X to be non-singular, the Albanese map
is a morphism, see e.g., [10, Ch. 2], and since we have assumed characteristic zero,
the dimension of the Albanese variety is the same as the irregularity. D

Corollary 2.4. If X is a projective variety admitting a non-constant rational
map to an Abelian variety, then any analytic map from A I to X is algebraically
degenerate.

Proof. Let ¢ : X ~ A be a non-constant rational map to an Abelian variety and let
f be an analytic map from A I to X. The idea is that ¢ 0 f is a meromorphic mapping
from A1 to A and hence analytic, unless f is contained in the indeterminacy locus
of¢, whence degenerate. The corollary then follows from the theorem.

483



Lacking a convenient reference for the general fact, we give an ad-hoc proofhere.
Embed X and A in projective spaces. Then <P can be represented as [<Po,···, <PN]
where the <P, are homogeneous polynomials and N is the dimension of the projective
space in which we have embedded A. Then, <P, 0 f are analytic functions on A I. If
they are all identically zero, then the image of f is contained in the indeterminacy
locus of <p and is algebraically degenerate. Otherwise, factoring out the greatest
common divisor (well defined up to a non-zero constant) from the <P, 0 f if
necessary, we see <p 0 f can be made to be well defined on all of A I. Hence,
<p 0 f is an analytic map to A and hence constant by the theorem. Therefore, f is
algebraically degenerate. D

Proposition 2.5. Let T be a multiplicative torus and let f be an analytic map (not
assumed to be a group homomorphism) from T to Gm . Then f is the translation of
a group homomorphism.

Proof. Embed T in affine n-space An in the natural way with affine coordinates
Z = (ZI, ... , Zn) on An. Then, f can be written as a Laurent series in multi-index
notation as

An easy argument involving valuation polygons shows that there exists precisely
one multi-index y such that ay I- 0, from which the proposition follows.

Indeed, suppose there exist two multi-indices

11 = (Ill, ... , Iln) I- (VI, ... , vn) = V

with all I- 0 and av I- O. Then, there must be some k such that Ilk I- Vk. Without
loss of generality by reordering the coordinates if necessary, assume Iln I- Vn. Let
u = (u I, ... , un-il be such that Iu J I = 1. Let U= (UI, ... , un-Jl be the reduction
of u in An - I (F), where F denotes the residue class field of F. We want to make a
substitution of the form Zn = z and Zj = U j for 1 ::;; j ::;; n - 1 to get a Laurent series
in one variable Z with at least two non-zero coefficients, but we need to choose the
U j so as not to have any accidental cancellation. But clearly if we choose U with
U generic, meaning that there is a non-zero polynomial with coefficients in F such
that if U is not in the zero locus of that polynomial, then

I L ayurl'''u~~-/I=sUP{laYI: Yn=lln}~laIlII-O
YS.t. Yn=lln

and

I L ayurl",u~~111=sUP{laYI: Yn=vn}~lavII-O,
YS.t Yn=Vn
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and so we will indeed get a one-variable Laurent series with at least two non-zero
coefficients. This contradicts the assumption that f is zero-free by the theory
of valuation polygons, and so there could have only been one multi-index y
with a y #0. D

Theorem 2.6. Let f: A l x ---+ S be an analytic map to a semi-Abelian variety S.
Then f is the translate ofa group homomorphism from Gm to S.

Proof. By composing with a translation of S, we may assume without loss of
generality that f (I) = I. Let ¢ : S -+ A be the homomorphism defining S as an
extension (by a multiplicative torus) of the Abelian variety A. By the argument
on p. 401 of [5], ¢ 0 f is a group homomorphism from Gm to A. Now let
(ZI, Z2) E Gm x Gm and consider the analytic map 1/J from Gm x Gm to S defined
by

Because ¢ and ¢ 0 f are group homomorphisms, ¢ 0 1/J is the constant map from
Gm x Gm to the identity element of A. Hence 1/J can be thought of as an analytic
map to a multiplicative torus T. It then follows from Proposition 2.5 by projecting
from T onto each of its factors that 1/J is the translation of a group homomorphism.
But, since 1/J (l, 1) = I, we have that 1/J is in fact a group homomorphism. Clearly,
1/J(ZI, 1) = 1/J(l, Z2) = 1, and hence 1/J is the constant map to the identity. In other
words, f is a group homomorphism. D

Theorem 2.7. Let XeS be a closed subvariety ofa semi-Abelian variety S. Let
f :A l ---+ X be a non-constant analytic map. Then, the image of f is contained in
the translate ofa non-trivial semi-Abelian subvariety ofS contained in X.

Proof. By Theorem 2.6, the map f is the translate of a group homomorphism.
Thus, by [12, p. 84], the Zariski closure of the image of f is the translate of a
subgroup of S. D

Corollary 2.8 (Non-Archimedean Bloch theorem [5]). If X is a non-singular
projective variety whose Albanese variety has dimension larger than dim X, then
any analytic map from A l x to X is algebraically degenerate.

Remark. In [5], Corollary 2.8 was incorrectly stated in terms of the irregularity
q = dim HI (X, (]x) rather than the dimension of the Albanese variety. In charac­
teristic zero, both numbers are equal, but an example of Igusa [8] shows that in
positive characteristic the dimension of the Albanese variety can be smaller than
the dimension of the space of regular I-forms.
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3. ALGEBRAIC DEGENERACY OF NON-ARCHIMEDEAN ANALYTIC MAPS OMITTING
SUFFICIENTLY MANY DIVISORS

In this section we will develop the non-Archimedean analogs of the work of
Noguchi and Winkelmann [16].

Let X be a projective variety non-singular in codimension one. Recall that the
space Pic(X) classifies Cartier divisors on X up to linear equivalence. Those divisor
classes in Pic (X) which are algebraically equivalent to zero are denoted by Pica (X),

and Pico(X) is an Abelian variety, known as the Picard variety which is dual to the
Albanese variety, see e.g., [10]. The quotient Pic(X)/Pico(X) is a finitely generated
group called the Neron-Severi group of X and denoted NS(X). Finite generation
of NS(X) is a theorem of Severi in characteristic zero and Neron in positive
characteristic. It also follows from the Lang-Neron theorem, see e.g., [11], or by
etale cohomology, see e.g., [15]. We will refer to the canonical image ofa divisor D
in NS(X) as the Chern class of the divisor and denote it by CI (D). In characteristic
zero when X is non-singular, this agrees with the classical notion of Chern class in
H 2 (X, Z) coming from the exponential sheaf sequence. In positive characteristic,
one can embed NS(X) in an etale cohomology group, see e.g., [15], and think of
CI that way. For us, the cohomological interpretation will not be important, so we
prefer to simply think of CI as a homomorphism from divisors to NS(X).

If l: Y -+ X is a morphism (or more generally a rational map) from a projective
variety Y, non-singular in codimension one, to a non-singular projective variety X,
then if D is in Pico(X), then l* D is in Pico(y) by [10, Ch. V, Prop. 1]. Hence, the
pull-back map on divisor classes l* : Pic(X) -+ Pic(Y) induces a homomorphism
l* : NS(X) -+ NS(Y).

We begin by discussing analytic maps from A I omitting sufficiently many
divisors relative to the size of the group generated by their Chern classes.

Theorem 3.1. Let Y be a possibly singular projective variety and let l: Y -+ X be
a morphism to a smooth projective variety X. Let {D; l;=1 be eirreducible effective
divisors on X such that {l* Dl l7=1 form e distinct effictive Cartier divisors on Y.
Assume the number of irreducible components e is larger than the rank of the
subgroup generated by the CI (D;) in NS(X). Then, any analytic map from AI to
Y is either algebraically degenerate or intersects the support ofat least one ofthe
l*D;.

Any r algebraically independent entire functions form an algebraically non­
degenerate analytic map from AI to Y = X = (pIY that omits the r divisors defined
by taking the point at 00 on one of the pI factors and thus show the theorem is
optimal in its dependence on the rank of the group generated by the CI CD;).

Typically what we have in mind for Y is a closed subvariety of X. In that case the
map l is the inclusion in X, and l* D; is set-theoretically D; n Y.

Notice that unlike [16], we do not need to make any kind of general position
assumption on the D;, other than that the l* D; are distinct.
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We begin by discussing analytic maps from A I omitting sufficiently many
divisors relative to the size of the group generated by their Chern classes.

Theorem 3.1. Let Y be a possibly singular projective variety and let l: Y -+ X be
a morphism to a smooth projective variety X. Let {D; l;=1 be eirreducible effective
divisors on X such that {l* Dl l7=1 form e distinct effictive Cartier divisors on Y.
Assume the number of irreducible components e is larger than the rank of the
subgroup generated by the CI (D;) in NS(X). Then, any analytic map from AI to
Y is either algebraically degenerate or intersects the support ofat least one ofthe
l*D;.

Any r algebraically independent entire functions form an algebraically non­
degenerate analytic map from AI to Y = X = (pIY that omits the r divisors defined
by taking the point at 00 on one of the pI factors and thus show the theorem is
optimal in its dependence on the rank of the group generated by the CI CD;).

Typically what we have in mind for Y is a closed subvariety of X. In that case the
map l is the inclusion in X, and l* D; is set-theoretically D; n Y.

Notice that unlike [16], we do not need to make any kind of general position
assumption on the D;, other than that the l* D; are distinct.
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In the case that Y = X = pn , we recover the well-known trivial fact that a non­
Archimedean analytic map from A) to pn that omits two distinct hypersurfaces is
algebraically degenerate.

Proof of Theorem 3.1. Let f :A I -+ Y be an algebraically non-degenerate analytic
map.

Let Ybe the normalization of Y, which of course is non-singular in codimension
one. Let i: Y-+ X denote the composition of the natural map from Y to Y with
L:Y -+ X.

If f is not algebraically degenerate, then Y is not contained in the indeterminacy
locus of the rational map from Y to Y, and hence lifts (as in the proof of
Corollary 2.4) to an analytic map f from A) to Y.

By our assumption that there are more components Di than the rank of the
group the C) (Di ) generate in NS(X), we can find integers a/ not all zero so
that La/c) (Di) = O. Thus, La/c) (i* Di) = i'*(La/cl (D/)) = 0 in NS(Y), and thus
Laii* Di is algebraically equivalent to zero on Y. Because Ymaps onto Y, by our
assumption that the L* D/ are distinct, we also have that the i* Di are distinct. Also,
bec~use not all the ai are zero, we conclude that Laii'* Di is not the zero divisor
on Y.

If there is a non-constant rational map from Y to an Abelian variety, then f is
already algebraically degenerate by Corollary 2.4. Thus, without loss ofgenerality,
we may assume there are no non-constant rational maps from Yto Abelian varieties,
or in other words that the Albanese variety of Y is trivial. Because the Picard variety
Pico(f) is Cartier dual to the Albanese variety, Pico(y) is also trivial. But Pico(f) is
precisely the set of divisors algebraically equivalent to zero modulo those divisors
linearly equivalent to zero. Hence, every divisor algebraically equivalent to zero
on Y is also linearly equivalent to zero. Thus, we can find a non-constant rational
function h on Y such that

div(h) = I>ii* D/.

If f omits the supports of all the L* Di, then its lift f: A l -+ Y is an analytic map
omitting the supports of all the i'* Di. Then, h 0 f is an analytic map from A) to
A) x , and hence constant. Thus, f is algebraically degenerate and so is f. 0

Next, we recall that a collection of irreducible effective ample divisors D; in a
non-singular projective variety X of dimension m are said to be in general position
if for each I ~ k ~ m + 1 and each choice of indices i I < ... < ik, each irreducible
component of

has codimension k in X, so in particular is empty when k = m + 1.

Corollary 3.2. Let Y be a closedpositive dimensional subvariety ofa non-singular
projective variety X. Let (D;}~=) be e irreducible. effective. ample divisors in
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general position on X. Let r be the rank of the subgroup ofNS(X) generated by
{CI (D; »);=1' Ifthere exists an algebraically non-degenerate analytic map from A 1

to Y omitting each ofthe D, that does not contain all ofY, then

{ d. dimX}e~ max r + co 1m Y, r . -.- .
dlmY

When r = 1, the term r + codim Y = 1 + codim Y is largest, and the example
of Y a linear subspace of X = pn shows the inequality is optimal. We do not have
examples to show optimality when r > 1, and we suspect the inequality may not be
optimal in that case. When Y C X = pn, Corollary 3.2 was proven by An, Wang
and Wong [2].

Corollary 3.3. Let X be a non-singular projective variety. Let {D,)7=1 be e
irreducible, effective, ample divisors in general position on X. Let r be the rank
ofthe subgroup ofNS(X) generated by Ie] (D,) );=1' Let f be an ana~vtic map from
A 1 to X omitting each ofthe D,. Then the image of f is contained in an algebraic
subvariety Y ofX such that

{
r.dimX}

dimY ~ max r +dimX -l, l .

In particular, if

l::;? max{r + dimX, r· dimX + 1),

then f is constant.

Note that when Y = X = pn, the fact that an analytic map from A l om1ttmg
n + 1 hypersurfaces in general position must be constant also follows from Ru's
defect inequality [18]. The fact that an analytic map from A 1 to a projective variety
X C pN omitting dim X + 1 hypersurfaces of pN in general position with X is a
consequence of An's defect inequality [1].

ProofofCorollary 3.2. Suppose f is an algebraically non-degenerate analytic map
from A 1 to Y omitting the D,. Let lo be the cardinality of the set

{D, n Y: D; lJ Y),

and note that D, n Y =1= l2l for all i because the D; are assumed ample. By the
theorem,

(1) lo ~ r.

We now estimate lo as in [16]. Let n = dim Y. Without loss of generality we may
assume that Dl ny, D2 n Y, ... , Dfo n Yare distinct. For 1 ~ j ~ la, let sJ be the
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number of divisors Di with D1 n Y = DJ n Y. Rearranging the indices, we may
assume that

We first consider the case when £0 ~ n. Because the D1 are ample and by the
definition of £0, we have

Because the Di are in general position, this implies

dimY - £0 ~ dim X - £,

and hence

£ ~ £0 + codim Y ~ r + codim Y

by (1).
The remaining case is £0> n. Again, because the Di are ample,

where I = {i: Di :J Y or Di n Y = DJ n Y for some 1 ~ j ~ n}. Let So denote the
number of divisors Di such that Di :J Y. Since the divisors are in general position,
this implies

n

(3) I> = # I ~ dim X.
1=0

On the other hand, it follows from (2) that

1 eo 1 n

-I>~-Lsi'£0 n
1=1 1=1

Therefore,

(4)

As £0> n, we have So ~ ~so. Combining this with (4), (3), and (1), we have

eo £ n £
£= LSi ~ ~ LSi ~ ~dimX ~ ~dimX. 0

n n n
i=O 1=0
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(2) SI?S2?'''?Sfo'

We first consider the case when £0 ~ n. Because the DI are ample and by the
definition of £0, we have

0# y n (fJD} Y n (6DJ )

Because the Di are in general position, this implies
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£ ~ £0 + codim Y ~ r + codim Y

by (1).
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J=1 lEI
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n

(3) I> = # I ~ dim X.
1=0

On the other hand, it follows from (2) that

1 fo 1 n

-I>~-Lsi'£0 n
1=1 1=1

Therefore,

(4)
fo £0 n

LSi~-LSi'
n

i=1 1=1

As £0> n, we have So ~ ~SO. Combining this with (4), (3), and (1), we have

fO £ n £
£= LSi ~ ~ LSi ~ ~dimX ~ ~dimX. 0

n n n
i=O 1=0
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We conclude with the analog of the Noguchi-Winkelmann theorem for non­
Archimedean analytic maps from A I x. We remind the reader that in the complex
case, the exponential map provides a non-constant complex analytic map from
A I (C) to A I x (C) and of course A I x(C) CAl (C), so that in complex analytic
geometry there is no difference in algebraic degeneracy theorems from maps
from AI(C) or Alx(C). However, in the non-Archimedean case the only analytic
maps from A I to A I x are the constants, and thus it is more difficult to have
an algebraically non-degenerate analytic map from A I than it is to have an
algebraically non-degenerate analytic map from A I x .

Theorem 3.4. Let y be a possibly singular projective variety that admits a
desingularization Y --+ Y, and let I : Y --+ X be a morphism to a smooth projective
variety X. Let {D1 }1=1 be .e irreducible effective divisors on X such that {I*D, }1=1
form .e distinct effective Cartier divisors on Y. Let a denote the dimension of the
Albanese variety of Y. Let r be the rank of the subgroup generated by the CI (D;)
in NS(X). If.e > r +dim Y - a, then any analytic map from A I x to Y is either
algebraically degenerate or intersects the support ofat least one ofthe 1* D;.

Remark. In characteristic zero by Hironaka's Theorem, any Y admits a desin­
gularization Y. Because resolution of singularities is not yet known in positive
characteristic, we make the existence of a desingularization an explicit hypothesis.
Unlike in Theorem 3.1, here we will need a morphism rather than a rational map to
the Albanese variety, so working with a normalization is not sufficient.

Proof of Theorem 3.4. Let Zbe the natural map from Y to X induced by t. Let
y l be the variety obtained by deleting the supports of Z* D; from Y. By [19], there
is a morphism a from y l to a semi-Abelian variety S such that S is generated by
the differences of points in the image of y l and such that S is the extension of the
Albanese variety A of Yby a multiplicative torus. As in [20], let I denote the free
Abelian group generated by the Z* D; and let J be the kernel of the mapping from
I to NS(Y). Then, it follows from the discussion in [20] that the dimension of Sis
the dimension of A plus the rank of J.

Let K be the subgroup of the free Abelian group generated by the Di that maps
to zero in NS(X). By hypothesis, K has rank.e - r. Consider the map Z* : K --+ J. By
our assumption that the t* D; are distinct and the fact that Ymaps onto Y, we have
that the Z* D; are distinct. Hence, Z* injects K into J, and thus J has rank at least
.e - r. So, if.e > r + dim Y - a, then dim S ? .e - r + a > dim Y. If f is an analytic
map to Y not contained in the singular locus and not intersecting the supports of
1* Dj, then f lifts to an analytic map j to yl:ByTheorem 2.7, a 0 j is contained in
the translate of a semi-Abelian subvariety of S contained in the proper subvariety
aCY'). Because differences of points in a(yl) generate S, the variety aCyl) cannot
be a translate of a proper semi-Abelian subvariety of S, and hence j and fare
algebraically degenerate. 0
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Applying the argument on pp. 606-607 of [16] i.e., replacing £0 :'( r with
£0 :'( r +dim Y - a in (l) in the proofofour Corollary 3.2, then yields the following
corollaries.

Corollary 3.5. Let Y be a closedpositive dimensional subvariety ofa non-singular
projective variety X admitting a desingularization iT~ Y. Let a be the dimension
ofthe Albanese variety ofY. Let {D, }f=1 be £ irreducible, effective, ample divisors
in general position on X. Let r be the rank ofthe subgroup ofNS(X) generated by
{CI (D')};=I' lfthere exists an algebraically non-degenerate analytic mapfrom A lX

to Y omitting each ofthe D, that does not contain all ofY, then

(£ - dim X) . dimY:'( dim X . max{O, r - a}.

Corollary 3.6. Let X be a non-singular projective variety in characteristic zero.
Let {Ddf=1 be £ > dimX irreducible, effective, ample divisors in general position
on X, and let r be the rank in NS(X) ofthe subgroup generated by {cl (D; )};=I' Let
f be an analytic map from A I x to X omitting each ofthe D,. Then the image off
is contained in an algebraic subvariety Y ofX such that

r· dim X
dim Y :'( ---­

£ -dimX

In particular, if

£ ~ (r + 1)· dim X + 1,

then f is constant.
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