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1. INTRODUCTION 

The theory of differential and integral equations exploits comparison and 
iterative techniques which do not fall under the Contractive Mapping Prin- 
ciple. For they make use of partial orderings and maximal solutions; concepts 
which have no significance in a metric space. These methods take their 
proper place in the theory of cones [ 1, 21. 

In this paper, Banach’s Contraction Mapping Principle and comparison 
and iterative methods are brought together under a single roof which houses 
various results from the theory of differential equations [3], in addition to an 
interesting generalization of Banach’s Theorem [4]. One is thus led, in a 
natural way to a generalized Bellman-Gronwall-Reid Inequality and a discus- 
sion of nonlinear contractions of a space whose open neighborhoods are 
conic segments. 

The advantage of such a uniform principle is twofold. First, by means of 
it, one is able to present many different results in one stroke while focusing 
more clearly on the basic ideas involved; second, one is able to isolate concepts 
widely used in the theory of differential equations for further application to 
the general theory of nonlinear analysis. 

2. DEFINITIONS 

Let E be a real Banach space. A set K C E is called a cone if: (i) K is closed; 
(ii) if u, v E K then au + /3v E K for all 01, /3 3 0; (iii) of each pair of vectors 
u, --21 at least one does not belong to K, provided u f 0, where 0 is the zero of 
the space E. We say that u > v if and only if u - v E k. A cone k is called 
normal if a 6 > 0 exists such that 11 e, + es I/ 3 6 for e, , ea E k and 
11 e, 11 = 11 e2 11 = 1. A cone is called regular if each decreasing monotonic 
sequence has a limit. 
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Let JI be a mapping from a cone k into itself. The mapping 9 is said to be 
monotone if #u > /JV whenever u > v. The mapping z,b is upper semicontinuous 

from the right if whenever (u,} and {I@~} are both convergent (in norm), 
decreasing sequences then lim #u, < 1,4 lim un . 

Let u, v belong to a cone k. The strict inequality u < z’ means that for 
any decreasing sequence {u,~} which converges to 0, u,, < v - u for m 
sufficiently large. 

The norm in E is said to be semimonotonic if there is a numerical constant N 
such that N <y implies // x/I < N(ly 11. 

Let .T be a set and k be a cone. A function p: X >< X - k is said to be a 
k-metric on s if 

A sequence {.~c,J in a k-metric space is said to be a Cauchy sequence if 

lim sup II P& , GJII = 0. 
,n>n+m 

The sequence {xn} is said to be convergent if there is a 3~ X such that 

A k-metric space is complete if every Cauchy sequence is convergent. 

3. A BELLMAN-GRONWALL-REID TYPE INEQUALITY 

We shall make the following hypotheses pertaining to an element u,, # t) 
belonging to a cone k and to a mapping ZJ of the segment f3 < u < u,, into 
itself. 

(H,). #“+lu,, < #%,, , n = 0, l,...; if u = limn+or, puO exists then 
$k < ii. 

(Ha). Either (i) 9 is upp er semicontinuous from the right, k is regular 
or (ii) 4 is completely continuous, k is normal (or both). 

LEMMA 3.1. If 

*uo G uo (‘1 

and I) is monotone on 0 < u < u. then (H,) is satisfied. 

409/4912-16 



506 EISENFELD AND LAKSHMIKANTHAM 

Proof. By induction p+lus < +kU, n = 0, l,.... If iZ = lim,,, I/%~ 
exists then, since (#%a} is decreasing, c < I,F~+, and by monotonicity 
+i < I,F+~z+, , n = 0, l,.... Thus Z@ < ii. 

LEMMA 3.2. Let (Ha) hold. I f  (r,J is a sequence in the conic segment 
tJ < u < u,, such that {#r,} is decreasing, then {#r,} is convergent. In particular, 

; f  (Hi) holds, w = lim #‘kg exists and I@ = w. 

Proof. If (Ha) (i) holds then ($rn} is convergent by regularity. If (Ha) (ii) 
holds then we use the semimonotonic property of the norm in a normal cone 
[I, p. 241 to show that {z,&} is bounded. By complete continuity of #, {#r,} 

has a convergent subsequence, say (en}. Let z = lim v, . Suppose {#r,> is not 
convergent to z. Then there exists 6 > 0 and a subsequence {w,) of {#rJ 

such that 11 w, - z 11 > S and ZU, < vu, . By semimonotonicity of the norm 
there is a numerical constant M such that 

II wo, --zIJ <M(Iv,-xl1+0 

as n + co and a contradiction is reached. 
Let (H,) hold. Then w = lim ~,Pus exists and CJW ,< w. If (Ha) holds then 

also w < #w by the semicontinuity condition. 

THEOREM 3.1. Let 4 be a monotone mapping of a cone segment B < u < uO 

into itself and let (H,) be satisjed. Then the sequence of iterates {I+Pu,,} is decreasing 
and convergent to a fixed point w of I), i.e., #u = w. Moreover, v  < u,, , v  < z,bv 
implies v  < w. In particular, w is the maximal jixed point of $ in the segment. 

Proof. Lemmas 3.1, 3.2 apply to obtain the first part. Suppose v ,< us , 
v ,< #v. Then by the monotone property of 4, v ,( $9~ < I/%,, . Hence 
v < w. 

COROLLARY 3.1. Let the hypothesis of Theorem 3.1 be satisjed and let p be 
a mapping of a set X into the segment 6’ < u < u,, . Suppose T is a mapping of X 
into itself such that pTx < z&x. Then if y  is a$xed point of T, py < w where w 
is the maximal jixed point of 4 on the segment. 

Proof. Set m = py. Then m = pTy 6 $py = #m. By Theorem 3.1, 
m ,< w. 

4. SUCCESSIVE ITERATES IN K-METRIC SPACES 

THEOREM 4.1. Let # be a mapping of a cone segment, 0 < u < u0 into 
itself satkfying (Ha). Suppose further: 
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(H,) #u = u z# u == 6’; 

(HJ $ is monotone. 

Let S be a complete k-metric space and let T be a mapping of X into itself 
such that 

(KJ p(Tx, Ty) < &4x, y), when P(X, Y) < u. . 

Then if x,, is any member of X for which p(TsO , x0) < u,, , the sequence 
iterates {Tn.qJ converges to a fixed point w, i.e., Tw x W. The fixed point w 
is unique in B, == (y j p(y, w) < u,,}. If given any x, y E X there is a 
uO > p(s, y) for which (Ha)-(Ha) is satisfied then the choice x(, is completely 
arbitrary and the fixed point w is unique in S. 

Proof. Let x, =;I TnxO , u, = I,Pz+, . In view of Lemmas 3.1, 3.2, (21,) 
decreases and converges to a fixed point of $, which by (H4), is 6 using (Hs), 
the monotonicity of $J, and p(xr , N,,) ,< uO one shows further, by induction. 
that 

For m > n, 

As long as there is an integer N > 1 such that for n > N the 
maps 4% = zj + 2u, satisfy the hypothesis of Theorem 3.1. 

where yn is the maximal fixed point of I,& . The existence of such an integer iV 
is assured by (Ha) and Y, = lim,,, #,E~,, . Since #ju > &u for j 3 i > N, 
0 < u < us, {YJ is decreasing and hence {$r,> is also decreasing. From 
Lemma 3.2, {$YJ is convergent. Since 

yn = #Y, + 2%) n 2 A’, (3) 

{I.~} is also convergent to the same limit, say z. By semicontinuity, $a 2 2. 
In view of Theorem 3.1 and (H,), 

yn - 0, #r, -+ 8. (4) 
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The sequence (xn} is, by (2), a Cauchy sequence. Let y = lim X, , i.e., 
p(y, XJ + 0. From (2), p(y, x,) ,( rn , from which results &(y, x,) ,< #r, . 
Thus 

Hence p(y, Ty) = 19 and y is a fixed point of T. 
Suppose Ts = s and p(s, y) < u,, . Then &,Y) = PW, TY) d $P(s,Y) 

and by Theorem 3.1 and (HJ, p(s, y) = 8. 
This completes the argument except for the obvious statements concerning 

global uniqueness and the chaise of x0 . 

Remarks 4.1. The above result is patterned after a theorem in [3, Vol. 1, 
p. 601 concerning the existence and uniqueness of a system of ordinary 
differential equations. (H,) will be recognized by experts in differential 
equations as a generalization of Perron’s uniqueness condition. The above 
result contains, as special cases, this theorem as well as a similar, new theorem 
which will be proved below. 

If one specializes to the cone of nonnegative real numbers, Rf, then one 
obtains a generalization of Banach’s Contraction Mapping Theorem. Observe 
that the linear map I@ = OIU of Rf into itself where, 0 < a! < 1, satisfies all 
the hypotheses (Ha)-(H,). However, when one works in a metric space i.e., 
when k is completely ordered, then one can replace the monotonic condition 
by +A < II, (cf. [4, p. 4591). 

The first part of the proof of Theorem 4.1 resembles the first part of the 
proof in [4]. First, note that the condition 

*u -==I u, e < u < uo , u f 4 (5) 

is stronger than our condition (Hi). Hence condition (5), along with the semi- 
continuity condition, suffices for the use of Lemma 3.2. Let c, = p(xn , ~,+i). 
Then from (5) and (H,) one obtains c,+i < #cn < c, which implies, by 
Lemma 3.2, that the sequences {cn}, ($cn} converges to the same limit, which 
by semicontinuity and (5), is 8. As in the proof of Theorem 4.1, one may show 
further that: 

Remarks 4.2. The inequality (6) may be used to obtain an estimate of 
rapidity of convergence in the case when (H,) holds and 

#u < au, 0 G u G uo, u z 0, O<ol<l. (7) 

First, observe that the usual proof of the Contraction Mapping Principle, 
e.g., [5, p. 1511, shows that p(Tx, Ty) < ap(x, y) implies that the iterates 
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{T,xs) converge to a fixed pointy, x,, E X. The fact that p is a k-metric does 
not cause difficulty. Since (7) is stronger than (5), we have, letting wz + ok 

in (6), 

This establishes the estimate 

Furthermore, if /J is monotone, then from (l), 

p(y, xn) < (1 - c+’ @4s . (9) 

That is, convergence of Tn.x,+y occurs at least as rapid as convergence of 

*nuo + P. 

5. APPLICATIONS 

Corollary 3.1 and Theorem 4.1 are useful tools in the theory of differential 
equations. We offer two representative results as examples of their appli- 

cability. Other results of similar type are found in [l-3] and [6]. 
Let / = [to , t, + u] be a compact (a < 00) or an infinite interval (a = co). 

Define the partial ordering “ <” between any two points x = (.rl ,.... xn), 

3’ = (y1 ,..., y,) in Rn by 

x<y i f f  xi <yi, i = 1, 2 ,...) n. (10) 

Let the mapping g: J x Rn -+ Rn be continuous and satisfy for any 
s 5: ~8 E R” 

.2’ < 2’ =s g(4 ST) < g(f, y), t E J. (11) 

THEOREM 5.1. Consider a system of diferential equations 

x’ =f(t, x), x(&J = c, (‘4 

Suppose that 

If(4 41 G&v I x I), xeRn, t E J, (13) 

there exists u E Cn[j] such that 

u(t) 2 I c I + j-otg(f, 4s)) ds, t E J. (14) 
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Then there is a maximal solution Y of the integral equation 

x(t) = 1 c 1 + (g(s, x(s)) ds, (15) 

in the segment 0 ,< x(t) < u(t), t E J and <ffv(t) is any solution of (12) such that 

I r(t)1 < 4th t E J, then I y(t)1 < r(t). 

Proof. We need only consider the case a < co for a = co is obtained 
by letting a ---f co. 

Define the partial ordering in Cn[ J] by x > F, x, y E Cn[ J] iff x(t) > y(t) 
for t tz J. Let 

4~ = I c I + jok, u(s)) ds, PU = I u I = (I Ul I ,..a, I un I). (16) 

Clearly $ is monotone, $JU < u. Also the cone is regular and $J is completely 
continuous from Arzela’s Theorem [I]. 

If y(t) is a solution of (12) then y = Ty where the mapping T is given by 

TX(t) = c f jot&, XS)) ds, t E J. (17) 

The theorem is thus a special case of Corollary 3.1. 
To obtain existence and uniqueness for the system (12), we assume a 

uniqueness condition of Perron type: 

I f(f, 2) - f(t, Y>l d At, I x - Y I), t E J, x, y E l?n. (18) 

In applying Theorem 4.1 we take 

#x(t) = jot&, x(s)) ds (19) 

and assume, for some u E F[J], 

@) > jtgb, u(S)) 4 t E J. (20) 
0 

The condition (HJ may be expressed in terms of the uniqueness of the system 
of differential equations. 

x’ = g(t, x), x(t,) = 0. (21) 

The following theorem is a special case of Theorem 4.1 and a generalization 
of Perron’s Theorem [3, Vol. 1, p. 481. 
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THEOREM 5.2. Let the system (21) have only the trivial solution where g is a 
nonnegative function from J x Rn into Rn which is monotonic in the sense of (11). 
Suppose a function u E Cn[ J] can be found to satisfy (20). Let (18) hold. Then for 
any x,, E P[J] such that 1 TxO - x0 1 < u, where T isgiven by (17), the sequence 
of iterates (T7’s,} converge componentzke and pointwise to a solution, y, of (12), 
unique in 
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