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In this paper we explore one aspect of the relationship between group cohomol-
ogy and representation theory. For a finite group G and a field k in characteristic

Ž .p ) 0, ideals in the cohomology ring H* G, k can sometimes be characterized by
exact sequences of kG-modules in much the same way that elements of Ext arekG
classically represented by exact sequences. Furthermore the maps on the stable
category which represent the exact sequences have functorial properties which
mimic the structure of the ideas in the ring. The natural setting for this study is the
relative homological algebra for the module category, relative to the subcategory
generated by a single module using the tensor product operation. Q 1996 Academic

Press, Inc.

1. INTRODUCTION

The connection between cohomology and module theory goes back half
a century now. Its basis was established in fundamental work of Yoneda.

n Ž .Briefly, the story is that elements of the cohomology, Ext M, N , areR
equivalence classes of exact sequences of R-modules, beginning with N
and ending with M and having length n. For group algebras, there are
numerous variations which can be made on the correspondence. Suppose
that G is a finite group, k is a field of characteristic p ) 0, and that M

U Ž .and N are finitely generated kG-modules. Then Ext M, N is a finitelykG
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U Ž . Ž .generated module over the group cohomology Ext k, k s H* G, k .kG
The action is made possible by the Hopf algebra structure in that the
tensor product functor, m , gives a sort of multiplicative operation on thek
module category. Thus one variation might be to assign to any element of

U Ž . Ž .Ext M, N the ideal in the cohomology ring H* G, k which annihilateskG
it. This is the essence of the theory of support varieties for modules.

Here we wish to consider some aspects of the inverse problem. Suppose
that we are given an ideal II generated by a set S of homogeneous

Ž .elements of the cohomology ring H* G, k . We look at the full subcate-
gory MM of all modules whose cohomology is annihilated by the ideal. OneII

w xof the developments of the work in 8 is that the ideal itself can be
1 Ž .represented by a single element of Ext U, k for a suitably chosenkG

Ž .U s U S . That is, a module M is in the subcategory if and only if it
1 Ž .annihilates the given element of Ext U, k , or equivalently, the tensorkG

product of M with a short exact sequence representing the given element
splits. For an ideal generated by a single element z the result is obvious

ny1Ž .since we can take U to be the translate V k and then the cohomology
1 Ž ny1Ž . . n Ž .element is just z g Ext V k , k ( Ext k, k . But for ideals whichkG kG

are not principal, the module U is constructed as the homology of a
w xtruncated Koszul complex of modules. In 8 it is also shown that the

w xinfinitely generated idempotent modules discovered by Rickard 12 are
Ž .colimits of the modules U S .

A key observation for this paper is that if p ) 2 then the subcategory
MM is functorially finite. That is, it permits the definition of a relativeII

cohomology theory. In this context the sequences representing the ideal II

are steps in the relatively projective resolution of the trivial module k. This
Ž .has several interesting consequences. One is that the module U S has an

essential direct summand U which is independent of the choice ofII

generators S and depends only on the ideal II. Then the dual UU is theII

cokernel of the relatively injective hull of the trivial module, and from this
we conclude that it is indecomposable. The complete minimal relatively
projective and injective resolutions involve taking tensor products of these
essential pieces.

The relative projectivity that we define here was originally developed by
Okuyama in an unpublished manuscript. It depends on several unique
properties of group algebras, and specifically is based on the choice of a
single module V which generates the projectivity by tensor products. A
module M is relatively V-projective if it is a direct summand of a tensor
product of V with some other module. In the case that V ( kG then theH
relative V-projectivity is the usual H-projectivity. In Section 3 we sketch
the details of the relative projectivity and describe the basic facts of the
relative cohomology. One of Okuyama’s important observations was that
the dual module V * is always relatively V-projective. Hence V-projectivity
and V-injectivity coincide.
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Ž .In Section 4 we consider an ideal II s z , . . . , z in the cohomology1 t
Ž .ring. A cohomology element z g H* G, k can be represented by a homo-

ˆ nŽ .morphism z : V k ª k whose kernel is denoted by L . In the event thatz
ni Ž .the cohomology ring Ext L , L is annihilated by z for every i thenkG z z ii i

the tensor product V s mL has a special property. Namely, the collec-z i

tion of V-projective modules is the same as the set of all kG-modules
whose cohomology is annihilated by II. The usual facts about indecompos-
ability of the relative syzygies and the uniqueness of minimal projective
resolutions are important tools in the analysis. Among other things the
independence of the construction from the generators of the ideal is
derived in Section 5. In Section 6 they aid in the development of the tensor
product relations.

Unfortunately, to make things work right we need to assume that the
Ž .ideals in H* G, k which we consider are generated by elements which

Žsatisfy the stated annihilator condition z annihilates the cohomology of
.L . We call these productï e elements and the ideal they generate is az

productï e ideal. In the case that p ) 2 there is no ambiguity, since it is
known that every element of even degree has this property. Elements of
odd degree are nilpotent and consequently many of the ideals that one
might be interested in are productive. For p s 2 the situation is not so
clear and some more work needs to be done on this case. Evidence
suggests that there may still be an abundance of productive elements, but
there is no proof. The one case which has been fully analyzed is that of a

Ž .2fours group G ( Zr2 . Some homogeneous elements which are not
productive are the elements of degree 1 that are not F -rational. Strangely,2
these elements do not annihilate the cohomology of any nonprojective
module.

The result of all of this is a function which assigns to any productive
Ž .ideal II of the cohomology ring a pair of the form U , u with u : U ª k.II II II II

Ž . Ž .If II : JJ then there is a morphism of the pairs u : U , u ª U , u . AII JJ II II JJ JJ

module is II-projective if and only if it annihilates by tensor product the
class modulo projective homomorphisms of u . In some sense, much ofII

w xthis could have been anticipated from the work in 8 . One of the surprises
has been that the natural setting for the results is the relative projectivity.
There may be many other secrets here.

2. NOTATIONS AND PRELIMINARIES

Throughout this paper, we assume that G is a finite group, and k is an
algebraic closed field of characteristic p ) 0. All kG-modules are assumed
to be finitely generated, unless otherwise specified.

Ž .For any module M, let P, « be a projective cover of M. That is, P is a
projective module and « : P ª M is a surjective homomorphism whose



CARLSON AND PENG932

kernel has no projective summands. So we have a short exact sequence,
«6 6 6 6

0 V M P M 0,Ž .
Ž . y1Ž .where V M has no projective submodules. Similarly, V M can be

defined in the following short exact sequence,

6 6 6 y1 6
0 M Q V M 0,Ž .

where Q is the minimal injective hull of M. In general, let
 2 1 «6 6 6 6 6 6 6

??? P ??? P P P M 0n 2 1 0

nŽ .be the minimal projective resolution of M; we write V M for the kernel
ynŽ .of  and, dually, V M for the nth cokernel in a minimal injectiven

resolution. It holds that

Vn M m Vm N s Vnqm M m N [ projŽ . Ž . Ž . Ž .
Ž .for any integers m and n. Here by [ proj we mean the direct sum with

some projective module, and we will use this notation in the rest of the
paper.

Let mod-kG be the category of finitely generated left kG-modules. For
Ž . Ž .any modules M and N, let PHom M, N : Hom M, N denote thekG kG

subspace of all kG-homomorphisms which factor through a projective
module. The stable category stmod-kG has the same objects as mod-kG,

Ž . Ž .but the morphisms are defined by Hom M, N s Hom M, N rkGkG
Ž .PHom M, N . If a : M ª N is a kG-homomorphism, then a willkG

denote the corresponding morphism in stmod-kG. Although the stable
category is not abelian, it is a triangulated category and the translation

y1 Ž w x.functor is given by V see 13 .
Our interest in the triangulated structure is more philosophical than

basubstantive. Every short exact sequence of modules 0 ª X ª Y ª Z ª 0
corresponds to a triangle in stmod-kG of the form

b ga y16 6 6

X Y Z V X .Ž .
Moreover, every triangle in stmod-kG is isomorphic to one that arises from
a short exact sequence in this way.

In addition, we can shift the triangle to get other associated exact
sequences of modules

b̃ g y16 6 6 6

0 Y Z [ proj V X 0,Ž . Ž .
g̃ ã6 6 6 6

0 V Z X [ proj Y 0,Ž . Ž .
˜and a ' a , b ' b , g ' g modulo homomorphisms which factor through˜ ˜

projectives. Similar results hold for further translation in both directions.
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Also, from the triangulation axioms, we get that any morphism of short
exact sequences induces a morphism of triangles which then applies to give
a morphism of the shifted short exact sequences. That is, if we are given
the commutative diagram

ba6 6 6 6
0 X Y Z 0

6 66

gf h

b 9a 96 6 6 6

X 90 Y 9 Z9 0,

then we have the corresponding commutative diagram

b̃ g y16 6 6 6

0 Y Z [ proj V X 0Ž . Ž .

6 6 6

y1g Ž .V fh

b̃ 9 g 9 y16 6 6 6

Y 90 Z9 [ proj V X 9 0.Ž . Ž .

The diagram can be shifted to the other direction as well. Readers might
w xwant to see 9 for further details of the triangulated categories.

3. PROJECTIVITY RELATIVE TO A MODULE

In this section we generate some general information concerning the
Ž .homological algebra relative to a subcategory PP V generated by a single

module, V. Our initial introduction to this subject was through an unpub-
w xlished manuscript of Okuyama 11 . The idea of the relative homological

algebra is the same as that generated by a ‘‘projective class of epimor-
w xphisms’’ as expounded in Hilton and Stammbach’s book 10, Chap. 9 . It

also coincides with the relative homological algebra associated to a functo-
w x Ž .rially finite subcategory 2 . Indeed the subcategory PP V is functorially

finite. Such a relative homological algebra can also be generated by a
w xsuitable pair of adjoint functors as in Section 9.4 of 10 . In the present

situation the adjoint functors are ym V and ym V *. The relation whichk k
makes everything work is the observation of Okuyama in Theorem 3.2. For
this paper we need to develop some of the relations among the homologi-
cal algebras defined relative to different modules. Some of the material of
the section is known, but is included for the sake of completeness.

w xDEFINITION 3.1 11 . Let V be a fixed module. A module m is said to be
Ž .relatï ely V-projectï e or injectï e if M is a direct summand of V m A for
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some model A. An exact sequence E: 0 ª A ª B ª C ª 0 is said to be
Ž .V-split if E m V: 0 ª A m V ª B m V ª C m V ª 0 is split. Let PP V be

the full subcategory of all relatï ely V-projectï e kG-modules.

w xTHEOREM 3.2 11 . V and its dual V * generate the same relatï e projectï -
Ž . Ž .ity, i.e., PP V s PP V * .

ŽProof. Note that the map 1 m a : V m V * m V ª V Proposition 4.8V V
w x. Ž . Uof 1 has a right inverse b : V ª V m V * m V given by b ¨ s Ý¨ m ¨i i

Ž .m ¨ , where a : V * m V ª k, l m ¨ ¬ l ¨ is the evaluation map andV
� 4 � U4¨ , ¨ are dual bases. So, V is a direct summand of V m V * m V.i i
Dually, V * is a direct summand of V * m V m V *.

Usually we will write V-projective to mean relatively V-projective. For
group algebras, relative projectivity has been studied extensively in the
situation of projectivity relative to a subgroup H of G. However, that sort
of relativity is a special case of the one defined above. That is, if
V s kG , where H is a subgroup of G, then from Frobenius reciprocity,H
we know that for any module M,

M m kG ( M G .H H

So the V-projectivity is equivalent to the projectivity relative to the
subgroup H. Similarly, if HH is a set of subgroups of G and V s [ kG ,HH g HH

then V-projectivity is equivalent to the projectivity relative to HH.
The proofs of following relations are easy exercises which we leave to

the reader.

Ž .LEMMA 3.3. PP V is closed under direct sums, summands, and tensor
products. In addition, for modules U and V, we ha¨e

Ž . Ž . Ž . Ž .i if U g PP V , then PP U : PP V ;

Ž . Ž . Ž . Ž Ž .. Ž y1Ž ..ii PP V s PP V * s PP V V s PP V V ;

Ž . Ž . Ž . Ž .iii PP U m V s PP U m PP V ;

Ž . Ž . Ž . Ž .iv PP U [ V s PP U [ PP V .

Ž .LEMMA 3.4. i If P is V-projectï e and if u : B ª C is a right V-split
surjection, then for any a : P ª C, there is a b : P ª B such that ub s a .

baŽ .ii Suppose that E: 0 ª A ª B ª C ª 0 is exact. Let
b ga y1Ž .A ª B ª C ª V A be the triangle corresponding to E. Then E is V-split
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if and only if g m 1 is zero in the stable category where 1 : V ª V is theV V
identity.

Ž . nŽ .iii If E is V-split, then so also are E* and V E for any n.

Ž .Proof. i We have a commutative diagram

u# 6

Hom P , B Hom P , CŽ . Ž .kG kG

X X

Ž .1 mu #P* 6
Hom k , P* m B Hom k , P* m C ,Ž . Ž .kG kG

where the vertical maps are isomorphisms. But because 1 m u has aP*
right inverse, u# is surjective.

Ž .ii This comes from the fact that a short exact sequence splits if and
only if the third map in the corresponding triangle is zero in the stable

Ž .category. iii is trivial.

Ž .For any module M, P, « is said to be a V-projective cover of M if P is
V-projective and « : P ª M is a right V-split surjection and has no

Ž .V-projective summands in its kernel. Let V M denote the kernel of « .V
y1Ž . Ž .Dually, V M is the cokernel of d where Q, d is the V-injective hull.V

In general, a long exact sequence

 2 1 «6 6 6 6 6 6 6

P#: ??? P ??? P P P M 0n 2 1 0

is said to be a V-projective resolution of M if each P is V-projective andi
for each i, the short exact sequence

6 6 6 6

0 P rKer  P Im  0Ž . Ž .nq1 nq1 n n

is V-split A minimal V-projective resolution of M is the V-projective
Ž .resolution in which each P is the minimal V-projective cover of Ker  .n n

n Ž .We let V M denote the kernel of  in the minimal resolution. By theV n
dual argument, we can define the V-injective resolution and the minimal

ynŽ .V-injective resolution. We write V M for the cokernel of  in theV yn
minimal injective resolution.

THEOREM 3.5. E¨ery module has a minimal V-projectï e resolution, and
it is unique up to isomorphisms.

Ž .Proof. Again, the evaluation map a : V * m V ª k, l m ¨ ¬ l ¨ isV
V-split. Then for any module M, a m 1 : V * m V m M ª M is a rightV M
V-split surjection, with V * m V m M being V-projective. So clearly M has
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a V-projective resolution. The minimality and uniqueness can be derived
from the comparison theorem for projective resolution which is a conse-

Ž .quence of Lemma 3.4 i . The minimal resolution is the one which at each
stage has the smallest possible dimension.

wAn explicit construction for the V-projective cover of k 11, Proposition
x3.2 can be given as follows in the case when V is indecomposable. We

have an isomorphism of k-spaces

w : End V ( Hom V * m V , k , w s l m ¨ s l s ¨ .Ž . Ž . Ž . Ž . Ž .Ž .kG kG

Let V * m V s [X be a direct sum decomposition into indecomposablei
Ž .modules, and let e g End V * m V be the idempotent correspondingi kG

Ž .to X in the decomposition. For each i, there exists s g End V suchi i kG
Ž .that a ? e s w s , where a is the evaluation map. Then in the aboveV i i V

decomposition, since Ýs s 1 there exists j such that s is an automor-i j
phism of V, and consequently,

<a XV j6 6 6

0 ª Ker a l X X k 0Ž .V j j

Ž < .gives a V-projective cover of k, where an inverse map of a m 1 isXV Vj
U y1Ž .the composition of g : V ª V m V * m V, ¨ ¬ Ý ¨ m ¨ m s ¨ withi i i

the projection to X .j

PROPOSITION 3.6. Suppose that M and N are modules and m and n are
integers. Then we ha¨e the following.

Ž . n Ž . n Ž . n Ž .i V M [ N s V M [ V N .V V V
n Ž . ynŽ .In particular, if M is indecomposable, then both V M and V M areV V

indecomposable modules.
Ž . n Ž . n Ž . Ž .ii V M m N s V M m N [ rel. proj ,V V

or more generally,

Vn M m Vm N s Vnqm M m N [ rel. proj .Ž . Ž . Ž . Ž .V V V

Proof. The first part is obvious. For the second part, note that if
Ž . ŽP#, « is a V-projective resolution of M, then for any module N, P# m

.N, « m 1 gives a V-projective resolution of M m N. HenceN

Vn M m N ( Vn M m N [ rel. proj .Ž . Ž . Ž .V V
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LEMMA 3.7. Suppose we ha¨e an exact sequence 0 ª A ª B ª C ª 0,
and a map f : A ª A9. Then we can complete the diagram

6 6 6 6
0 A B C 0

66

f

6 6 6 6

A90 B9 C 0,

where the left-hand square is a push-out diagram. Moreo¨er, if the top row is
V-split, then the bottom row is also V-split.

Proof. The first part is a well-known fact; only the splitting needs to be
argued. Tensoring V with the above diagram, we obtain

6 6 6 6

0 A m V B m V C m V 0

66

fm1V

6 6 6 6

A9 m V0 B9 m V C m V 0,

w xwith both rows exact. By 10, Lemma III.1.3 , the left-hand square is also a
push-out diagram. Note that the push-out of a split map splits, and we
have the desired result.

The usual comparison theorem for projective resolutions also holds for
the relative projectivity, and this enables us to define relative cohomology

Ext n M , N s H n Hom P, N ,  * ,Ž . Ž .Ž .G , V kG

where P is a V-projective resolution of M. The relative group cohomology
of G can be defined as

H n G, V , M s Ext n k , M .Ž . Ž .G , V

w x n Ž .Moreover, from 10, Proposition IV 5.5 , any element in Ext M, N canG, V
Ž n Ž . .be represented by a homomorphism in Hom V M , N . The YonedakG V

composition is well defined on the V-split extensions by the standard
homological algebra. Also, with Lemma 3.7, we have a bijection between

n Ž .the V-split n-extensions and Ext M, N . The cup product can beG, V
defined in the usual way. As usual, Yoneda composition and the cup

U Ž .product agree on Ext k, k . The degree shifting technique in theG, V
relative cohomology holds. Namely, for n / 0, we have the following

Ext n M , N ( Ext n V M , V N .Ž . Ž . Ž .Ž .G , V G , V V V
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The isomorphism is compatible with the Yoneda composition. So, in
particular, we have a graded ring isomorphism

ExtU M , M ( ExtU V M , V MŽ . Ž . Ž .Ž .G , V G , V V V

0 Ž . Ž .modulo homomorphisms in Ext M, M ( Hom M, M which factorG, V kG
through relatively projective modules.

One remark here is that even when we choose the minimal V-projective
Ž .resolution of k and apply the functor Hom y, k , the corresponding

differentials are not necessarily zero maps. So it is not clear at this point
that the rate of growth of the relatively projective resolution is the same as
that of the relative cohomology.

Ž .4. RELATIVE PROJECTIVITY BY ELEMENTS IN H* G, k

In this section, we consider the projectivity relative to some modules
Ž .determined by elements in the cohomology ring H* G, k . For any homo-

nŽ .geneous element z g H G, k , z / 0, we know that z can be represented
znŽ .by a unique map V k ª k. Define L as the kernel of z , so that wez

have an exact sequence

zn6 6 6 6

0 L V k k 0.Ž .z

Ž .DEFINITION 4.1. A homogeneous element 0 / z g H* G, k is said to
U Ž .be productive if z annihilates the cohomology Ext L , L of thekG z z

module L .z

It is known that if p is odd then all elements of even degree in
Ž . Ž w x.H* G, k are productive see 5 . For p s 2, the existence of productive

Ž .2elements is not so well established. For G ( Zr2 , squares and higher
powers of homogeneous elements are productive. Also products of produc-
tive elements are productive. However, all but a few of the elements of

U Ž .degree 1 are not. We should note that for any module M, Ext M, LkG z
U Ž . U Ž . Žand Ext L , M are modules over the ring Ext L , L the first is akG z kG z z

.left module and the second is a right module . If z annihilates
U Ž .Ext L , L , then it annihilates the identity element of the ring and bykG z z

U Ž . U Ž .associativity it annihilates Ext L , M and Ext M, L .kG z kG z

b ga y1Ž .LEMMA 4.2. Suppose A ª B ª C ª V A is a triangle in the stable
Ž .category. Let II and JJ be ideals in H* G, k . If II annihilates the cohomol-

ogy of A and JJ annihilates the cohomology of B, then II JJ annihilates the
cohomology of C. In particular, the product of productï e elements is produc-
tï e.
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Proof. Let M be any module. From the triangle we have a correspond-
ing long exact sequence on cohomology

g* b *r rq1 rq16 6 6 6

??? Ext A , M Ext C , M Ext B , M ??? .Ž . Ž . Ž .ˆ ˆ ˆ
rq1Ž .By hypothesis, JJ ? Ext C, M must be in the image of g*. But then weˆ

rq1Ž . � 4have II JJ ? Ext C, M s 0 .ˆ
Ž .To prove the last statement, notice that for z , g g H* G, k , there is a

commutative diagram

0 0

6 6

m6 6 6 6

0 V L L [ proj L 0Ž .Ž .z gz g

66 mŽ .V z
m mqn m6 6 6 6

V L0 V k [ proj V k 0Ž . Ž . Ž .Ž .z

66

ggz

kk
66

00
m Ž Ž ..The middle row is the V -shift m s deg g of the exact sequence

defining L . From the triangle of the top row we see that gz annihilatesz

the cohomology of L if both g and z are productive.gz

n Ž .LEMMA 4.3. Suppose that z g Ext k, k , z / 0. Then the trianglekG

zs tn y16 6 6

L V k k V LŽ . Ž .z z

is associated to the exact sequence
t y1 ny16 6 6

E :0 k V L V k ª 0Ž .Ž .z z

1 Ž ny1Ž . .which represents the cohomology class z in Ext V k , k (kG
n Ž .Ext k, k . In particular, a module M has the property that z annihilates thekG

U Ž .cohomology ring Ext M, M of M if and only if E m M splits.kG z

Proof. Because z / 0 there is no projective summand in the middle
Ž w x.term of E see 4, Lemma 5.9.4 . Moreover, E m M represents z m 1z z M

n Ž . 1 Ž ny1Ž . .in Ext M, M s Ext V M , M . This element is zero if and onlykG kG
if the sequence splits.
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Ž .PROPOSITION 4.4. Suppose that z g H* G, k is productï e. Then in the
Ž y1Ž . . 1ynsequence E , V L , t is the L -injectï e hull of k. Also, the V -trans-z z z

lation of the sequence E has the formz

ynŽ .V s1yn 1yn yn6 6 6 6

V E : 0 V k V L k 0Ž .Ž . Ž .z z

Ž ynŽ . ynŽ ..and V L , V s is the L -projectï e co¨er of k.z z

y1Ž . ny1Ž .Proof. Note that V L is L -projective and V k is indecompos-z z

Ž y1Ž . .able; it is easy to see that V L , t is the L -injective hull of k.z z

Ž . ŽŽ y1Ž .. .Take the dual of the extension E . We have that V L *, t * isz z

an L -projective cover of k. On the other hand, if we use the V-operatorz

Ž .to translate the extension E back by n y 1, we obtain the exactz

sequence

1ynŽ .V s1yn 1yn yn6 6 6 6

V E : 0 V k V L [ proj k 0.Ž . Ž .Ž . Ž .z z

From the isomorphisms

Ext n k , k ( Ext1 Vny1 k , k ( Ext1 k , V1yn kŽ . Ž . Ž .Ž . Ž .kG kG

1ynŽ . 1ynŽ .we know that V E still represents z . Hence the extension V Ez z
1ynŽ .is also L -split. Again, the indecomposability of V k implies thatz

Ž ynŽ . Ž . 1ynŽ ..V L [ proj , V s is an L -projective cover of k. By thez z

uniqueness of the relatively projective cover and the Krull]Schmit theo-
rem, we have that

Vy1 L * ( Vyn LŽ . Ž .Ž .z z

1ynŽ .and the possibility projective summand in V E vanishes. Hencez
yn ynŽ Ž . Ž ..V L , V s is the L -projective cover of k.z z

U 1ynŽ .One note here is that although both extensions E and V E givez z

the relatively projective cover of k, they might represent different ele-
Ž . Uments in H* G, k . In fact, by Poincare duality, E represents´ z

Ž .nŽnq1.r2 Ž w x.y1 z , where n is the degree of z see 4 .
By applying the above proposition, we can get an L -projective resolu-z

tion of k. Namely, if E is translated by the V-operator n y 1 times, thenz

we get

6 2y2 n 6 1y2 n 6 1yn0 V k V L [ proj V k ª 0.Ž . Ž . Ž .Ž .z
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Ž .Ž .Generally, for any integer t, translating E t y 1 n y 1 times producesz

an exact sequence

6 ty t n 6 Ž ty1.y t n 6 Ž ty1.Ž1yn. 6

0 V k V L [ proj V k 0.Ž . Ž . Ž .Ž .z

ty t nŽ .Note that V k is indecomposable. By splicing these sequences to-
gether we get the relatively projective resolution.

THEOREM 4.5. The minimal L -projectï e resolution of k has the formz

  t 2 1 «6 6 6 6 6 6

??? ª P P ??? P P P k ª 0,t ty1 2 1 0

Ž ty1.y t nŽ . Ž . t Ž . ty t nŽ .where P s V L [ proj and V k s V k , and the rate oft z Lz tŽ .growth of the L -projectï e resolution is equal to that of V k , which is thez

p-rank of G.

The product structure on the cohomology is very special in this case. As
t Ž .we have discussed, any elements in Ext k, k can be represented byG, V

homomorphisms in

Hom V t k , k s Hom V ty t n k , k ( Ext ty t n k , k .Ž . Ž . Ž .Ž .Ž .kG V kG kG

w xIn 3 , it has been shown that all the products of elements in negative
degrees are zero if the depth of the cohomology ring of the group is two or
more. So, with this hypothesis, the relative cohomology ring is a zero
multiplication ring.

In what follows we generalize some of the above argument.

Ž .LEMMA 4.6. Assume that z , . . . , z g H* G, k are productï e elements.1 r
Then

PP L m ??? m L s PP L l ??? l PP L ,Ž . Ž . Ž .z z z z1 r 1 r

and an injection or surjection f is mL -split if and only if f m 1 splits forz Mi

any module M whose cohomology is annihilated by all z ’s.i

Proof. Clearly it suffices to show this for a pair of elements z , h. Since
L m L has cohomology annihilated by both z and h, it is clear thatz h

Ž . Ž . Ž . Ž .PP L m L : PP L l PP L . On the other hand, if M g PP L lz h z h z

Ž . U Ž .PP L , then both z and h annihilate Ext M, M . Thereforeh kG

L m Vy1 M s M [ Vny1 M [ proj ,Ž . Ž . Ž .z

L m M s V M [ Vn M [ proj ,Ž . Ž . Ž .h
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and then

L m L m Vy1 M s L m M [ Vny1 M [ projŽ . Ž . Ž .Ž .h z h

s L m M [ L m Vny1 M [ projŽ . Ž .h h

s V M [Vn M [L mVny1 M [ proj .Ž . Ž . Ž . Ž .h

Ž . Ž . Ž .So, V M g PP L m L and hence M g PP L m L . By applying Lemmaz h z h

3.4 the fact about splitness follows.

Let V s mL , and note that for each z we have an L -projectivez i zi i

resolution
«iŽ i. Ž i. Ž i. Ž i. Ž i.6 6 6 6 6 6

??? ª P P ??? P P P k ª 0,t ty1 2 1 0

Ž i. Ž ty1.y t n iŽ . Ž .where P s V L [ proj and the argumentation map is « st z i
yn iŽ .V s . Here n is the degree of z and s is the embedding in thei i i i

sequence
s zi in6 6 6 6

i0 L V k k 0.Ž .z i

Take the tensor product of the resolutions of k relative to each L . Wez i

get a V-projective resolution of k
«6 6 6 6 6 6

??? ª P P ??? P P P k ª 0,t ty1 2 1 0

yn iŽ .where P s mV L and the argumentation map « s m« . Using the0 z ii

previous lemma we have the following.

Ž .PROPOSITION 4.7. Let z , . . . , z g H* G, k be productï e elements and1 t
V s mL . Thenz i

Ž .i the V-projectï e resolution of k has polynomial growth, and
Ž .ii a module M is V-projectï e if and only if the cohomology of M is

annihilated by all of the z ’s.i

Ž .Let II be an ideal of H* G, k , which is generated by productive
elements z , . . . , z . Let V s mL . From the last proposition we can see1 t z i

that a module is V-projective if and only if its cohomology is annihilated by
all elements in the ideal II. Therefore, for any ideal II, if we define a

Ž .module to be relatï ely II-projectï e or abbreviate as II-projectï e if its
cohomology is annihilated by all elements in II, and likewise define a
homomorphism f to be II-split if f m 1 splits for any module M whoseM
cohomology is annihilated by the idea II, then from what we have
discussed, we know that the II-projectivity is equivalent to the V-projectiv-

Ž .ity, and II-split is equivalent to V-split. We write PP II for all II-projective
modules. Therefore, we have the following results.
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Ž .PROPOSITION 4.8. i The II-projectï ity does not depend on the choice of
the productï e generators of II.
Ž .ii If II has a set of productï e generators, then the II-projectï e resolution

of k has polynomial growth.

5. TRIANGLES DEFINED BY IDEALS IN THE
COHOMOLOGY RING

Ž .We shall say that a homogeneous ideal II : H* G, k is productï e if it
has a set of productive generators. In this section we will demonstrate the
relationship of the II-projective resolution of modules to certain modules
first encountered in the study of homomorphism in quotient categories

w xin 8 .
Let II be a productive ideal with productive generators z , . . . , z . We1 t

start from the exact sequence

zin6 6 6 6

i0 L V k k 0,Ž .z i

and take the triangle shifting to get a sequence

z̃ t̂i in y16 6 6 6

i5.1 0 V k k [ proj V L 0,Ž . Ž . Ž . Ž .z i

where t is injective when restricted to k. So for each i, we have a complexî

z̃in6 6 6

iCC z : 0 V k k [ proj 0.Ž . Ž . Ž .i

Ž .The tensor product of these complexes is the complex CC z , . . . , z s1 t
Ž . Ž .CC z m ??? m CC z given by1 t

6 6 6 6

CC z , . . . , z : 0 ª C C ??? C C ª 0,Ž .1 t t ty1 1 0

Ž . niŽ . Ž .where C ( k [ proj and C ( [V k [ proj .0 1
t

y1Ž .By Kunneth’s formula, the homology of CC is V L in degree¨ m z i
is1

zero and is zero in all other degrees. Hence we have an exact sequence

 m t̂1 i y16 6 6 6 6

0 ª C C ??? C C m V L ª 0.Ž .t ty1 1 0 z i

n iŽ .The cohomology class of  on V k is z . In the above sequence, the1 i
w xmodule U is defined in 8 as

U s U z , . . . , z s  CŽ . Ž .1 t 1 1



CARLSON AND PENG944

and there is an exact sequence

mt̂u i y16 6 6

5.2 0 U k [ proj m V L ª 0,Ž . Ž . Ž .z i

where u is the embedding.
Ž .Now shift the sequence 5.2 , and note that the tensor product of
< Ž < .splitting injectives splits, mt s m t s mt is a left II-split injection.ˆ ˆk ki i i

So we have an exact sequence in the form

Ž . <mt s m t̂ ki i y1 y16 6 6 6

E : 0 k m V L V U [ proj 0Ž . Ž .Ž .II z i

and E is II-split. Also note that the projective summand in the right-handII

term is also a direct summand of the middle term and hence it can be
removed from the sequence. Thus we have an injective resolution for k,

t y16 6 6 6

5.3 0 k P II V U 0,Ž . Ž . Ž .

Ž .where P II is II-projective and t is left II-split.
˜Since U may have some projective summand, we let U be the nonprojec-

˜tive part of U. Namely, U is the direct summand of U which has no
projective submodule and has the largest dimension with this property.

Ž .From 5.2 we have a map

u 9 6

Ũ k ,

˜where u 9 is the projection of the original u to k, restricted to U. The
following lemma enables us to define a new module from this map. It can
be proved by an argument similar to the proof of the Krull]Schmidt

w xTheorem in 7 .

LEMMA 5.4. Suppose that A is a finite-dimensional k-algebra, M, S are
modules o¨er A, and w : M ª S is a homomorphism. Then, up to isomor-
phism, M has a unique direct sum decomposition M s M9 [ M0 such that

Ž . Ž .i w M0 s 0;
Ž .ii M9 has no direct summand on which w ¨anishes.

Ž .DEFINITION 5.5. For ideal II : H* G, k be generated by productï e
˜elements z , . . . , z , let the homomorphism u 9: U ª k be as defined before.1 t

We define the module U as the unique submodule satisfying the conditions,II

˜Ž . Ž .i U s U [ U9 with u 9 U9 s 0;II

Ž .ii U has no direct summand on which u 9 ¨anishes.II

<For every such ideal II, we define u s u 9 . Note that from Lemma 5.4UII II

Ž .the pair U , u is well defined up to isomorphism.II II
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Ž .THEOREM 5.6. Suppose that II : H* G, k is a productï e ideal. Then

U ( V Vy1 k ,Ž .Ž .II II

y1Ž .where V k is the relatï e syzygy with respect to the ideal II.II

Ž .Proof. First from the II-split sequence 5.3
t y16 6 6 6

0 k P II V U 0Ž . Ž .
we have that

Vy1 U ( Vy1 k [ rel. proj .Ž . Ž . Ž .II

Note that the translation functor Vy1 preserves the relative projectivity.
So it suffices to show that any II-projective summand N of U can be made

Ž .to satisfy u 9 N s 0. But this is a consequence of the next lemma.
baLEMMA 5.7. Suppose that we ha¨e an exact sequence 0 ª X ª Y [ P ª

Z ª 0 where P is a projectï e module and X has no projectï e summands.
Let N be a direct summand of Z. If the composition of b with the projection
to N splits, then, in the shifted sequence

d6 6 6 6

0 V Z X [ proj Y 0,Ž . Ž .
Ž Ž ..we can assume that d 9 V N s 0, where d 9 is the composition of d with the

projection to X.
b

Ž .Proof. Let V Z ª X ª Y ª Z be the triangle of b. Then by hypothe-
sis we have a homomorphism of triangles

6 66

V N 0 N NŽ .

6 6 66 6 6 6

V Z X Y ZŽ .

which can be lifted to a morphism of exact sequences

6 6 6 6

0 V N proj N 0Ž . Ž .

666

f

6 6 6 6

V Z0 X [ proj Y 0.Ž . Ž .
Ž . � 4However, f is injective and hence split. So f proj l X s 0 .

The following is an immediate corollary to Theorem 5.6 and Proposition
3.6 and 4.8.
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Ž .COROLLARY 5.8. i U depends only on the ideal II, not on the choice ofII

productï e generators;
Ž .ii U is indecomposable;II

˜Ž .iii the other summand U9 in U has cohomology annihilated by the
ideal II.

w xThe next result is very similar to Theorem 3.8 of 8 . The proof given
there is based on the construction of certain chain maps of modular
Koszul complexes. The notions of relativity used here make the presenta-
tion much more direct and simple.

Ž .PROPOSITION 5.9. For productï e ideals II, JJ g H* G, k with II : JJ,
there is a homomorphism f : U ª U such that the following diagramII JJ II JJ

commutes

uII 6

U kII

6

fII JJ

uTT 6

U k .JJ

The third object in the triangle of f is II JJ-projectï e. f is unique up to aII JJ II JJ

homomorphism which can be factored through an II-projectï e module.
Moreo¨er, if II : II : II , then1 2 3

5.10 f (f s f ;Ž . II II II II II II2 3 1 2 1 3

the equation holds up to a homomorphism which factors through a relatï ely
II -projectï e module.1

Proof. Let P and P be the minimal relatively II- and JJ-projectiveII JJ

covers of k, respectively. Consider the following diagram

6 6 6 6

0 V k P k 0Ž . JJTT

66

5.11Ž .
aw JJ II

6 6 6 6

V k0 P k 0.Ž . IIII

Note that since II : JJ, the relative JJ-projectivity implies the relative
II-projectivity. So the bottom row is II-split and there exists a map

Ž . Ž .a : P ª P which in turn induces a homomorphism w : V k ª V kJJ II JJ II JJ II

such that the diagram commutes.
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Translating in the triangles, we have that

6 6 6 y1 6
0 P k [ proj V V k 0Ž . Ž .Ž .JJ JJ

6 6 6

y1a Ž .V wb JJ II

y16 6 6 6

P0 k [ proj V V k 0,Ž . Ž .Ž .II II

where the restriction of b to the k component is the identity map. In the
Ž y1Ž ..dual diagram, let f s V w *, and then we have the commutativeII JJ JJ II

diagram
uII 6

U kII

6

fII JJ

uJJ 6

U k .JJ

From Lemma 4.2, we know that the third object of the triangle of a is
Ž .II JJ-projective. Using the Snake lemma in diagram 5.11 , the third object

in the triangle of w is II JJ-projective. Therefore that of f is alsoJJ II II JJ

II JJ-projective.
The uniqueness comes from translating back the diagram. Namely, if we

have another homomorphism fX with the analogous commutative dia-II JJ

gram, then we have a diagram

6 6 6 6

0 V k P k 0Ž . JJJJ

66

X a 9w JJ II

« II6 6 6 6

V k0 P k 0.Ž .II II

Ž . Ž . Ž . XSo Im a y a 9 : Ker « s V k which implies that w y w can beII II JJ II JJ II

factored through the II-projective module P , and so can f y fX sinceJJ JJ II JJ II

both the dual and the V functors preserve the relative projectivity and the
splitness.

The proof of the transitivity is similar.
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