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Abstract

A collection of spherical obstacles in the unit ball in Euclidean space is said to be avoidable for Brownian
motion if there is a positive probability that Brownian motion diffusing from some point in the ball will
avoid all the obstacles and reach the boundary of the ball. The centres of the spherical obstacles are
generated according to a Poisson point process while the radius of an obstacle is a deterministic function. If
avoidable configurations are generated with positive probability, Lundh calls this percolation diffusion. An
integral condition for percolation diffusion is derived in terms of the intensity of the point process and the
function that determines the radii of the obstacles.
c⃝ 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Lundh proposed in [10] a percolation model in the unit ball B = {x ∈ Rd
: |x | < 1}, d ≥ 3,

involving diffusion through a random collection of spherical obstacles. In Lundh’s formulation,
the radius of an obstacle is proportional to the distance from its centre to the boundary S = {x ∈

Rd
: |x | = 1} of the ball. The centres of the obstacles are generated at random by a Poisson point

process with a spherically symmetric intensity µ. Lundh called a random collection of obstacles
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avoidable if Brownian motion diffusing from a point in the ball B has a positive probability of
reaching the outer boundary S without first hitting any of the obstacles. Lundh set himself the
task of characterising those Poisson intensities µ which would generate an avoidable collection
of obstacles with positive probability, and named this phenomenon percolation diffusion. Our
main objective herein is to extend Lundh’s work by removing some of his assumptions on the
Poisson intensity and on the radii of the obstacles.

Deterministic configurations of obstacles in two dimensions are considered in detail by
Akeroyd [3] and by Ortega-Cerdà and Seip [13], while O’Donovan [11] and Gardiner and
Ghergu [8] consider configurations in higher dimensions. The result below is taken from these
articles. First some notation is needed. Let B(x, r) and S(x, r) stand for the Euclidean ball and
sphere, respectively, with centre x and radius r and let B(x, r) stand for the closed ball with this
centre and radius. Let Λ be a countable set of points in the ball B which is regularly spaced in
that it has the following properties:

(a) There is a positive ϵ such that if λ, λ′
∈ Λ, λ ≠ λ′ and |λ| ≥ |λ′

| then

|λ − λ′
| ≥ ϵ


1 − |λ|


. (1)

(b) There is an r < 1 such that

B =


λ∈Λ

B

λ, r(1 − |λ|)


. (2)

Let φ : B → (0, 1), and set

O =


λ∈Λ

B

λ, φ(λ)


.

Theorem A. Suppose that φ is a radial function, in that φ(x) = φ(|x |), x ∈ B, and that φ(t)
is decreasing for 0 ≤ t < 1. Suppose also that the closed balls B


λ, φ(λ)


, λ ∈ Λ, are disjoint.

Then the collection of spherical obstacles O is avoidable if and only if 1

0

dt

(1 − t) log

(1 − t)/φ(t)

 < ∞ if d = 2, (3)

 1

0

φ(t)d−2

(1 − t)d−1 < ∞ if d ≥ 3. (4)

Our goal is to obtain a counterpart of this result for a random configuration of obstacles. We
work with a Poisson random point process on the Borel subsets of the ball B with mean measure
dµ(x) = ν(x) dx which is absolutely continuous relative to the Lebesgue measure. (Itô presents
a complete, concise treatment of this topic in Section 1.9 of his book [9].) The radius function φ

and the intensity function ν are assumed to satisfy, for some C > 1 and any x ∈ B,
1
C

φ(x) ≤ φ(y) ≤ Cφ(x)

1
C

ν(x) ≤ ν(y) ≤ Cν(x)

if y ∈ B


x,

1 − |x |

2


. (5)

It is also assumed that

φ(x)

1 − |x |
≤ c < 1 for x ∈ B (6)
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and that

(1 − |x |)φ(x)d−2ν(x) = O


1

1 − |x |


as |x | → 1−. (7)

Let P be a realisation of points from this Poisson random point process and let

AP =


p∈P

B


p, φ(p)

, ΩP = B \ AP , (8)

so that ΩP is an open, though not necessarily connected, subset of B. The archipelago of spherical
obstacles AP is said to be avoidable if there is a positive probability that Brownian motion
diffusing from some point in ΩP reaches the unit sphere S before hitting the obstacles AP , that
is if the harmonic measure of AP relative to ΩP satisfies ω(x, AP ,ΩP ) < 1 for some x in ΩP .
If ΩP is connected then, by the maximum principle, this condition does not depend on x ∈ ΩP .
We do not insist, however, on the configuration being avoidable for Brownian motion diffusing
from the origin.

We have percolation diffusion if there is a positive probability that the realisation of points
from the Poisson random point process results in an avoidable configuration. Our main result is:

Theorem 1. Suppose that (5), (6) and (7) hold. Percolation diffusion occurs if and only if there
is a set of points τ of positive measure on the sphere such that

B

(1 − |x |
2)2

|x − τ |d
φ(x)d−2ν(x) dx < ∞. (9)

Thus the random archipelago AP is avoidable with positive probability if and only if the Poisson
balayage of the measure (1 − |x |

2)φ(x)d−2ν(x) dx is bounded on a set of positive measure on
the boundary of the unit ball.

Furthermore, in the case of percolation diffusion the random archipelago AP is avoidable
with probability 1.

In the radial case the following corollary follows directly from Theorem 1.

Corollary 1. Suppose that, in addition to (5), (6) and (7), the intensity ν and the radius function
φ are radial in that they depend only on |x |. Then percolation diffusion occurs if and only if 1

0
(1 − t) φ(t)d−2 ν(t) dt < ∞. (10)

Lundh’s result [10, Theorem 3.1] is the case φ(t) = c(1 − t) of this corollary, in which case
(10) becomes 1

0
(1 − t)d−1ν(t) dt < ∞. (11)

This corresponds to the condition stated by Lundh that the radial intensity function should be
integrable on (0, ∞) when allowance is made for the fact that he works in the hyperbolic unit
ball. As pointed out in [12], Lundh’s deduction from (11) (see [10, Remark 3.2]) that percolation
diffusion can only occur when the expected number of obstacles in a configuration is finite is not
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correct. In fact, (11) holds in the case ν(t) = (1 − t)1−d and we have percolation diffusion. At
the same time, the expected number of obstacles N (B) in the ball is

E[N (B)] =


B

dµ(x) =


B

dx

(1 − |x |)d−1 = ∞. (12)

Lundh’s remark erroneously undervalues his work since it gives the impression that, in his
original setting, percolation diffusion can only occur if the number of obstacles in a configuration
is finite almost surely.

The intensity ν(t) = 1/(1 − t)d corresponds, in principle, to a regularly spaced collection of
points since the expected number of points in a Whitney cube Q of sidelength ℓ(Q) and centre
c(Q) is, in the case of this intensity,

E[N (Q)] =


Q

dµ(x) ∼ ν

c(Q)


Vol(Q) =

ℓ(Q)d

(1 − |c(Q)|)d ∼ constant.

(Here and elsewhere, the notation a ∼ b is to mean that there is a constant C , which does not
unduly depend on the context, such that the positive quantities a and b satisfy b/C ≤ a ≤

Cb.) We note that there is agreement in principle between the integral condition (4) for the
deterministic setting and the integral condition (10) with ν(t) = 1/(1 − t)d for the random
setting.

2. Avoidability, minimal thinness and a Wiener-type criterion

Avoidability of a realised configuration of obstacles AP may be reinterpreted in terms of
minimal thinness of AP at points on the boundary of the unit ball (see [4] for a thorough account
of minimal thinness). This is Lundh’s original approach, and is also the approach adopted by the
authors of [11,12,8].

For a positive superharmonic function u on B and a closed subset A of B, the reduced function
R A

u is defined by

R A
u = inf


v: v is positive and superharmonic on B and v ≥ u on A


.

The set A is minimally thin at τ ∈ S if there is an x in B at which the regularised reduced
function of the Poisson kernel P(·, τ ) for B with pole at τ satisfies R̂ A

P(·,τ )(x) < P(x, τ ). For
the sets which arise in our setting, the regularised reduced function coincides with the reduced
function, defined above. Minimal thinness in this context has been characterised in terms of
capacity by Essén [7] in dimension 2 and by Aikawa [1] in higher dimensions. Let {Qk}

∞

k=1 be a
Whitney decomposition of the ball B into cubes so that, in particular,

diam(Qk) ≤ dist(Qk, S) ≤ 4 diam(Qk).

Let ℓ(Qk) be the sidelength of Qk . Let cap (E) denote the Newtonian capacity of a Borel set
E . Aikawa’s criterion for minimal thinness of A at a boundary point τ of B is that the series
W (A, τ ) is convergent, where

W (A, τ ) =


k

ℓ(Qk)
2

ρk(τ )d cap (A ∩ Qk), (13)

ρk(τ ) being the distance from Qk to the boundary point τ . A proof of the following proposition
can be found in [8, p. 323]. The proof goes through with only very minor modifications even



1992 T. Carroll et al. / Stochastic Processes and their Applications 122 (2012) 1988–1997

though we do not insist on evaluating harmonic measure at the origin and the open set B\ A may
not be connected.

Lemma 1. Let A be a closed subset of B. Let

M = {τ ∈ S : A is minimally thin at τ }. (14)

Then A is avoidable if and only if M has positive measure on S, that is if and only if
W (A, τ ) < ∞ for a set of τ of positive measure on S.

The question of whether a given set A is avoidable for Brownian motion is thereby reduced to an
estimation of capacity.

The following zero–one law simplifies the subsequent analysis, and will imply that the random
archipelago is avoidable with probability 0 or probability 1, as stated in Theorem 1. Again, τ is
used to denote points on the sphere S and AP denotes an archipelago constructed as in (8) from
a random realisation P of points taken from the Poisson point process.

Lemma 2. The event that AP is minimally thin at τ has probability 0 or 1.

Proof. Whether or not the set AP is minimally thin at τ depends on the convergence of the series
W (AP , τ ). For each cube Q, let Q̂ be the set of all potential centres p of balls B


p, φ(p)


that

intersect Q. By condition (6), any point in Q̂ must lie in a cube whose Whitney distance from
Q is at most some fixed natural number N . It is therefore possible to partition the cubes {Qk}

∞

1
into finitely many disjoint groups {Qi

k}
∞

k=1, i = 1, 2, . . . , n, in such a manner that, if Qi
k and

Qi
j are distinct cubes in the same group then Q̂i

k and Q̂i
j are also disjoint. Break the summation

W (AP , τ ) into corresponding summations

W i (AP , τ ) =

∞
k=1

X i
k where X i

k =
ℓ(Qi

k)
2

ρi
k(τ )d

cap (AP ∩ Qi
k). (15)

The random variables {X i
k}

∞

k=1 in each resulting summation are independent since µ

Q̂i

k


and

µ

Q̂i

j


are independent for k ≠ j . The event W i (AP , τ ) < ∞ belongs to the tail field

of the corresponding X i
k’s; hence this event has probability 0 or 1. It follows that the event

W (AP , τ ) < ∞ has probability 0 or 1. �

3. The expected value of the Wiener-type series and the Poisson balayage

The proof of Theorem 1 follows the outline of Lundh’s argument [10] and the second author’s
thesis [12].

We work with a Poisson point process in the ball. Each realisation P of this process gives
rise to an archipelago AP via (8), which is avoidable for Brownian motion if and only if the
associated Wiener-type series W (AP , τ ) is finite for a set of τ of positive measure on the sphere
S. For a fixed τ on the sphere S, the series W (AP , τ ) is a random variable. Proposition 1 states
that its expected value is comparable to the Poisson balayage (9). We denote by c and C any
positive finite numbers whose values depend only on dimension and are immaterial to the main
argument.

Proposition 1. Fix a point τ on the sphere S. Then

E

W (AP , τ )


∼


B

(1 − |x |
2)2

|τ − x |d
φ(x)d−2 ν(x) dx . (16)
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The proof of Proposition 1 depends on a two-sided estimate for the expected value of the capacity
of the intersection of a Whitney cube Qk with the set of obstacles AP in terms of the mean
measure µ(Qk) of the cube and a typical value of the radius function φ on the cube.

Lemma 3. For a Whitney cube Q and any point x ∈ Q,

E[cap (AP ∩ Q)] ∼ φ(x)d−2 µ(Q). (17)

Lundh did not require an estimate of this type as the size of one of his obstacles was comparable
to the size of the Whitney cube containing its centre. The capacity of AP ∩ Q therefore depended
only on the probability of the cube Q containing a point from the Poisson point process. We first
deduce Proposition 1 from Lemma 3 and then prove Lemma 3.

Proof of Proposition 1. The upper bound for E[cap (AP ∩ Q)] in Lemma 3 leads to an upper
bound for the expected value of Aikawa’s series (13) with A = AP as follows:

E[W (AP , τ )] = E


k

ℓ(Qk)
2

ρk(τ )d cap (AP ∩ Qk)



=


k

ℓ(Qk)
2

ρk(τ )d E[cap (AP ∩ Qk)]

≤ C


k

ℓ(Qk)
2

ρk(τ )d φ(xk)
d−2 µ(Qk)

where xk is any point in Qk . Since the radius function φ is approximately constant on each
Whitney cube by (5), it follows that

E[W (AP , τ )] ≤ C


k


Qk

(1 − |x |
2)2

|τ − x |d
φ(x)d−2 ν(x) dx

= C


B

(1 − |x |
2)2

|τ − x |d
φ(x)d−2 ν(x) dx .

In the other direction, first choose a point xk in each Whitney cube Qk . Then,
B

(1 − |x |
2)2

|τ − x |d
φ(x)d−2 ν(x) dx ≤ C


k

ℓ(Qk)
2

ρk(τ )d φ(xk)
d−2 µ(Qk)

≤ C


k

ℓ(Qk)
2

ρk(τ )d E[cap (AP ∩ Qk)]

= C E[W (AP , τ )],

where the second inequality comes from the lower bound for E[cap (AP ∩Qk)] in Lemma 3. �

Proof of Lemma 3. The assumption (6) implies that if an obstacle meets a Whitney cube Q
then its centre can lie in at most some fixed number N of Whitney cubes neighbouring the
cube Q. We label these cubes Qi , where the index i varies from 1 to at most N , and write Q′

for their union. The distance from Q to the boundary of the ball is comparable to the distance
from Q′ to the boundary, as are the distances from Q and Q′ to a specific boundary point.
Analogously, an obstacle with a centre in a specified cube can intersect at most some fixed
number of neighbouring cubes.
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Consider a random realisation of points P and a Whitney cube Qk . By (5) the radius function
φ is roughly constant on the cubes Qi

k , say φ(x) ∼ φ(xk), x ∈ Q′

k , where xk is any point chosen
in Qk . Therefore, by the subadditivity property of capacity,

cap (AP ∩ Qk) ≤ C φ(xk)
d−2 N (Q′

k),

where N (Q′

k) is the number of centres from the realised point process P that lie in the union of
cubes Q′

k . Taking the expectation leads to

E[cap (AP ∩ Qk)] ≤ C φ(xk)
d−2E


N (Q′

k)


= C φ(xk)
d−2µ(Q′

k).

By (5), µ(Q′

k) ≤ Cµ(Qk) and the upper bound for E[cap (AP ∩ Qk)] in Lemma 3 follows.
In the other direction we proceed, as did Gardiner and Ghergu [8], by employing the following

superadditivity property of capacity due to Aikawa and Borichev [2]. Let σd be the volume of
the unit ball. Let F =


B(yk, ρk) be a union of balls which lie inside some ball of unit radius.

Suppose also that ρk ≤ 1/


σd2d for each k and that the larger balls B(yk, σ
−1/d
d ρ

1−2/d
k ) are

disjoint. Then

cap (F) ≥ c


k

cap

B(yk, ρk)


= c


k

ρd−2
k . (18)

Let φ0 be the minimum of φ(x) for x in Q. By (5), φ0 is comparable to φ(x) for any x in Q.
We only consider obstacles with centres in Q and suppose that all such obstacles have radius φ0,
since on doing this the capacity of AP ∩ Q decreases. Set

α = min


ℓ(Q)
√

d
−1

,


σd 2d φ0
−1

and set

N = ⌊4−1 ℓ(Q) σ
1/d
d α2/d φ

2/d−1
0 ⌋.

By (6), we have α ≥ c/ℓ(Q). The cube Q is divided into N d smaller cubes each of sidelength
ℓ(Q)/N : we write Q′ for a typical sub-cube. Inside each cube Q′ consider a smaller concentric
cube Q′′ of sidelength ℓ(Q)/(4N ). If a cube Q′′ happens to contain points from the realisation
P of the random point process, we choose one such point. This results in points λ1, λ2, . . . , λm ,
say, where m ≤ N d . By the choice of α and N , each ball B(λk, φ0) is contained within the
sub-cube Q′ that contains its centre. We set

AP ,Q =

m
k=1

B(λk, φ0).

Since AP ,Q ⊂ AP ∩ Q, if follows from the monotonicity of capacity that cap


AP ∩ Q


≥

cap


AP ,Q

.

To estimate the capacity of AP ,Q , we scale the cube Q by α. By the choice of α, the cube
αQ lies inside a ball of unit radius and the radius of each scaled ball from AP ,Q satisfies
αφ0 ≤ (σd2d)−1/2. The only condition that remains to be checked before applying Borichev
and Aikawa’s estimate (18) to the union of balls αAP ,Q is that the balls with centre αλk and

radius σ
−1/d
d (αφ0)

1−2/d are disjoint. They are if

2σ
−1/d
d (α φ0)

1−2/d
≤

α ℓ(Q)

2N
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since the centres of the balls are at least a distance α ℓ(Q)/(2N ) apart. This inequality follows
from the choice of N . Applying (18) and the scaling law for capacity yields

cap


AP ,Q


= α2−dcap

αAP ,Q


≥ α2−d c X (αφ0)

d−2
= c X φd−2

0 ,

where X = m is the number of sub-cubes Q′′ of Q in our construction that contain at least one
point of P . Hence,

E[cap (AP ∩ Q)] ≥ c φd−2
0 E[X ]. (19)

The probability that a particular sub-cube Q′′ contains a point of P is

1 − P


P ∩ Q′′
= ∅


= 1 − e−µ(Q′′),

by the Poisson nature of the random point process. For any sub-cube Q′′ with centre x , say,

µ(Q′′) ∼ ν(x)


ℓ(Q)

N

d

∼ ν(x)
φd−2

0

α2 (by choice of N )

≤ ν(x) ℓ(Q)2 φd−2
0 (since α ≥ c/ l(Q))

= O(1) (by (7)).

It then follows that

E[X ] =


Q′′⊂Q

1 − e−µ(Q′′)
≥ c


Q′′⊂Q

µ(Q′′) ≥ cµ(Q), (20)

the last inequality being a consequence of the assumption (5) and the fact that the volume of the
union of the cubes Q′′ is some fixed fraction of the volume of Q. When combined with (19), the
estimate (20) yields the lower bound for E[cap (AP ∩ Q)]. �

4. Proof of Theorem 1

To begin with, we need the following result from Lundh’s paper [10].

Lemma 4. Let τ ∈ S. Then E[W (AP , τ )] is finite if and only if the series W (AP , τ ) is
convergent for almost all random configurations P .

Proof. It is clear that E[W (AP , τ )] being finite implies that W (AP , τ ) is almost surely
convergent. The reverse direction is proved by Lundh [10, p. 241] using Kolmogorov’s three-
series theorem. Indeed, it is a consequence of this result [6, p. 118] that, in the case of a
uniformly bounded sequence of non-negative independent random variables, the series


k Xk

converges almost surely if and only if


k E[Xk] is finite. As in the proof of Lemma 2, the
series W (AP , τ ) is split into n series W i (AP , τ ) =


∞

k=1 X i
k , each of which is almost surely

convergent by assumption. The random variables X i
k in (15) are uniformly bounded. It then

follows that


k E[X i
k] = E


k X i

k


is convergent, that is E[W i (AP , τ )] is finite. Summing

over i , we find that E[W (AP , τ )] is finite as claimed. �

Proof of Theorem 1. Let us first assume that the finite Poisson balayage condition (9) holds for
all τ in a set T , say, of positive measure σ(T ) on the boundary of the unit ball and deduce from
this that percolation diffusion occurs. In fact, we will show more—we will show that the random
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archipelago is avoidable with probability 1. By Proposition 1, we see that E[W (AP , τ )] is finite
for τ ∈ T ; hence the series W (AP , τ ) is convergent a.s. for each τ ∈ T . For τ ∈ T , set

Fτ = {P : W (AP , τ ) < ∞}

so that Fτ has probability 1. We have

1 =
1

σ(T )


T

E[1Fτ ] dτ = E


1
σ(T )


T

1Fτ dτ


,

from which it follows that


T 1Fτ dτ = σ(T ) with probability 1. Equivalently, it is almost surely
true that P ∈ Fτ for a.e. τ ∈ T . In other words, it is almost surely true that AP is minimally
thin at a set of τ of positive measure on the sphere S; hence AP is almost surely avoidable by
Lemma 1.

Next we prove the reverse implication. For a random configuration P , set

MP = {τ ∈ S : AP is minimally thin at τ },

which is similar to (14). Suppose that percolation diffusion occurs. Then, with positive
probability, AP is minimally thin at each point of some set of positive surface measure on the
sphere, so E


S 1MP (τ ) dτ


> 0. Interchanging the order of integration and expectation, we

conclude that there is a set T of positive measure on the sphere S such that P

τ ∈ MP


> 0 for

τ ∈ T . By Lemma 2, W (AP , τ ) < ∞ a.s. for τ ∈ T . By Lemma 4, E[W (AP , τ )] is finite for
τ ∈ T . Finally, it follows from Proposition 1 that, for τ in the set T of positive measure on the
sphere S, the Poisson balayage (9) is finite. �

Proof of Corollary 1. In the case where both φ and ν are radial, the value of the Poisson
balayage in (9) is independent of τ ∈ S and equals 1

0
(1 − t2)φ(t)d−2


tS

1 − |x |
2

|τ − x |d
dσ(x)


ν(t) dt,

where dσ is surface measure on the sphere tS. Hence (9) is equivalent to (10) in the radial
setting. �

5. Percolation diffusion in space

The Wiener criterion for minimal thinness of a set A at ∞ in Rd , d ≥ 3, is

W (A, ∞) =


k

cap (A ∩ Qk)

ℓ(Qk)d−2 < ∞ (21)

(see [8], for example) where the cubes {Qk} are obtained by partitioning the cube of sidelength
3 j (centre 0 and sides parallel to the coordinate axes) into 3 jd cubes of sidelength 3 j−1 and then
deleting the central cube. Assuming that the radius function φ and the intensity of the Poisson
process ν are roughly constant on each cube Qk , and that |x |

2φ(x)d−2ν(x) = O(1) as |x | → ∞,
the corresponding version of Lemma 3 is that, for a cube Qk and any point xk ∈ Q,

E[cap (AP ∩ Qk)] ∼ φ(xk)
d−2 µ(Qk), (22)

and the corresponding version of Proposition 1 is

E

W (AP , τ )


∼


Rd\B


φ(x)

|x |

d−2

ν(x) dx . (23)
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Since the random archipelago AP is avoidable in this setting precisely when it is minimally
thin at the point at infinity, the criterion for percolation diffusion is that the integral on the
right hand side of (23) be finite. Again this agrees in principle with a criterion for avoidability
in the deterministic, regularly located setting [5, Theorem 2] (see also [8, Theorem 6]) which
corresponds to ν constant and φ radial, namely

∞

1
rφ(r)d−2 dr < ∞.
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