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Abstract

We introduce a new family of indecomposable positive linear maps based on entangled
guantum states. Central to our construction is the notion of an unextendible product basis. The
construction lets us create indecomposable positive linear maps in matrix algebras of arbitrary
high dimension. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

One of the central problems in the emergent field of quantum information theory
[1]is the classification and characterization of the entanglement (to be defined in Sec-
tion 2) of quantum states. Entangled quantum states have been shown to be valuable
resources in (quantum) communication and computation protocols. In this context it
has been shown [2] that there exists a strong connection between the classification
of the entanglement of quantum states and the structure of positive linear maps. Very
little is known about the structure of positive linear maps even on low-dimensional
matrix algebras, in particular the structure of indecomposable positive linear maps.
We denote ther x n matrix algebra a9/, (C). The first example of an indecom-
posable positive linear map i3(C) was found by Choi [3]. There have been only
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several other examples of indecomposable positive linear maps (see [4] for some
recent literature); they seem to be hard to find and no general construction method
is available. In this paper we make use of the connection with quantum states to
develop a method to create indecomposable positive linear maps on matrix algebras
M, (C) for anyn > 2. Central in this construction is the notion of an unextendible
product basis, of which there exist examples in arbitrary high dimensions [5,6]. Un-
extendible product bases have turned out to be mathematically rich objects which
can be understood with the use of graph theoretic and linear algebraic tools [7].

In Section 2 we present the general construction. In Section 3 we present two
examples and discuss various open problems.

2. Unextendible product bases and indecomposable maps

An n-dimensional complex Hilbert space is denoted4s. The set of linear
operators on a Hilbert spac&,, will be denoted a®(#,,). The subset of Hermitian
positive semidefinite operators is denotedsds?’,,) ™. We will use the conventional
bra and ket notation in quantum mechanics, i.e. a vegtior »#, is written as a ket,

V) € Hn (1)

and the Hermitian conjugate @f, v*, is denoted as a bra/|. The complex inner-
product between vectotg) and|¢) in ', is denoted as

(Vlp) = v o. )

The vectorgy) € # are usually normalizedys|v) = 1. Elements ofB(#,) ™
can be denoted as

p= hilyi) (i, 3)

where|y;) are the normalized eigenvectors @fand A; > 0 are the eigenvalues.
Whenp has trace equal to 1, the matpxs said to be a density matrix. The physical
state of a quantum mechanical system is given by its density matrix. If a density
matrix p has rank 1p is called a pure state and can be written as

o =¥yl 4)
Let.¥ : B(A#,) — B(A,,) be a linear map. The maff is positive when? :
B(#)T — B(A#,)T. Letid, be the identity map oB (). We define the map

iy ® S : B @ Hy) —> B(H @ Hpy)fork=12,...by

(idy ® &) (Zm@n) =Z<7i®y(fi), %)

wheres; € B(#'y) andt; € B(#,). The map? is k-positive when ig ® % is posi-
tive. The map?’ is completely positive whegr is k-positive for allk = 1, 2, . . . Fol-
lowing Lindblad [8], the set of physical operations on a density matrx B(#,) ™
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is given by the set of completely positive trace-preserving méps(#,)—
B(A# ). Similarly ask-positive, one can definekacopositive map. LeT:B(#,,)—
B(,) be defined as matrix transposition in a chosen basis¢fpri.e.

(T(A))ij = Aji (6)

on a matrixA € B(# ). The map? is k-copositive when ig® [ o T] is positive.
A positive linear map? : B(A#,) — B(A,,) is decomposable if it can be written
as

S =S14+S 20T, @)
where

S1:B(Hy) — B(AH ) and Fo: B(AH,) — B(H )
are completely positive maps afidis matrix transposition relative to some basis.

It has been shown by Woronowicz [9] that all positive linear m&ps B(#2) —
B(A2) and : B(A#'2) — B(A’3) are decomposable.

Definition 1. Letp be a density matrix on a finite-dimensional Hilbert spag ®

A p. A state|yr) of the form|y4) ® | B) is a (pure) product state iF 4 ® # .
The density matrixo is entangled iffp cannot be written as a nonnegative combi-
nation of pure product states, i.e. there does not exist an ens¢mhie0, W{‘ ®

v )} such that

p = pilv e v WPl (8)
Whenp is not entangled, then the density matpixs called separable.

The problem of deciding whether a bipartite density magion # 4 Q # '
is entangled can be quite hard. The following theorem by M., P. and R. Horodecki
[2] formulates a necessary and sufficient condition for a density matiia be
entangled:

Theorem 1 (Horodecki).A density matrixo on 2# 4 ® # p is entangled iff there
exists a positive linear maff’ : #'p — # 4 such that

(ida ® &) (p) 9)
is not positive semidefinite. Heig4 denotes the identity map a7 4).

Remark. An equivalent statement as Theorem 1 holds for positive linear faps
H 4 — A g and the positivity of” @ idp.

The consequences of Theorem 1 and Woronowicz'’ result are that a bipartite densi-
ty matrixp on#, ® # 2 and#» @ # zisentangledifiidy @ [Y1+ F20T]) (p)
is not positive semidefinite for som#; and.¥’». Since1 and.¥’» are completely



64 B.M. Terhal / Linear Algebra and its Applications 323 (2001) 61-73

positive maps this is equivalent to saying tligty ® 7) (p) is not positive semi-
definite.

The more complicated structure of the positive linear maps in higher-dimen-
sional matrix algebras, namely the existence of indecomposable positive maps, is
reflected in the existence of entangled density matricea # 4 ® # g for which
(idga ® T) (p) is positive semidefinite.

The first example of such a density matrix ofio ® #4 and #'3 ® #'3 was
found by P. Horodecki [10]. In [5] a method was discovered to construct entan-
gled density matriceg with positive semidefinité€id4 ® T') (o) in various dimen-
sions dim#’ 4 > 2 and dim#’g > 2. The construction was based on the notion of
an unextendible product basis. Let us give the definition.

Definition 2. Let 2 be a finite-dimensional Hilbert space of the forfy ® #p.

A partial product basis is a sétof mutually orthonormal pure product states span-
ning a proper subspacé& s of #. An unextendible product basis is a partial product
basis whose complementary subspﬁﬁ§ contains no product state.

Remark. This definition can be extended to product basesfin= Q. ; #; with
arbitrarym. Note that we restrict ourselves to orthonormal &ets

With this notion we can construct the following density matrix:

S|

Theorem 2[5]. Let S be a bipartite unextendible product basig;) ® |,Bl~)}l‘.:1 in
H = H 4 @ A . We define a density matrixas
S = o) (i | ® B} (Bi] (10)
p_dlmW—|S| AB : o)\ i)\Pil |

whereid4 g is the identity operator o#’. The density matriy is entangled. Fur-
thermore the statgidy ® [¥1 + T o ¥2])(p) > 0for all completely positive maps
Y1 and Y.

Proof. The density matrix is proportional to the projector on the complementary
subspacafﬁ. Sinces is unextendible, the subspaﬂé% contains no product states.
Therefore the density matrix is entangled. It is not hard to see(itigt® 7)(p)

is positive semidefinite. It has been proved in [11] that wkien ® T)(p) is pos-
itive semidefinite therid4 ® [T o #2])(p) > 0, where» can be any completely
positive map. Thereforéidy, ® [¥1+ T o ¥2])(p) > 0 for all completely positive
mapsy’1 and¥,. [

We are now ready to present our results relating these density matrices obtained
from the construction in Theorem 2 to indecomposable positive linear maps. We will
need the definition of a maximally entangled pure state:
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Definition 3. Let.# = # 4 ® # p. Let|y) be a normalized state i’ and

pay = Trg ) (], (11)
where Ti; indicates that the trace is taken with respect to Hilbert spégeonly.
The statdy) € # is maximally entangled when

S(pa,y) = —=Trpa 100 pa,y = log, min(dim # 4, dim.#'p). (12)
The functionS(p4,y) is the von Neumann entropy of the density majrjxy .

Remark. For pure stateg)/) the von Neumann entropy ofs y is always less than
or equal tod = log, min(dim # 4, dim 2 ). For maximally entangled states we
will have p4 y = diagl/d, ..., 1/d,0, ..., 0) so that the maximum von Neumann
entropy, Eq. (12), is achieved. When dify = dim.# 5 one can always make an
orthonormal basis far#” with maximally entangled states [12].

The following lemma bounds the innerproduct between a maximally entangled
state and any product state.

Lemmal. Let# = # 4, @ #'p. Let|¥W) € A be a maximally entangled state. Let
d = min(dim J# 4, dim # ). For all (normalized product state$p4) ® |¢p),

1
(Plpa) @ |pp)|? < > (13)

Proof. We write the maximally entangled stgté) in the Schmidt polar form [13]
as

1 d
Yy = — f b;), 14
|¥) ﬁ;|a>®| ) (14)

where(a;|a;) = &§;; and(b;|b;) = §;;. Thus we can write
2

<

d

1
(P1pa) @ 1¢8)12 = = > (Palai) (@nlbi)
i=1

using the Schwarz inequality and

: (15)

Ul

d d
D lgalap? <1 and Y lgslbp)P <1l O
i=1

i=1

We will also need the following lemma:

Lemma 2. LetS be an unextendible product basis;) ® |,B,-)}l‘.ﬂ1 iNAH =H4sQ
H'p. Let
5]
FUpa).168)) =Y lpales)*| (@51 Bi) 1% (16)

i=1
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The minimum off over all pure statesps) € # 4 and |pp) € # p exists and is
strictly larger thanO.

Proof. The set of all pure product statess) ® |¢p) on # is a compact set. The
functionf is a continuous function on this set. Therefore, if there exists a set of
stategoa) ® |¢pp) for which f is arbitrarily small then there would also exist a pair
|#',) ® l¢pp) for which f = 0. This contradicts the fact thatis an unextendible
product basis. [

The following two theorems contain the main result of this paper.

Theorem 3. LetS be an unextendible product bagje;) ® |,Bl~)}l‘.ﬂ1 iNA =H4Q
A g. Letp be the density matrix

1 . ol
P=dimz —|s| ('dAB - ; loti ) (i | ® |,3i><ﬂi|) : (17)

Letd = min(dim# 4, dim .# ). Let H be a Hermitian operator given by
N

H=Z|ai>(ai|®|,3i><,3i|_d6|lP>('ly|v (18)
i=1
where|?) is a maximally entangled state such that
(Plpl¥)>0 (19)
and
IS
= i il 20
€=, mn Z|¢A|a NRICTAIE (20)

where the minimum is taken over all pure stalgg) € # 4 and |pp) € # p. For
any unextendible product basssit is possible to find a maximally entangled state
|¥) such that Eq(19) holds. The operatof has the following properties

TrHp <0, (22)
and for all product stategps) ® |pp) € A,
TrH |pa){dal @ 1¢B)(Pp] = 0. (22)

Proof. Eq. (22) follows from the definition of, Eq. (20), and Lemma 1. Consider
Eq. (21). As the density matrix is proportional to the projector os’+-, one has
TrH p=—de (¥]p|¥), (23)

which is strictly smaller than zero by Lemma 2 and the choice of the maximally
entangled state, Eq. (19). When dithy = dim 7, there exist bases of maximal-
ly entangled states and thus there will be a basis va&tprfor which (Y| o |¥P)
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is nonzero. In case, say, difi4 > dim.# p, the maximally entangled states form
bases of subspace#” = #', ® #'p with #', C # 4 and dim#”, = dim.# .
This completes the proof.C]

Theorem 4. LetS be an unextendible product bagje;) ® |,Bl)}‘5‘1 NA =H4Q
A'p. Let H be defined as in TheoreB) Eg. (18). Choose an orthonormal basis
(i )}d'm YA for # 4. LetS : B(# ) — B(A ) be alinear map defined by

LA GD = GLH 1)) (24)
Then¥ is positive but not completely positive. The mapis indecomposable.

Proof. The relation betweery’ and H, Eq. (24), follows from the isomorphism
between Hermitian operators ofi 4 ® # p with the property of Eq. (22) and linear
positive maps, see [2,14]. In particular, iff a HermitiBhoperator on#' 4 ® # p
has the property of Eq. (22), then the linear n¥ép B(# 4) — B(# p) defined by

= (ida @ )P NPT, (25)

where| ‘1’*) is equal to the (unnormalized) maximally entangled s@f@? A ®

|i), is positive for any choice of the orthonormal ba{$$}d'm Ha,

We will show how the density matrix derived from the unextendible product
basis, Eq. (17), shows that’ is not completely positive. At the same time we
prove that the assumption th&tis decomposable leads to a contradiction. Note that
Eq. (24) is equivalent to Eq. (25).

Let 9* : B(A#'p) — B(A 4) be the Hermitian conjugate of. We use the defi-
nition of the maps™*

Tr 9*(A*) B = TrA* #(B) (26)
and Eq. (25) to derive that Eq. (21) can be rewritten as
TrHp=(P"|(ids ® %) (p)|¥T) <0, (27)

Thus .9* cannot be completely positive and thereforeitself is not completely
positive. If # were decomposable, theri* would be of the form%1 + T o ¥,
where. 1 and.¥» are completely positive maps. The density mafriis positive
semidefinite under any linear map of the formy + T o %2 by Theorem 2. This is
in contradiction with Eq. (27) and therefafé cannot be decomposablel]

We will now show how one can determine a lower bound on the value, of
Eqg. (20). Note that when we determine a lower boung enax, then all operators
H, as in Eq. (18) of the form

N
H=Zlm>(a;|®lﬂi><ﬂil—dMI‘P>(‘PI, (28)
i=1
whereu € (0, emax], correspond to positive maps.



68 B.M. Terhal / Linear Algebra and its Applications 323 (2001) 61-73

Let {|a;) ® I/S,')}lﬂl be an unextendible product basisifiy ® # g with dy =
dim.# 4 anddp = dim #'p. LetSy = {|a;)}lsll andSp = {|ﬂ;)}l‘.ﬂl. We pick a vec-

tor |¢4) and order the innerprodudi; |¢4)|2 in an increasing sequence; let us call
themxy < x2 < - -+ < x;51. Then we select vectofs;) corresponding to the smallest
innerproducts in this sequence up to the point where the set of selected vVegtors
spans the fulll 4-dimensional Hilbert spac# 4. Let us call this seSf; € Su. Ifwe
would take away anyone state froﬁﬁ, the remaining vectors would no longer span
M 4. As the vectors in the sétf; spanJ 4, it must be thalx‘sg‘ > 0. Let us label

i i ; 2
this corresponding vector as;,,,,,), i.e. Xgp| = [{ctimax|®4) <. We now construct a

subset ofSp in the following way; we defineS® = {|8:) | i) & S§} U {I Bimad}-
We note that the vectors in the sﬁ span the Hilbert spac# p; if not, then there
would exist a vectof¢) which is orthogonal to all vectors mg anda vector|¢ )
which is orthogonal to all vectors iﬂfj \ {|¢ipae }» Which would in turn imply that
€ = 0, in other words, the set would be extendible. Let us pick a vectgrz) and
denote the innerprodudt; |¢z)|% with |8;) € S};’ asy; < y2< -+ < YisE|- As the
vectors inSl’; span# g, we know thaty‘sg‘ > 0 for any stateé¢g). This implies that
for a particular choice offp4) and|¢p) we can bound

> leilda) P10} = x5, vise): (29)

the product of the two largest innerproducts of the veclgrs and|¢p) with the
vectors frome; andsg, respectively. Thereforeitself, Eq. (20), can be bounded
as

€ > min XgP | V|sPs (30)
lpa)—SE |pp)—SE 154171535

Wherex|s§| denotes the largest innerproduct betwggp) and a state in the s€§’
and similarly fory|s§|- We minimize overig4) — S& and|¢p) — S%, where the

arrow denotes that a stafg¢4) gives rise to a seflf as in the construction given
above. A setsf" (and similarlysg) might not be uniquely defined given the vector
|¢pa), for example when several innerproducts of the sfate with stateso;) are
identical. Since the lowerbound given in Eq. (29) works for all §§t$\nd5§ which
are constructed with the method given above, we could do an extra maximization
over S¥ and S%, given the stategp4) and|¢p), but for the sake of clarity this
maximization is omitted in Eq. (30).

We have the following proposition that can be used to boqgiq a”dy|s§| given

the setss? and S:

Proposition 1. Let{|y;)}?_; be a set of n vectors i¥” such that the seffv;)}7_,;
spans the Hilbert spac#’. Then for any vectolp) we have
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25
nmax|(g|y:)] Z| (@1i)12 > Amin. (31)

whereimin is the smallest eigenvalue of the Hermitian matPix= >, [v;) (1.

Using Proposition 1, we get the following:
)‘min,Sg Amin,sg
€ > min 7 P
sE.sE |SA| |SB|
In order to carry out this calculation, we first find all minimal ‘full rank’ subsets

S/f of S4. Then for each of these sef§ we compute the smallest eigenvalue of
Z;esjj lo;) (i | Also for each seS?, we construct complementary seSt§ which

contain all the vectorig;) such thate;) ¢ S% and a single statg;) suchle;) € S%.

For each sef% there will be|S¥| of such setsS}. Then for eacts’ we compute

the smallest eigenvalue @iesg |Bi){Bi|. Then we can take the minimum over all
these values to obtain a bound enNote that this is now a minimization over a
discrete number of values. If the s&has few symmetries and is defined in a high-
dimensional space, the procedure will be cumbersome. In small dimensions or for
unextendible product bases which do have many symmetries, the calculation will be
much simpler. In Section 3 we present two examples of positive maps based on the
construction in Theorem 4 and for one of them we will explicitly compute a lower
bound ore.

= €max- (32)

3. Examples and discussion

As we have shown the structure of unextendible product bases carries over to
indecomposable positive linear maps. In this section we will list some of the results
that have been obtained about unextendible product bases. We will take two exam-
ples of unextendible product bases and demonstrate the construction of Theorems 3
and 4.

1. In [5] it was shown that there exist no unextendible product bases,i® #,

foranyn > 2.

2. In[6] it was shown how to parametrizadél possible unextendible product bases in

A3 ® A3 as a six-parameter family.

3. In [6] a family of unextendible product bases, based on quadratic residues, in

Hn @ Hy, Wherenis any odd number andi2— 1 is a prime of the form# + 1

has been found.

4. In [6] a family of unextendible product bases, ® #,, (n > 2,n > 2) for arb-

itary m #+ n as well as evem = m has been conjectured. The conjecture was

proved in#3 ® #, and# 4 ® # 4 (The full conjecture (arbitrarp andm) has

recently been proved by Terhal and DiVincenzo and will be presented in a forth-
coming paper.)
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5. In [6] it was shown that whefy andS» are unextendible product basesﬁriq ®
c#}; and%ﬁ ® #%, respectively, then the tensor product of the two s&tsp
S», is again an unextendible product baseg #fl, ® #2) ® (#5 ® #3).

Example 1. One of the first examples of an unextendible product basi§ire # 3

was the following set of states [5]. Consider five vectors in real three-dimensional
space forming the apex of a regular pentagonal pyramid, the hieighthe pyra-

mid being chosen such that nonadjacent apex vectors are orthogonal. The vectors
are

27i 27i
|Ui>:N<COS%,Sin%,h>, i=0,...,4 (33)

with

h:%\/1+«/§ and N =2/y/5++/5.

Then the following five states i¥'3 ® #°3 form an unextendible product basis:

|pl>=|vl>®|v21m0d5>7 i=07"'94' (34)

Let p be the entangled state derived from this unextendible product basis as in
Eq. (10) Theorem 2. We choose a maximally entangled stéje here named
1),

1

pHy = 00) + |11) + |22)). 35
|P™) ﬁ(l ) +111) + [22)) (35)
One can easily compute that
1 7+ /5
PHpolPH)y=>(1- ————— 0. 36
(P pl¥T) 4( 3(3+\/§))> (36)

Let us now compute a lower bound enas in Eq. (32). Due to the high symmetry
of this set of states, we will only need to compute the minimum eigenvalue of the
Hermitian matrix

P1 = |vo)(vo| + |v1)(v1] + |v2){v2]
and

P2 = |vo)(vo| + |v1){v1| + |v3)(v3],

all other subsets of three vectors, either on Bob’s or Alice’s side, correspond to ma-
trices with the same eigenvalues Bsor P,. Easy computation shows th&t has
the smallest eigenvalue which is equal to

2++/2-10
> .
Then as the states on Bob’s side are identical, we get

37)

Amin =
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A2 4++/2-4/5-10

€= gin = 5 (38)
The map¥ as defined in Eq. (24) Theorem 4, follows directly:
4
LD = Z(i|vk><vk|j>|v2k mod 5 {V2k mod 5| — i) {J 1, (39)
k=0
where
e<o,4+ﬁ‘f‘m] (40)

A positive linear magp” : B(A#,)) — B(A#,,) is unital if #(id,)) = id,,. We will
demonstrate tha¥ is not unital. One can write

4
F(da) =TraH =) |varmod 9 {vaxmod sl — 3u Tra| PH)(¥F],  (41)
k=0
which in turn is equal to
10 10
F(idy) = dia 7,7,J§)— idp. 42
(ida) 9(5_‘_\/554_«/g widp (42)

The next example is based on a more general unextendible product basis that was
presented in [6].

Example 2. The states of in #'3 ® #, are:

n—1
|F,?>=J1_2|0>® (|1>+Zwk<’—2>|z>>, 1<k<n-3, (43)
n= 1=3
n—1
|F,}>=\/1_2|1>® (|2>+Zwk<’2>|z>>, 1<k<n-3, (44)
n= 1=3
n—1
|F) = ¢1_2|2> ® <|0> + Zwk<’—2>|l>> . 1<k<n-3, (45)
n= 1=3
1
Ws)="7500 1) ®0). (46)
1
Way="500 - 12)® D). (47)
1
Ws) =502~ 10) ® 2. (48)
1 2 n—-1
o) =—=>_> 1) ®1j) (49)

V3n i 25 =0
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and we havev = exp(2ri/(n — 2)). Here the stateﬁk)}z;(l) form an orthonormal
basis. In total there are:3- 5 states in the basis. We choose a maximally entangled
state, again we takéP*), Eq. (35). One can show that

1/1 1
('P+| P |'P+> = 5 (5 - §> 0. (50)
The map¥ : B(#3) — B(#y) is given as
n—-3 2 6
FANGD =D D GIFOFL 1) + Z ilYp) (Wpli) — € 1)l (51)
k=1 p=0 p=3

The following questions concerning the positive maps that were introduced in this
paper are left open.
1. Is & always nonunital? We conjecture it is. As we showed, see Eq. (41), the
answer to this question depends on whether

IS1

> 1B (Bil o id, (52)

i=1

where the set of stateﬁﬁ,-)}!ﬂl is one side of the unextendible product ba-
sis. The state$s;) will span # p but they will not be all orthogonal, nor all
nonorthogonal.

2. It was shown in Theorem 4 that the new indecomposable positive linear maps
S B(A# ) — B(A,) are notm-positive, as they are not completely positive.
Are these maps” k-positive with 1< k < m? The answer to this question will
rely on a better understanding of the structure of unextendible product bases.

3. In [5] a single example was given of a entangled density matrix6n®
A 4, which stayed positive semidefinite under the action gf@dr’. The den-
sity matrix was based, not on an unextendible product basis, but on a ‘strong-
ly uncompletable’ product basiS. It could be shown that the Hilbert space
A+ had a product statdeficit, i.e. the number of product states ify was
less than dim?. It is a open question on how to generalize this example
and whether these kinds of density matrices will give rise to more general
family of indecomposable positive linear maps, see [15,16] for progress in
this direction.
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