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Abstract

We introduce a new family of indecomposable positive linear maps based on entangled
quantum states. Central to our construction is the notion of an unextendible product basis. The
construction lets us create indecomposable positive linear maps in matrix algebras of arbitrary
high dimension. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

One of the central problems in the emergent field of quantum information theory
[1] is the classification and characterization of the entanglement (to be defined in Sec-
tion 2) of quantum states. Entangled quantum states have been shown to be valuable
resources in (quantum) communication and computation protocols. In this context it
has been shown [2] that there exists a strong connection between the classification
of the entanglement of quantum states and the structure of positive linear maps. Very
little is known about the structure of positive linear maps even on low-dimensional
matrix algebras, in particular the structure of indecomposable positive linear maps.
We denote then× n matrix algebra asMn(C). The first example of an indecom-
posable positive linear map inM3(C) was found by Choi [3]. There have been only
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several other examples of indecomposable positive linear maps (see [4] for some
recent literature); they seem to be hard to find and no general construction method
is available. In this paper we make use of the connection with quantum states to
develop a method to create indecomposable positive linear maps on matrix algebras
Mn(C) for anyn > 2. Central in this construction is the notion of an unextendible
product basis, of which there exist examples in arbitrary high dimensions [5,6]. Un-
extendible product bases have turned out to be mathematically rich objects which
can be understood with the use of graph theoretic and linear algebraic tools [7].

In Section 2 we present the general construction. In Section 3 we present two
examples and discuss various open problems.

2. Unextendible product bases and indecomposable maps

An n-dimensional complex Hilbert space is denoted asHn. The set of linear
operators on a Hilbert spaceHn will be denoted asB(Hn). The subset of Hermitian
positive semidefinite operators is denoted asB(Hn)

+. We will use the conventional
bra and ket notation in quantum mechanics, i.e. a vectorψ in Hn is written as a ket,

|ψ〉 ∈ Hn (1)

and the Hermitian conjugate ofψ, ψ∗, is denoted as a bra〈ψ|. The complex inner-
product between vectors|ψ〉 and|φ〉 in Hn is denoted as

〈ψ|φ〉 ≡ ψ∗φ. (2)

The vectors|ψ〉 ∈ H are usually normalized,〈ψ|ψ〉 = 1. Elements ofB(Hn)
+

can be denoted as

ρ =
∑
i

λi |ψi〉〈ψi |, (3)

where|ψi〉 are the normalized eigenvectors ofρ andλi > 0 are the eigenvalues.
Whenρ has trace equal to 1, the matrixρ is said to be a density matrix. The physical
state of a quantum mechanical system is given by its density matrix. If a density
matrixρ has rank 1,ρ is called a pure state and can be written as

ρ = |ψ〉〈ψ|. (4)

Let S : B(Hn) → B(Hm) be a linear map. The mapS is positive whenS :
B(Hn)

+ → B(Hm)
+. Let idk be the identity map onB(Hk). We define the map

idk ⊗ S : B(Hk ⊗ Hn) → B(Hk ⊗ Hm) for k = 1,2, . . . by

(idk ⊗ S)

(∑
i

σi ⊗ τi

)
=
∑
i

σi ⊗ S(τi), (5)

whereσi ∈ B(Hk) andτi ∈ B(Hn). The mapS is k-positive when idk ⊗ S is posi-
tive. The mapS is completely positive whenS is k-positive for allk = 1,2, . . . Fol-
lowing Lindblad [8], the set of physical operations on a density matrixρ ∈ B(Hn)

+
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is given by the set of completely positive trace-preserving mapsS:B(Hn)→
B(Hm). Similarly ask-positive, one can define ak-copositive map. LetT :B(Hn)→
B(Hn) be defined as matrix transposition in a chosen basis forHn, i.e.

(T (A))ij = Aji (6)

on a matrixA ∈ B(Hn). The mapS is k-copositive when idk ⊗ [S ◦ T ] is positive.
A positive linear mapS : B(Hn) → B(Hm) is decomposable if it can be written
as

S = S1 + S2 ◦ T , (7)

where

S1 : B(Hn) → B(Hm) and S2 : B(Hn) → B(Hm)

are completely positive maps andT is matrix transposition relative to some basis.
It has been shown by Woronowicz [9] that all positive linear mapsS : B(H2) →
B(H2) andS : B(H2) → B(H3) are decomposable.

Definition 1. Letρ be a density matrix on a finite-dimensional Hilbert spaceHA ⊗
HB . A state|ψ〉 of the form|ψA〉 ⊗ |ψB〉 is a (pure) product state inHA ⊗ HB .
The density matrixρ is entangled iffρ cannot be written as a nonnegative combi-
nation of pure product states, i.e. there does not exist an ensemble{pi > 0, |ψAi ⊗
ψBi 〉} such that

ρ =
∑
i

pi |ψAi 〉〈ψAi | ⊗ |ψBi 〉〈ψBi |. (8)

Whenρ is not entangled, then the density matrixρ is called separable.

The problem of deciding whether a bipartite density matrixρ on HA ⊗ HB

is entangled can be quite hard. The following theorem by M., P. and R. Horodecki
[2] formulates a necessary and sufficient condition for a density matrixρ to be
entangled:

Theorem 1 (Horodecki).A density matrixρ on HA ⊗ HB is entangled iff there
exists a positive linear mapS : HB → HA such that

(idA ⊗ S) (ρ) (9)

is not positive semidefinite. HereidA denotes the identity map onB(HA).

Remark. An equivalent statement as Theorem 1 holds for positive linear mapsS :
HA → HB and the positivity ofS ⊗ idB .

The consequences of Theorem 1 and Woronowicz’ result are that a bipartite densi-
ty matrixρ onH2 ⊗ H2 andH2 ⊗ H3 is entangled iff(idA ⊗ [S1 + S2 ◦ T ]) (ρ)
is not positive semidefinite for someS1 andS2. SinceS1 andS2 are completely
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positive maps this is equivalent to saying that(idA ⊗ T ) (ρ) is not positive semi-
definite.

The more complicated structure of the positive linear maps in higher-dimen-
sional matrix algebras, namely the existence of indecomposable positive maps, is
reflected in the existence of entangled density matricesρ onHA ⊗ HB for which
(idA ⊗ T ) (ρ) is positive semidefinite.

The first example of such a density matrix onH2 ⊗ H4 andH3 ⊗ H3 was
found by P. Horodecki [10]. In [5] a method was discovered to construct entan-
gled density matricesρ with positive semidefinite(idA ⊗ T ) (ρ) in various dimen-
sions dimHA > 2 and dimHB > 2. The construction was based on the notion of
an unextendible product basis. Let us give the definition.

Definition 2. Let H be a finite-dimensional Hilbert space of the formHA ⊗ HB .
A partial product basis is a setS of mutually orthonormal pure product states span-
ning a proper subspaceHS of H. An unextendible product basis is a partial product
basis whose complementary subspaceH⊥

S contains no product state.

Remark. This definition can be extended to product bases inH = ⊗m
i=1 Hi with

arbitrarym. Note that we restrict ourselves to orthonormal setsS.

With this notion we can construct the following density matrix:

Theorem 2 [5]. Let S be a bipartite unextendible product basis{|αi〉 ⊗ |βi〉}|S|
i=1 in

H = HA ⊗ HB . We define a density matrixρ as

ρ = 1

dimH − |S|

(
idAB −

∑
i

|αi〉〈αi | ⊗ |βi〉〈βi |
)
, (10)

whereidAB is the identity operator onH. The density matrixρ is entangled. Fur-
thermore, the state(idA ⊗ [S1 + T ◦ S2])(ρ) > 0 for all completely positive maps
S1 andS2.

Proof. The density matrixρ is proportional to the projector on the complementary
subspaceH⊥

S . SinceS is unextendible, the subspaceH⊥
S contains no product states.

Therefore the density matrix is entangled. It is not hard to see that(idA ⊗ T )(ρ)

is positive semidefinite. It has been proved in [11] that when(idA ⊗ T )(ρ) is pos-
itive semidefinite then(idA ⊗ [T ◦ S2])(ρ) > 0, whereS2 can be any completely
positive map. Therefore,(idA ⊗ [S1 + T ◦ S2])(ρ) > 0 for all completely positive
mapsS1 andS2. �

We are now ready to present our results relating these density matrices obtained
from the construction in Theorem 2 to indecomposable positive linear maps. We will
need the definition of a maximally entangled pure state:
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Definition 3. Let H = HA ⊗ HB . Let |ψ〉 be a normalized state inH and

ρA,ψ = TrB |ψ〉〈ψ|, (11)

where TrB indicates that the trace is taken with respect to Hilbert spaceHB only.
The state|ψ〉 ∈ H is maximally entangled when

S(ρA,ψ ) = −TrρA,ψ log2 ρA,ψ = log2 min(dimHA,dimHB). (12)

The functionS(ρA,ψ) is the von Neumann entropy of the density matrixρA,ψ .

Remark. For pure states|ψ〉 the von Neumann entropy ofρA,ψ is always less than
or equal tod ≡ log2 min(dimHA,dimHB). For maximally entangled states we
will haveρA,ψ = diag(1/d, . . . ,1/d,0, . . . ,0) so that the maximum von Neumann
entropy, Eq. (12), is achieved. When dimHA = dimHB one can always make an
orthonormal basis forH with maximally entangled states [12].

The following lemma bounds the innerproduct between a maximally entangled
state and any product state.

Lemma 1. LetH = HA ⊗ HB . Let |W〉 ∈ H be a maximally entangled state. Let
d = min(dimHA,dimHB). For all (normalized) product states|φA〉 ⊗ |φB〉,

|〈W|φA〉 ⊗ |φB〉|2 6 1

d
. (13)

Proof. We write the maximally entangled state|W〉 in the Schmidt polar form [13]
as

|W〉 = 1√
d

d∑
i=1

|ai〉 ⊗ |bi〉, (14)

where〈ai |aj 〉 = δij and〈bi |bj 〉 = δij . Thus we can write

|〈W|φA〉 ⊗ |φB〉|2 = 1

d

∣∣∣∣∣
d∑
i=1

〈φA|ai〉〈φB |bi〉
∣∣∣∣∣
2

6 1

d
, (15)

using the Schwarz inequality and
d∑
i=1

|〈φA|ai〉|2 6 1 and
d∑
i=1

|〈φB |bi〉|2 6 1. �

We will also need the following lemma:

Lemma 2. LetS be an unextendible product basis{|αi〉 ⊗ |βi〉}|S|
i=1 in H = HA ⊗

HB . Let

f (|φA〉, |φB〉) =
|S|∑
i=1

|〈φA|αi〉|2|〈φB |βi〉|2. (16)
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The minimum off over all pure states|φA〉 ∈ HA and |φB〉 ∈ HB exists and is
strictly larger than0.

Proof. The set of all pure product states|φA〉 ⊗ |φB〉 onH is a compact set. The
function f is a continuous function on this set. Therefore, if there exists a set of
states|φA〉 ⊗ |φB〉 for which f is arbitrarily small then there would also exist a pair
|φ′
A〉 ⊗ |φ′

B〉 for which f = 0. This contradicts the fact thatS is an unextendible
product basis. �

The following two theorems contain the main result of this paper.

Theorem 3. LetS be an unextendible product basis{|αi〉 ⊗ |βi〉}|S|
i=1 in H = HA ⊗

HB . Letρ be the density matrix

ρ = 1

dimH − |S|


idAB −

|S|∑
i=1

|αi〉〈αi | ⊗ |βi〉〈βi |

 . (17)

Letd = min(dimHA,dimHB). LetH be a Hermitian operator given by

H =
|S|∑
i=1

|αi〉〈αi | ⊗ |βi〉〈βi | − dε|W〉〈W|, (18)

where|W〉 is a maximally entangled state such that

〈W| ρ |W〉 > 0 (19)

and

ε = min|φA〉⊗|φB 〉

|S|∑
i=1

|〈φA|αi〉|2|〈φB |βi〉|2, (20)

where the minimum is taken over all pure states|φA〉 ∈ HA and |φB〉 ∈ HB . For
any unextendible product basisS it is possible to find a maximally entangled state
|W〉 such that Eq.(19) holds. The operatorH has the following properties:

TrH ρ < 0, (21)

and for all product states|φA〉 ⊗ |φB〉 ∈ H,

TrH |φA〉〈φA| ⊗ |φB〉〈φB | > 0. (22)

Proof. Eq. (22) follows from the definition ofε, Eq. (20), and Lemma 1. Consider
Eq. (21). As the density matrixρ is proportional to the projector onH⊥

S , one has

TrH ρ = −dε 〈W| ρ |W〉, (23)

which is strictly smaller than zero by Lemma 2 and the choice of the maximally
entangled state, Eq. (19). When dimHA = dimHB , there exist bases of maximal-
ly entangled states and thus there will be a basis vector|W〉 for which 〈W| ρ |W〉
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is nonzero. In case, say, dimHA > dimHB , the maximally entangled states form
bases of subspacesH′ = H′

A ⊗ HB with H′
A ⊂ HA and dimH′

A = dimHB .
This completes the proof.�

Theorem 4. LetS be an unextendible product basis{|αi〉 ⊗ |βi〉}|S|
i=1 in H = HA ⊗

HB . LetH be defined as in Theorem3, Eq. (18). Choose an orthonormal basis
{|i〉}dimHA

i=1 for HA. LetS : B(HA) → B(HB) be a linear map defined by

S (|i〉〈j |) = 〈i|H |j 〉. (24)

ThenS is positive, but not completely positive. The mapS is indecomposable.

Proof. The relation betweenS andH , Eq. (24), follows from the isomorphism
between Hermitian operators onHA ⊗ HB with the property of Eq. (22) and linear
positive maps, see [2,14]. In particular, iff a HermitianH operator onHA ⊗ HB

has the property of Eq. (22), then the linear mapS : B(HA) → B(HB) defined by

H = (idA ⊗ S)(|W+〉〈W+|), (25)

where|W+〉 is equal to the (unnormalized) maximally entangled state
∑dimHA

i=1 |i〉 ⊗
|i〉, is positive for any choice of the orthonormal basis{|i〉}dimHA

i=1 .
We will show how the density matrixρ derived from the unextendible product

basis, Eq. (17), shows thatS is not completely positive. At the same time we
prove that the assumption thatS is decomposable leads to a contradiction. Note that
Eq. (24) is equivalent to Eq. (25).

Let S∗ : B(HB) → B(HA) be the Hermitian conjugate ofS. We use the defi-
nition of the mapS∗

TrS∗(A∗) B = TrA∗ S(B) (26)

and Eq. (25) to derive that Eq. (21) can be rewritten as

TrH ρ = 〈W+| (idA ⊗ S∗) (ρ)|W+〉 < 0, (27)

ThusS∗ cannot be completely positive and thereforeS itself is not completely
positive. If S were decomposable, thenS∗ would be of the formS1 + T ◦ S2,

whereS1 andS2 are completely positive maps. The density matrixρ is positive
semidefinite under any linear map of the formS1 + T ◦ S2 by Theorem 2. This is
in contradiction with Eq. (27) and thereforeS cannot be decomposable.�

We will now show how one can determine a lower bound on the value ofε,
Eq. (20). Note that when we determine a lower boundε > εmax, then all operators
H , as in Eq. (18) of the form

H =
|S|∑
i=1

|αi〉〈αi | ⊗ |βi〉〈βi | − dµ|W〉〈W|, (28)

whereµ ∈ (0, εmax], correspond to positive maps.
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Let {|αi〉 ⊗ |βi〉}|S|
i=1 be an unextendible product basis inHA ⊗ HB with dA =

dimHA anddB = dimHB . LetSA = {|αi〉}|S|
i=1 andSB = {|βi〉}|S|

i=1. We pick a vec-
tor |φA〉 and order the innerproducts|〈αi |φA〉|2 in an increasing sequence; let us call
themx1 6 x2 6 · · · 6 x|S|. Then we select vectors|αi〉 corresponding to the smallest
innerproducts in this sequence up to the point where the set of selected vectors|αi〉
spans the fulldA-dimensional Hilbert spaceHA. Let us call this setSPA ∈ SA. If we
would take away anyone state fromSPA , the remaining vectors would no longer span
HA. As the vectors in the setSPA spanHA, it must be thatx|SPA | > 0. Let us label

this corresponding vector as|αimax〉, i.e. x|SPA | = |〈αimax|φA〉|2. We now construct a

subset ofSB in the following way; we defineSPB = {|βi〉 | |αi〉 6∈ SPA } ∪ {|βimax〉}.
We note that the vectors in the setSPB span the Hilbert spaceHB ; if not, then there
would exist a vector|φB〉 which is orthogonal to all vectors inSPB anda vector|φA〉
which is orthogonal to all vectors inSPA \ {|αimax〉}, which would in turn imply that
ε = 0, in other words, the setS would be extendible. Let us pick a vector|φB〉 and
denote the innerproducts|〈βi |φB〉|2 with |βi〉 ∈ SPB asy1 6 y2 6 · · · 6 y|SPB |. As the

vectors inSPB spanHB , we know thaty|SPB | > 0 for any state|φB〉. This implies that
for a particular choice of|φA〉 and|φB〉 we can bound∑

i

|〈αi |φA〉|2|〈βi |φB〉|2 > x|SPA | y|SPB |, (29)

the product of the two largest innerproducts of the vectors|φA〉 and|φB〉 with the
vectors fromSPA andSPB , respectively. Thereforeε itself, Eq. (20), can be bounded
as

ε > min
|φA〉→SPA ,|φB 〉→SPB

x|SPA |y|SPB |, (30)

wherex|SPA | denotes the largest innerproduct between|φA〉 and a state in the setSPA
and similarly fory|SPB |. We minimize over|φA〉 → SPA and |φB〉 → SPB , where the

arrow denotes that a state|φA〉 gives rise to a setSPA as in the construction given
above. A setSPA (and similarlySPB ) might not be uniquely defined given the vector
|φA〉, for example when several innerproducts of the state|φA〉 with states|αi〉 are
identical. Since the lowerbound given in Eq. (29) works for all setsSPA andSPB which
are constructed with the method given above, we could do an extra maximization
over SPA and SPB , given the states|φA〉 and |φB〉, but for the sake of clarity this
maximization is omitted in Eq. (30).

We have the following proposition that can be used to boundx|SPA | andy|SPB | given

the setsSPA and SPB :

Proposition 1. Let {|ψi〉}ni=1 be a set of n vectors inH such that the set{|ψi〉}ni=1
spans the Hilbert spaceH. Then for any vector|φ〉 we have
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nmax
i

|〈φ|ψi〉|2 >
∑
i

|〈φ|ψi〉|2 > λmin, (31)

whereλmin is the smallest eigenvalue of the Hermitian matrixP = ∑
i |ψi〉〈ψi |.

Using Proposition 1, we get the following:

ε > min
SPB ,S

P
B

λmin,SPA

|SPA |
λmin,SPB

|SPB | ≡ εmax. (32)

In order to carry out this calculation, we first find all minimal ‘full rank’ subsets
SPA of SA. Then for each of these setsSPA we compute the smallest eigenvalue of∑
i∈SPA |αi〉〈αi |. Also for each setSPA , we construct complementary setsSPB which

contain all the vectors|βi〉 such that|αi〉 6∈ SPA and a single state|βi〉 such|αi〉 ∈ SPA .
For each setSPA there will be|SPA | of such setsSPB . Then for eachSPB we compute
the smallest eigenvalue of

∑
i∈SPB |βi〉〈βi |. Then we can take the minimum over all

these values to obtain a bound onε. Note that this is now a minimization over a
discrete number of values. If the setS has few symmetries and is defined in a high-
dimensional space, the procedure will be cumbersome. In small dimensions or for
unextendible product bases which do have many symmetries, the calculation will be
much simpler. In Section 3 we present two examples of positive maps based on the
construction in Theorem 4 and for one of them we will explicitly compute a lower
bound onε.

3. Examples and discussion

As we have shown the structure of unextendible product bases carries over to
indecomposable positive linear maps. In this section we will list some of the results
that have been obtained about unextendible product bases. We will take two exam-
ples of unextendible product bases and demonstrate the construction of Theorems 3
and 4.
1. In [5] it was shown that there exist no unextendible product bases inH2 ⊗ Hn

for anyn > 2.
2. In [6] it was shown how to parametrizeall possible unextendible product bases in

H3 ⊗ H3 as a six-parameter family.
3. In [6] a family of unextendible product bases, based on quadratic residues, in

Hn ⊗ Hn, wheren is any odd number and 2n− 1 is a prime of the form 4m+ 1
has been found.

4. In [6] a family of unextendible product basesHn ⊗ Hm (m > 2,n > 2) for arb-
itary m /= n as well as evenn = m has been conjectured. The conjecture was
proved inH3 ⊗ Hn andH4 ⊗ H4 (The full conjecture (arbitraryn andm) has
recently been proved by Terhal and DiVincenzo and will be presented in a forth-
coming paper.)
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5. In [6] it was shown that whenS1 andS2 are unextendible product bases onH1
A ⊗

H1
B andH2

A ⊗ H2
B , respectively, then the tensor product of the two sets,S1 ⊗

S2, is again an unextendible product bases on(H1
A ⊗ H2

A)⊗ (H1
B ⊗ H2

B).

Example 1. One of the first examples of an unextendible product basis inH3 ⊗ H3
was the following set of states [5]. Consider five vectors in real three-dimensional
space forming the apex of a regular pentagonal pyramid, the heighth of the pyra-
mid being chosen such that nonadjacent apex vectors are orthogonal. The vectors
are

|vi〉 = N

(
cos

2π i

5
, sin

2π i

5
, h

)
, i = 0, . . . ,4 (33)

with

h = 1

2

√
1 + √

5 and N = 2/

√
5 + √

5.

Then the following five states inH3 ⊗ H3 form an unextendible product basis:

|pi〉 = |vi〉 ⊗ |v2i mod 5〉, i = 0, . . . ,4. (34)

Let ρ be the entangled state derived from this unextendible product basis as in
Eq. (10) Theorem 2. We choose a maximally entangled state|W〉, here named
|W+〉,

|W+〉 = 1√
3
(|00〉 + |11〉 + |22〉). (35)

One can easily compute that

〈W+| ρ |W+〉 = 1

4

(
1 − 7 + √

5

3(3 + √
5)

)
> 0. (36)

Let us now compute a lower bound onε, as in Eq. (32). Due to the high symmetry
of this set of states, we will only need to compute the minimum eigenvalue of the
Hermitian matrix

P1 = |v0〉〈v0| + |v1〉〈v1| + |v2〉〈v2|
and

P2 = |v0〉〈v0| + |v1〉〈v1| + |v3〉〈v3|,
all other subsets of three vectors, either on Bob’s or Alice’s side, correspond to ma-
trices with the same eigenvalues asP1 or P2. Easy computation shows thatP1 has
the smallest eigenvalue which is equal to

λmin = 2 + √
2 − √

10

2
. (37)

Then as the states on Bob’s side are identical, we get
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ε >
λ2

min

9
= 4 + √

2 − √
5 − √

10

9
. (38)

The mapS as defined in Eq. (24) Theorem 4, follows directly:

S(|i〉〈j |) =
4∑
k=0

〈i|vk〉〈vk |j 〉|v2k mod 5〉〈v2k mod 5| − µ|i〉〈j |, (39)

where

µ ∈
(

0,
4 + √

2 − √
5 − √

10

9

]
. (40)

A positive linear mapS : B(Hn) → B(Hm) is unital ifS(idn) = idm. We will
demonstrate thatS is not unital. One can write

S(idA) = TrA H =
4∑
k=0

|v2k mod 5〉〈v2k mod 5| − 3µ TrA|W+〉〈W+|, (41)

which in turn is equal to

S(idA) = diag

(
10

5 + √
5
,

10

5 + √
5
,
√

5

)
− µ idB. (42)

The next example is based on a more general unextendible product basis that was
presented in [6].

Example 2. The states ofS in H3 ⊗ Hn are:

|F 0
k 〉= 1√

n− 2
|0〉 ⊗

(
|1〉 +

n−1∑
l=3

ωk(l−2)|l〉
)
, 1 6 k 6 n− 3, (43)

|F 1
k 〉= 1√

n− 2
|1〉 ⊗

(
|2〉 +

n−1∑
l=3

ωk(l−2)|l〉
)
, 1 6 k 6 n− 3, (44)

|F 2
k 〉= 1√

n− 2
|2〉 ⊗

(
|0〉 +

n−1∑
l=3

ωk(l−2)|l〉
)
, 1 6 k 6 n− 3, (45)

|ψ3〉= 1√
2
(|0〉 − |1〉)⊗ |0〉, (46)

|ψ4〉= 1√
2
(|1〉 − |2〉)⊗ |1〉, (47)

|ψ5〉= 1√
2
(|2〉 − |0〉)⊗ |2〉, (48)

|ψ6〉= 1√
3n

2∑
i=0

n−1∑
j=0

|i〉 ⊗ |j 〉 (49)
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and we haveω = exp(2π i/(n− 2)). Here the states{|k〉}n−1
k=0 form an orthonormal

basis. In total there are 3n− 5 states in the basis. We choose a maximally entangled
state, again we take|W+〉, Eq. (35). One can show that

〈W+| ρ |W+〉 = 1

5

(
1

2
− 1

3n

)
> 0. (50)

The mapS : B(H3) → B(Hn) is given as

S(|i〉〈j |) =
n−3∑
k=1

2∑
p=0

〈i|Fpk 〉〈Fpk |j 〉 +
6∑

p=3

〈i|ψp〉〈ψp |j 〉 − ε |i〉〈j |. (51)

The following questions concerning the positive maps that were introduced in this
paper are left open.
1. Is S always nonunital? We conjecture it is. As we showed, see Eq. (41), the

answer to this question depends on whether

|S|∑
i=1

|βi〉〈βi | ∝ idB, (52)

where the set of states{|βi〉}|S|
i=1 is one side of the unextendible product ba-

sis. The states|βi〉 will span HB but they will not be all orthogonal, nor all
nonorthogonal.

2. It was shown in Theorem 4 that the new indecomposable positive linear maps
S : B(Hm) → B(Hn) are notm-positive, as they are not completely positive.
Are these mapsS k-positive with 1< k < m? The answer to this question will
rely on a better understanding of the structure of unextendible product bases.

3. In [5] a single example was given of a entangled density matrix onH3 ⊗
H4, which stayed positive semidefinite under the action of id3 ⊗ T . The den-
sity matrix was based, not on an unextendible product basis, but on a ‘strong-
ly uncompletable’ product basisS. It could be shown that the Hilbert space
H⊥

S had a product statedeficit, i.e. the number of product states inH⊥
S was

less than dimH⊥
S . It is a open question on how to generalize this example

and whether these kinds of density matrices will give rise to more general
family of indecomposable positive linear maps, see [15,16] for progress in
this direction.
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