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We present a general argument which suggests that the Bartels–Lipatov–Vacca Odderon intercept should
be equal to one to all orders in the perturbation theory. The argument is based on the validity of the
so-called omega-expansion in the high energy limit. It can be further supported by the analogous pattern
observed in the case of the anomalous dimensions which is a consequence of the momentum sum rule. In
addition, we conjecture that the BFKL kernel should satisfy the transverse momentum sum rule. Finally,
it is shown that the higher order kinematical effects do not change the BLV Odderon intercept.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The Odderon is the C-odd partner of the Pomeron, and in QCD
it can be represented as a 3-gluon color singlet state. The small
x evolution for the Odderon was derived long time ago [1–3]. Two
solutions for the intercept of the Odderon are known. The first one,
the Janik–Wosiek solution [4], was obtained from the requirement
of the holomorphic symmetry, which has intercept slightly less
than unity. The second one, which we will call the BLV Odderon
(Bartels–Lipatov–Vacca) [5] has intercept exactly equal to unity
(this was also confirmed later in [6] and [7]). This solution has
a special feature, namely that two out of three gluons are in the
same position in the transverse plane. Since it is C-odd it is found
by selecting odd conformal spins (denoted further by n) from the
spectrum of the leading order BFKL Pomeron eigenvalue [8]. Thus
the Odderon intercept is dominated by n = 1 conformal spin for
which it is exactly equal to unity.

An interesting question arises [9], whether the BLV Odderon in-
tercept still has intercept equal to unity when the higher order
terms are taken into account. The BFKL Pomeron is known to NLLx
order [10–12], and the corrections are numerically large.

For the Odderon the higher order corrections do not have to
be large. Roughly speaking one can argue that, because the anti-
symmetric solution selects the odd conformal spins, the transverse
momentum integrals in the kernel should vanish when integrated
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with the eigenfunctions for which n = 1 and γ = 1/2, where γ is
the conjugated variable to the transverse momentum. More care is
needed when considering the running coupling effects. However, a
recent analysis [13], demonstrated that the BLV Odderon intercept
is not affected by the running coupling corrections.

In this Letter we propose a different argument, which is based
on the assumption of the so-called ω expansion [14,15]. Here ω
is the variable Mellin conjugated to the energy s. This expansion
was used to construct the resummation scheme for the case of
the BFKL Pomeron. The basic statement is that in the high energy
limit, ω is more natural expansion parameter than αs . The lowest
order terms for the kernel eigenvalue in ω and αs expansions are
identical. Then, in the case when the lowest order is vanishing, the
requirement of the existence of such expansion implies that all the
higher orders in αs expansion are vanishing too.

This argument can be further supported by the analysis of the
anomalous dimensions. There, a dual γ expansion can be con-
structed, which is suitable for the resummation in the collinear
regime.1 Since the momentum sum rule forces the anomalous di-
mensions to vanish to all orders when ω → 1, the γ expansion
holds.

We also check that the NLL BFKL kernel vanishes at n = 1 and
γ = 1/2 which is consistent with the ω expansion. We suggest
that the vanishing of the BFKL kernel at this particular point can be
associated with the momentum sum rule for the transverse com-
ponents of the momenta.

1 The duality between anomalous dimensions and eigenvalues was the basis of
another resummation approach [16].
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In the next section we formulate the consistency argument
based on the ω expansion. We conjecture that the BFKL should
satisfy a separate momentum sum rule for the transverse com-
ponents of the momenta. In Section 3 we check that the NLLx
BFKL intercept calculated from [10] vanishes for n = 1 and is thus
consistent with the conjectured transverse momentum sum rule.
Finally in Section 4 we investigate the Odderon eigenvalue with
the pole shifts due to the kinematical constraints and show that
the intercept is still equal to unity, however the diffusion is signif-
icantly reduced.

2. Consistency argument of the ω expansion

We consider the BFKL equation [8] in the ω representation

ωGω

(
kT ,k0

T

) = δ(2)
(
kT ,k0

T

) +
∫

d2k′
T

2π
K (kT ,k′

T )Gω

(
k′

T ,k0
T

)
, (1)

where the integral is over the transverse momentum kT . Here, Gω

is the gluon Green’s function, with ω being the variable Mellin
conjugated to logarithm of the energy. The solution to the above
equation is found by performing Mellin transform in kT where one
finds the condition

ω(n, γ ,αs) = ᾱsχ(γ ,n), (2)

where χ(γ ,n) is the BFKL kernel eigenvalue, n is conformal
weight, and γ is the Mellin variable conjugated to ln kT /k0

T . Strong
coupling is redefined to be ᾱs = αs Nc/π .

The kernel eigenvalue can be expanded in the powers of the
strong coupling

χ(n, γ ) = χ0(n, γ ) +
∑
k�1

ᾱk
s χk(n, γ ), (3)

and using perturbation theory one can find corresponding func-
tions χk(n, γ ) which are independent of ω. Up to now they are
known for k = 0,1.

The concept of the ω expansion [14,15] can be argued as fol-
lows. The Regge limit is defined as the asymptotic limit in which
s � |k2

T | � Λ2, that is the center of mass energy is much larger
(essentially infinite) than the other scales which characterize the
scattering process. The strong coupling though is a parameter
which is not necessarily small in this limit. In that case the con-
vergence of a perturbative series in αs as given by (3) might not
be very fast, which is indeed the case given the size of the NLLx
corrections. This leads to the hypothesis that the parameter which
better characterizes the expansion in the high energy limit is ω,
which should be small in this case.

Therefore one makes the ansatz that the eigenvalue of the ker-
nel in Eq. (1) has the following representation

χ̃ (n, γ ,ω) = χ̃0(n, γ ) +
∑
j�1

ω jχ̃ j(n, γ ,ω = 0), (4)

with

ω = ᾱsχ̃ (n, γ ,ω). (5)

Obviously, the equation above should give the same value for
the resulting intercept. Therefore the two functions χ(n, γ ) and
χ̃ (n, γ ,ω) are both equal to each other and to the intercept. The
difference is that now since the kernel eigenvalue itself depends
on ω one needs to solve the complicated nonlinear equation in
the form (5).

Given the expansion (3) one can obtain the second one (4)
which leads to relation
χ̃ (n, γ ,ω) = χ0(n, γ ) + ω
χ1(n, γ )

χ0(n, γ )

+ ω2 1

χ0(n, γ )

(
χ2(n, γ )

χ0(n, γ )
−

(
χ1(n, γ )

χ0(n, γ )

)2)
+ O

(
ω3), (6)

which is the ω expansion [14,15]. Strictly speaking the above for-
mula is valid for the case of the fixed coupling. It can be general-
ized to include the effects of the running coupling in which case
the series is modified by terms proportional to the β function and
include the differential operator ∂γ .

Additionally we have the lowest order condition, because two
terms in the leading order in both expansions have to coincide
with each other

χ0(n, γ ) ≡ χ̃0(n, γ ). (7)

When going to higher orders in each fixed order in αs we have
corresponding string of terms with different orders in ω, see [14,
15].

As it is clear from (6) this expansion could become invalid
when the eigenvalue χ0(n, γ ) → 0. This is precisely the case for
the BLV Odderon [5] since at the lowest order

ω0 = ᾱsχ0(n = 1, γ = 1/2) = 0.

Therefore, at first sight, this would indicate a complete failure of
the ω expansion argument. There is however a distinct possibility
for the ω expansion to be reliable even in this case, provided the
higher orders vanish too in the following way

χk(n = 1, γ = 1/2) → 0,

χk(n = 1, γ = 1/2)

χ0(n = 1, γ = 1/2)
→ const, (8)

with the solution

ωOdd = ᾱsχ(n = 1, γ = 1/2) = 0,

to all orders. Note, that we cannot have the solution ωOdd �= 0 since
this would imply that the ratios χk

χ0
should depend on ᾱs which is

forbidden by construction.
The situation described above is completely analogous to the

properties of the anomalous dimensions. The momentum sum rule
for the anomalous dimensions in QCD states that

γgg(ω = 1) + 2N f γqg(ω = 1) = 0,

γgq(ω = 1) + γqq(ω = 1) = 0, (9)

order by order in perturbation theory. We can therefore write the
generic perturbative expansions for both combinations of anoma-
lous dimensions

Γ (ω) = Γ0(ω) +
∑
k�1

αk
s Γk(ω), (10)

where the momentum sum rule condition gives

Γ0(1) = Γk(1) = 0,

for all k. Here, Γ (ω) denotes one of the combinations, or it can
be also the n f = 0 part of the γgg . Since the anomalous dimen-
sions are suitable for the description of the collinear limit, which
is γ → 0, one can introduce the dual γ expansion which reads2

2 Strictly speaking, we are considering here fixed coupling, like in the N = 4 SYM
case, but the arguments can be generalized to running coupling.
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Γ̃ (ω,γ ) = Γ̃0(ω) +
∑
k�1

γ jΓ̃ j(ω). (11)

The corresponding anomalous dimension can be found from the
nonlinear equation3

γ = αsΓ̃ (ω,γ ).

The lowest order condition reads then

Γ0(ω) = Γ̃0(ω).

One can then relate the coefficients in both expansions to obtain
the analog of the expansion (6)

Γ̃ (ω,γ ) = Γ0(ω) + γ
Γ1(ω)

Γ0(ω)

+ γ 2 1

Γ0(ω)

(
Γ2(ω)

Γ0(ω)
−

(
Γ1(ω)

Γ0(ω)

)2)
+ O

(
γ 3). (12)

We see immediately that one encounters exactly the same pattern.
When the lowest order vanishes Γ0(1) = 0, the existence of the
γ expansion (11), (12) implies that Γk(1) = 0 for all k and thus
Γ̃ (1,0) = 0. We see that the assumption about the γ expansion is
consistent, because we know that all the higher order coefficients
have to vanish, due to the momentum sum rule.

Therefore, strictly following this logic, we are led to the conclu-
sion that, the validity of the ω expansion for the kernel eigenvalue
in the case of the vanishing lowest order imposes strong constraint
that the higher orders should automatically vanish too.

This would imply that the Odderon intercept is equal to unity
in each order of the perturbation theory.

In fact, the vanishing of the Odderon solution eigenvalue is
most probably also related to the very same momentum sum rule
constraint. As we know, in the infinite coupling limit the Pomeron
trajectory coincides with the graviton in AdS5. This is manifested
by the fact that the intercept becomes 2 in this limit, or ω = 1 cor-
respondingly. As was demonstrated in [20] this is also related to
the momentum sum rule condition. For the Odderon case it seems
though that the conformal weights n and spin ω are shifted by
+1 and −1 correspondingly within the same eigenvalue function
as the Pomeron. Unlike the Pomeron case though, the intercept
seems to stay equal to 1 for all values of the coupling.

Considering the arguments above, we are led to the conjecture
that the BFKL equation also satisfies the momentum sum rule in
analogy with the anomalous dimensions. The momentum sum rule
for the BFKL is, however, valid for the transverse components of
the momenta, whereas the momentum sum rule for the anoma-
lous dimensions is valid for the longitudinal parts of the momenta.

For the case of the anomalous dimensions we have that

1∫
0

dx xω=1(P gg(x) + 2N f Pqg(x)
) = 0, (13)

which is of course equivalent to the first equation in (9).
For the BFKL equation we should have the analogous condition

which can be represented as

χ(n = 1, γ = 1/2) =
∫

d2q
k

q
eiφ K (k,q) = 0. (14)

The fact that this equation holds at NLL in BFKL was first noted
in [21]. The physical interpretation of this statement is quite clear.
In the case of the collinear approximation, the standard integrated
parton densities satisfy the longitudinal momentum sum rule. The

3 This procedure was developed in [18,19].
sum over the longitudinal momenta in the parton densities is
constant, independent of the Q 2 evolution. The DGLAP evolution
equations can only redistribute the longitudinal momenta but can-
not change the longitudinal momentum sum rule constraint. In the
BFKL case the evolution is in x and the dynamics in the transverse
momenta is non-trivial. The transverse momenta can be redis-
tributed in the BFKL evolution but the overall sum is unchanged
which can be expressed in the following condition

∂

∂ ln 1/x

∫
d2k

k2
kG(x,k) = 0, (15)

where G is the kT unintegrated gluon density.

3. NLLx with n = 1 conformal spin

The ω expansion hypothesis can be tested by looking into the
explicit result for the NLLx eigenvalue at n = 1 which was calcu-
lated in [10,11] and recently in [17]. We note, that the eigenvalue
obtained there is for the case of the Pomeron and the explicit ver-
ification for the case of the Odderon still needs to be performed.
The NNLx eigenvalue from [11] for all conformal weights reads

∫
d2q

(
q

k

)γ −1

einφ K (k,q) = ᾱs
[
χ0(n, γ ) + ᾱsχ1(n, γ )

]
,

4χ1(n, γ ) = −b

2

[
χ ′

0(n, γ ) + χ2(n, γ )
]

+
(

67

9
− π2

3
− 10

9

n f

N3
c

)
χ0(n, γ )

+ 6ζ(3) − χ ′′
0 (n, γ ) + F (n, γ )

− 2Φ(n, γ ) − 2Φ(n,1 − γ ), (16)

where

Φ(n, γ )

=
1∫

0

dt

1 + t
tγ −1+ n

2

{
π2

12
− 1

2
ψ ′

(
1 + n

2

)
− Li2(t) − Li2(−t)

− ln t

(
ψ(1 + n) − ψ(1) + ln(1 + t) +

∞∑
k=1

(−t)k

k + n

)

−
∞∑

k=1

tk

(k + n)2

[
1 − (−1)k]}, (17)

and the non-analytic part of the kernel is defined

F (n, γ ) = δ0n F1 + δ2n F2

with functions F1, F2 defined in [11]. The non-analytic part is ob-
viously zero for n = 1. For n = 1 the sums in (17) can be performed
explicitly and yield

∞∑
k=1

(−t)k

k + 1
= 1

t

(−t + ln(1 + t)
)
, (18)

and

∞∑
k=1

tk

(k + 1)2

[
1 − (−1)k] = 1

t

(
Li2(t) + Li2(−t)

)
. (19)

Using above expressions one can recast (17) for n = 1 into the form
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Fig. 1. Left: the LLx eigenvalue with n = 1 (dashed blue curve) as compared to the NLLx eigenvalue (dotted red). The sum of LLx and NLLx is solid black curve. αs Nc/π = 0.2
and b = 0 (fixed coupling case). Right: the same for the running coupling case. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this Letter.)
Φ(1, γ )

= − 1

6(−1 + 2γ )3

[
48 − 24ψ(1)(1 − 2γ ) + π2(1 − 2γ )2

+ 24(1 − 2γ )ψ

(
1

2
+ γ

)
− 3(1 − 2γ )2ψ1

(
−1

4
+ γ

2

)

+ 3(1 − 2γ )2ψ1

(
1

4
+ γ

2

)]
. (20)

Investigating expression (16) we immediately see that the terms
proportional to b and χ0 vanish at n = 1, γ = 1

2 , whereas from

(20) we have that Φ(1, γ = 1
2 ) = ζ(3)

2 . The second derivative is
χ ′′

0 (1,1/2) = 4ζ(3) and the whole next-to-leading correction van-
ishes

χ1(n = 1, γ = 1/2) = 0,

which is consistent with the ω expansion hypothesis. This results
was first noted in [21] where it was also shown numerically that
the BFKL expansion for the higher conformal spins is better con-
vergent.

We illustrate the χ1(n = 1, γ ) together with χ0(n = 1, γ ) in
Fig. 1 for ᾱs = 0.2. The eigenvalue is asymmetric due to the terms
proportional to b. A characteristic feature of the eigenvalue is the
fact that the diffusion becomes very small when NLL corrections
are included.

4. Odderon with kinematical constraints

As an example of the application of the ω expansion we will
investigate what happens to the kernel eigenvalue and the inter-
cept in the case when we include the shifts of the collinear poles
in the kernel eigenvalue for n = 1 case. The shifts originate from
the kinematical constraint [22,23] and are an important ingredient
of the resummation procedure at small x. We will call this case the
Odderon with the kinematical constraints. As we will see shortly
this type of resummation does not affect the Odderon intercept. It
was also pointed out in [24] that the collinear resummation mostly
affects the azimuthal averaged BFKL kernel. Therefore one can ar-
gue that since the Odderon is related to the odd conformal spin
sector of BFKL it is natural to expect that the collinear resumma-
tion will not affect significantly the intercept. We note however
that the diffusion coefficient changes substantially when including
the shifts of the poles.

Let us take the following kernel
χ̃ (n = 1, γ ,ω) = 2ψ(1) − ψ

(
γ + 1

2
+ ω

2

)

− ψ

(
1 − γ + 1

2
+ ω

2

)
, (21)

which for ω = 0 reduces to the leading order BLV Odderon kernel

χ0(n = 1, γ ) = χ̃ (n = 1, γ ,ω = 0).

It is clear that the shifts do not change the value of the intercept
in this case

ω0 = ᾱsχ0

(
n = 1, γ = 1

2

)

= ᾱsχ̃

(
n = 1, γ = 1

2
,ω = 0

)
= 0. (22)

The expansion in powers of ω proceeds as follows

ω = ᾱsχ̃ (1, γ ,ω)

= ᾱsχ̃
(0)
0 (1, γ ,0) + ᾱsωχ̃

(1)
0 (1, γ ,0)

+ ᾱsω
2χ̃

(2)
0 (1, γ ,0) + · · · , (23)

where

χ̃ (k)(1, γ ,0) = 1

k!
∂kχ̃ (1, γ ,ω)

∂ωk

∣∣∣∣
ω=0

.

The second order in αs reads then

ω1(γ ) = ᾱsχ̃
(0)
0 + ᾱ2

s χ̃
(0)
0 χ̃

(1)
0 , (24)

where we dropped the explicit arguments. The third order in ᾱs

can be obtained via next iteration and is equal

ω2(γ ) = ᾱsχ̃
(0)
0 + ᾱ2

s χ̃
(0)
0 χ̃

(1)
0 + ᾱ3

s

(
χ̃

(0)
0

)2
χ̃

(2)
0

+ ᾱ3
s χ̃

(0)
0

(
χ̃

(1)
0

)2
. (25)

Clearly at each order of αs the solution to the intercept is again
zero, since in (24) and (25) all the coefficients are proportional to
χ̃

(0)
0 which vanishes when γ = 1/2. On the other hand, the dif-

fusion coefficient receives non-trivial correction due to the shifts.
Using (24) and (25) we can write down the expansion for the dif-
fusion

D = ᾱs D0 + ᾱ2
s D1 + ᾱ3

s D2 + · · · ,
with the first three coefficients equal

D0 = −ψ2(1), D1 = ψ2(1)
π2

, D2 = −ψ2(1)
π4

,

6 36
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Fig. 2. Left: the LLx eigenvalue with n = 1 (dashed blue curve) as compared to the resummed eigenvalue obtained from solution to eigenvalue equation with Eq. (21) (black
solid curve) for αs Nc/π = 0.2. Right: the same for αs Nc/π = 1.0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this Letter.)
where ψ2(1) = −2ζ(3).
We have solved the implicit equation (5) for ω with the mod-

ified kernel eigenvalue (21) numerically. The effective eigenvalue
as a function of γ is shown in Fig. 2 together with the leading
order result. We have chosen two values of the coupling: small
αs Nc/π = 0.2 (left panel) and large αs Nc/π = 1.0 (right panel). As
expected, the zero value at γ = 1/2 is the same, while the shape
of the eigenvalue is affected quantitatively.

The resummed second derivative is again much smaller than
in the LLx case. We have checked that the second derivative in the
shifted case saturates at the limit of about 2.8 for very large values
of the coupling constant.

Summary

We have constructed a general argument, based on the validity
of the ω expansion that if the leading order eigenvalue vanishes,
then it implies that the higher order terms automatically vanish
too. This is strongly supported by the analogous pattern observed
for the anomalous dimensions which in the latter case is just an
obvious consequence of the momentum sum rule.

This fact strongly suggests that the BLV Odderon intercept is
unchanged in the higher orders of perturbation theory. We do
stress however, that for this to be firmly established, an explicit
evaluation of the Odderon in the NLLx is necessary.

The χ1(1, γ ) coefficient vanishes in the case of the calculations
performed in momentum space, which is consistent with the ω
expansion and the antisymmetry requirement. Based on the anal-
ogy with the anomalous dimensions we conjectured that the BFKL
equation should also satisfy the momentum sum rule for the trans-
verse momenta.

We have also analyzed the modification of the lowest order
Odderon kernel eigenvalue due to the shifts of poles, which orig-
inate from the kinematical effects. We found that the eigenvalue
is still zero and that the diffusion is significantly reduced with re-
spect to the lowest order case.
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