
Physics Letters B 693 (2010) 36–43

View metadata, citation and similar pa
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Inclusive decays of ηb into S- and P -wave charmonium states

Zhi-Guo He a,b,∗, Bai-Qing Li c

a Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918(4), Beijing, 100049, China
b Theoretical Physics Center for Science Facilities, Beijing, 100049, China
c Department of Physics, Huzhou Teachers College, Huzhou, 313000, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 December 2009
Received in revised form 30 July 2010
Accepted 6 August 2010
Available online 11 August 2010
Editor: B. Grinstein

Keywords:
Color-octet
Heavy quarkonium
Decay
Production

Inclusive S- and P -wave charmonium productions in the bottomonium ground state ηb decay are
calculated at the leading order in the strong coupling constant αs and quarkonium internal relative
velocity v in the framework of the NRQCD factorization approach. We find the contribution of ηb →
χc J + gg followed by χc J → J/ψ +γ is also very important to inclusive J/ψ production in the ηb decays,
which maybe helpful to the investigation of the color-octet mechanism in the inclusive J/ψ production
in the ηb decays in the forthcoming LHCb and SuperB. As a complementary work, we also study the
inclusive production of ηc , and χc J in the ηb decays, which may help us understand the X(3940) and
X(3872) states.

© 2010 Elsevier B.V.

1. Introduction

The existence of the spin-singlet state ηb , which is the ground state of bb̄ system, is a solid prediction of the non-relativistic quark
model. Since the discovery of its spin-triplet partner Υ , people have make great efforts to search for it in various experimental environ-
ments, such as in e+e− collisions at CLEO [1], in γ γ collisions at LEP II [2] and in pp̄ collisions at Tevatron [3]. Unfortunately, no evident
signal was seen in these attempts. Recently, a significant progress has been achieved by the BaBar Collaboration. After analyzing about 108

data samples, they observed ηb in the photon spectrum of Υ (3S) → γ ηb [4] with a signal of 10σ significance. They found the hyperfine
Υ (1S)–ηb mass splitting is 71.4+2.3

−3.1(stat) ± 2.7(syst) MeV. Soon after, another group in BaBar observed that Υ (2S) → γ ηb [5], and they

determined the mass splitting to be 67.4+4.8
−4.6(stat) ± 2.0(syst) MeV. The ηb state has also been observed by the CLEO Collaboration in

Υ (3S) radiative decay, and their measurement of the hyperfine mass splitting is 68.5 ± 6.6 ± 2.0 MeV [6].
On the theoretical side, many works have been done to study its properties. The mass of ηb has been predicted with potential

model [7], effective theory [8] and Lattice QCD [9]. Furthermore, the recent determinations of Υ (1S)–ηb mass splitting in the range
of 40–60 MeV [10–13] are consistent with BaBar’s results. Aside from its mass, the production and decay properties of ηb have also been
considered. The number of ηb produced in e+e− → γ +ηb at B-factories [14] is found to exceed that produced at LEP II by about an order
of magnitude. In Ref. [15], the authors calculated the production rates of ηb at Tevatron Run II and suggested detecting it through the
decay of ηb → J/ψ J/ψ , while the authors in Ref. [16] thought that the double J/ψ channel might be overestimated and suggested that
the ηb → D∗D(∗) channel is the most promising channels. An explicit calculation of ηb → J/ψ J/ψ at NLO in v2 [17] and NLO in αs [18]
shows that this branching fraction is on the order of 10−8, which is about four orders of magnitude smaller than that given in Ref. [15].
Furthermore, the author in Ref. [19] argued the effect of final state interactions in ηb → D D̄∗ → J/ψ J/ψ was also important. Some other
exclusive decay modes, such as ηb → γ J/ψ [20,21] and ηb decays into double charmonia [22] and inclusive decays, e.g. ηb → cc̄cc̄ [16]
and ηb → J/ψ + X [23] have also been taken into account.

However, compared to the cc̄ 1 S0 state ηc , our knowledge about ηb is quite limited and further work is necessary. In this Letter, we
will systemically study the inclusive decays of ηb into S- and P -wave charmonium states. The motivations of this work are fourfold.
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First, in these processes, the typical energy scale mb in the initial state and mc in the final state are both much larger than the QCD
scale ΛQCD ,1 [24], so we can calculate the decay widths perturbatively and the non-perturbative effect plays a minor role, which will
reduce the theoretical uncertainties. Second, the branching fraction of the inclusive decay process is much larger than that of the ex-
clusive process, which makes testing the theoretical prediction for the inclusive process more feasible. Third, in Ref. [23], the authors
calculated the branching ratio of ηb → J/ψ + X and found that the contribution of the color-octet process ηb → cc̄(3 S[8]

1 ) + g is larger
than that of the color-singlet process by about an order of magnitude. Because the color-octet process can also contribute to P -wave
states χc J production, in which the χc1 and χc2 have about 36% and 20% branching ratio to J/ψ + γ , respectively, we expect that the
contribution of ηb → χc J + X process followed by χc J → J/ψ + γ might also be important for inclusive J/ψ production in ηb decay.
Fourth, in recent years, many charmonium or charmonium-like states have been found at B-factories (see Refs. [25–27] for a review).
In the forthcoming LHCb and Super-B, with enough data, it might be possible to observe the interesting decay of ηb to X(3940) or
X(3872), etc.

The J/ψ inclusive production has already been studied in Ref. [23], and the J/ψ(ηc,χc J ) production in association with cc̄ pair has
been discussed in our previous work [28]. Here we are going to consider the contribution of the ηb → ηc(χc J ) + gg process in the
non-relativistic limit at leading order in αs .

2. NRQCD factorization formalism

Due to the non-relativistic nature of bb̄ and cc̄ systems, we adopt the non-relativistic QCD (NRQCD) effective theory [29] to calculate
the inclusive decay widths of ηb to charmonium states. In NRQCD, the inclusive decay and production of heavy quarkonium are factorized
into the product of the short distance coefficient and the corresponding long distance matrix element. The short distance coefficient can be
calculated perturbatively through the expansion of the QCD coupling constant αs . The non-perturbative matrix element, which describes
the possibility of the Q Q̄ pair transforming into the bound state, is weighted by the relative velocity v Q of the heavy quarks in the heavy
meson rest frame.

In the framework of NRQCD, at leading order in vb and vc , for the S-wave heavy quarkonium production and decay, only the Q Q̄ pair
in color-singlet contributes. For P -wave χc J production, the color-singlet P -wave matrix elements and color-octet S-wave matrix element
are both in the same order of vc . Then, the factorization formulas for the processes considered in this work are given by:

Γ (ηb → ηc + gg) = Γ̂
(
bb̄

(1 S[1]
0

) → cc̄
(1 S[1]

0

) + X
)〈ηb|Ob

(1 S[1]
0

)|ηb〉
〈

Oηc
c

(1 S[1]
0

)〉
, (1a)

Γ (ηb → χc J + X) = Γ̂1
(
bb̄

(1 S[1]
0

) → cc̄
(3 P [1]

J

) + X
)〈ηb|Ob

(1 S[1]
0

)|ηb〉
〈

Oχc J
c

(3 P [1]
J

)〉
+ Γ̂8

(
bb̄

(1 S0
) → cc̄

(3 S[8]
1

) + X
)〈ηb|Ob

(1 S[1]
0

)|ηb〉
〈

Oχc J
c

(3 S[8]
1

)〉
, (1b)

where the Γ̂ s are the short-distance factors and 〈ηb|Ob(
1 S[1]

0 )|ηb〉, 〈Oηc
c (1 S[1]

0 )〉, 〈Oχc J
c (3 P [1]

J )〉 and 〈Oχc J
c (3 S[8]

1 )〉 are the long-distance
matrix elements. During our calculation of the short distance coefficients associated with the P -wave color-singlet matrix elements, the
infrared divergence will appear. This divergence will be absorbed into the color-octet matrix element 〈Oχc J

c (3 S[8]
1 )〉.

3. ηb → ηc + gg

We first consider the S-wave ηc production from ηb decay. At leading order in αs , there are eight Feynman diagrams for bb̄(1 S[1]
0 ) →

cc̄(1 S[1]
0 ) + gg . A typical diagram is shown in Fig. 1a. The general form of the short distance coefficient can be expressed as:

Γ̂
(
bb̄

(1 S[1]
0

) → cc̄
(1 S[1]

0

) + gg
) = α4

s

m5
b

f (r), (2)

where r = mc/mb is a dimensionless parameter. Because there is no infrared divergence, we calculate f (r) directly using the standard
covariant projection technique [30]. Given mb = 4.65 GeV and mc = 1.5 GeV, we get f (r) = 23.1. In Table 1, we also list the numerical
results of f (r) for different choices of r. The lower and upper boundaries of r are obtained by keeping mb constant and setting mc =
1.3 GeV and mc = 1.8 GeV, respectively. In NRQCD, up to the v4 order, the relations between the color-singlet matrix elements and the
non-relativistic wave functions are2:

〈ηb|Ob
(1 S[1]

0

)|ηb〉 = 1

4π

∣∣Rb
1S(0)

∣∣2(
1 + O

(
v4

b

))
,

〈
Oηc

c
(1 S[1]

0

)〉 = 1

4π

∣∣Rc
1S(0)

∣∣2(
1 + O

(
v4

c

))
. (3)

To compare with our previous work, we choose the same numerical values of mb = 4.65 GeV, mc = 1.5 GeV, αs = 0.22, |Rc
1S(0)|2 =

0.81 GeV3, and |Rb
1S(0)|2 = 6.477 GeV3 [31]. Then we get

Γ (ηb → ηc + gg) = 0.83 keV. (4)

The total width of ηb is estimated by using the two gluon decay, which at leading order in αs and vb is read to be:

ΓTotal ≈ Γ (ηb → gg) = 2α2
s

3m2
b

∣∣Rb
1S(0)

∣∣2 = 9.67 MeV. (5)

1 Strictly, the assumption of mc � ΛQCD is only reasonably good.
2 For the color-singlet four-fermion operators, there is an additional 1

2N factor compared to those in Ref. [29].

c
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Fig. 1. Typical Feynman diagrams for the short distance process: (a) bb̄[1 S0,1] → cc̄[1 S[1]
0 (3 P [1]

J )] + gg; and (b) bb̄[1 S0,1] → cc̄[3 S[8]
1 ] + g .

Fig. 2. The scaled energy distribution of ηc for the ηb → ηc + gg process.

Table 1
The values of f (r) for ηb → ηc + gg with different inputs of r = mc

mb
.

r 0.280 0.301 0.323 0.344 0.366 0.387

f (r) 39.1 29.9 23.1 18.0 14.1 11.1

In our previous work, we obtained Γ (ηb → ηc + cc̄) ≈ 0.27 keV [28]. Thus, the branching ratio of inclusive decay of ηb into ηc is

Br(ηb → ηc + X) ≈ 1.1 × 10−4, (6)

in which the contribution of gg process is about 3 times larger than that of the cc̄ process. The re-scaled energy distribution curve dΓ/dx1
for ηb → ηc + X is shown in Fig. 2, where x1 is the ratio of ηc energy Eηc to mb .

Recently the X(3940) state was observed by the Belle Collaboration in the recoiling spectrum of J/ψ in e+e− annihilation [32]. It is
most likely to be a ηc(3S) state [33]. In the non-relativistic limit, the only difference between ηc and ηc(3S) is the value of wave function.
If X(3940) is the ηc(3S) state, we predict the branching ratio of X(3940) production in ηb decay to be

Br
(
ηb → X(3940) + X

) � 0.62 × 10−4. (7)

To obtain the prediction, we have chosen |Rc
3S (0)|2 = 0.455 GeV3 [31] to take the place of |Rc

1S (0)|2 = 0.81 GeV3.

4. ηb → χc J + gg

As mentioned above, the color-singlet short distance coefficients are infrared divergent in the full QCD calculation. We adopt the di-
mensional regularization scheme to regularize the divergence. To absorb the divergence into the color-octet matrix elements 〈Oχc J

c (3 S[8]
1 )〉,

it is necessary to calculate the color-octet short distance coefficient in D = 4 − 2ε dimensions. The bb̄(1 S[1]
0 ) → cc̄(3 S[8]

1 ) + g process in-
cludes two Feynman diagrams, one of which is shown in Fig. 1b. Using the D dimension spin projector expression [34], at leading order
in αs , the short distance factor is given by

Γ̂
(
bb̄

(1 S0
) → cc̄

(3 S[8]
1

) + g
) = (4παs)

3μ6ε

24m5
br3

Φ2
(D − 2)(D − 3)

(D − 1)
, (8)

where

Φ2 =
(

π

m2

)ε
Γ (1 − ε)(1 − r2)

8πΓ (2 − 2ε)
(9)
b
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is the 2-body phase space in D dimensions.
The calculation of the color-singlet coefficient in full QCD is a little more complicated. The Feynman diagrams for bb̄(1 S[1]

0 )(P ) →
cc̄(3 P [1]

J )(p1) + g(p2)g(p3) are the same as those for the ηc production process. Such 1 → 3 processes can be described by the following
invariants:

xi = 2P · pi

M2
,

∑
i

xi = 2, (10)

where M = 2mb . In D = 4 − 2ε dimensions, the three-body phase space is given by

dΦ(3) = K
(
(a1 + a2 − x2)(x2 + a1 − a2)

)−ε(
1 + r2 − x1

)−ε
δ(2 − x1 − x2 − x3)dx1 dx2 dx3, (11)

where

r = mc

mb
, a1 =

√
x2

1 − 4r2
/

2, a2 = (2 − x1)/2, K = π2εm2−4ε
b

32π3Γ (2 − 2ε)
. (12)

The parton level process bb̄(1 S[1]
0 ) → cc̄(3 P [1]

J ) + gg includes eight Feynman diagrams; a typical diagram is shown in Fig. 1a. The eight
diagrams can be divided into two groups according to which gluon, p2 or p3, is attached to the charm quark line. The total amplitude
of the four diagrams with p2 gluon on the charm quark line, like the diagram in Fig. 1a, is denoted by M2, and the total amplitude
of the four diagrams with p3 gluon on the charm quark line is denoted by M3 similarly. Then, the total amplitude M = M2 + M3 and
|M|2 = |M2|2 + |M3|2 + 2 Re(M∗

2 M3).
As illustrated in Ref. [29], for the P -wave case when pi (i = 2,3) goes to zero, there will be singularities in Mi . However, due to the

four-momentum conservation, p2 and p3 cannot be soft simultaneously in the phase space. Therefore, the integration of the interference
term 2 Re(M∗

2 M3) is finite. We could perform it in 4 dimensions directly. Because of the symmetry of the two gluons, the phase space

integration results for |M2|2 and |M3|2 are equal to each other, and we only need to calculate one of them. The total Γ̂1 could then be
written as

Γ̂1 = 2Γ̂M2 + Γ̂Int, (13)

where Γ̂M2 and Γ̂Int are the contributions related to |M2|2 and 2 Re(M∗
2 M3), respectively.

We now present how we calculate Γ̂M2 in detail. The denominator of the charm-quark propagator in Fig. 1a is

(p2 − pc̄)
2 − m2

c = −2p2 · pc̄|qc=0 ∝ (
1 + r2 − x1 − x2

)
, (14)

where pc̄ = p1
2 − qc is the momentum of the anti-charm quark and qc is the relative momentum of c and c̄. When cc̄ is in P -wave

configuration, we need to know the first derivative of the amplitude with respect to qc . Then in the non-relativistic limit, three kinds of
the divergences in |M2|2 exist that are proportional to

xn−2
2

(1 + r2 − x1 − x2)n
(n = 2,3,4). (15)

These terms, diverging at point (x1, x2) = (1 + r2,0), are not easily to be integrated out. We introduce two new variables (x′
1, x′

2), defined
by

x′
1 = x1, x′

2 = 1 − 1 + r2 − x1

x2
. (16)

In the variables x′
1 and x′

2, the phase space is re-expressed as:

dΦ(3) = π2εm2−4ε
b

32π3Γ (2 − 2ε)

1+r2∫
2r

dx′
1

1−(a′
2−a′

1)∫
1−(a′

2+a′
1)

dx′
2

(1 − x′
2)

2

(
1 + r2 − x′

1

)1−2ε
((

a′
1 + a′

2 − x̄
)( 1

1 − x′
2

− 1

a′
1 + a′

2

))−ε

, (17)

where a′
1 =

√
x′ 2

1 −4r2

2 , a′
2 = (2−x′

1)

2 and x̄ = 1+r2−x′
1

1−x′
2

. And the three divergence structures are changed to be

1

x′n
2

(1 − x′
2)

2

(1 + r2 − x′
1)

2
(n = 2,3,4) (18)

respectively, which are all proportional to 1
(1+r2−x′

1)2 . Then, |M2|2 could be expanded as

|M2|2 = f1(1 + r2, x′
2, ε)

(1 + r2 − x′
1)

2
+ f2

(
x′

1, x′
2, ε

)
. (19)

Accordingly,

Γ̂M2 = Γ̂ div
M + Γ̂ fin

M , (20)

2 2
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where Γ̂ fin
M2

is finite and can be calculated in D = 4 dimensions. The phase space integration of the first term in Eq. (19) is expressed as

∫
dΦ(3)

f1(1 + r2, x′
2, ε)

(1 + r2 − x′
1)

2
= K

1+r2∫
2r

dx′
1 g(x′

1, ε)

(1 + r2 − x′
1)

1+2ε
, (21)

where

g
(
x′

1, ε
) =

1−(a′
2−a′

1)∫
1−(a′

1+a′
2)

f1(1 + r2, x′
2, ε)

(1 − x′
2)

2

((
a′

1 + a′
2 − x̄

)( 1

1 − x′
2

− 1

a′
1 + a′

2

))−ε

dx′
2. (22)

Furthermore, the integrals in Eq. (21) can be written as the sum of two terms defined by:

1+r2∫
2r

dx′
1 g(x′

1, ε)

(1 + r2 − x′
1)

1+2ε
≡

1+r2∫
2r

dx′
1 g(1 + r2, ε)

(1 + r2 − x′
1)

1+2ε
+

1+r2∫
2r

dx′
1 (g(x′

1, ε) − g(1 + r2, ε))

(1 + r2 − x′
1)

1+2ε
. (23)

The first term on the right side includes 1
ε pole, and the second term is finite. Therefore, we only need to keep the O(ε) contribution

when calculating g(1 + r2, ε), and the second term can be evaluated directly by setting ε = 0.
Putting Eqs. (11) and (16) together, we get

Γ̂1 = 2
(
Γ̂ div

M2
+ Γ̂ fin

M2

) + Γ̂Int. (24)

Γ̂ div
M2

is calculated analytically, and Γ̂ fin
M2

and Γ̂Int are calculated numerically. For J = 0,1,2, the divergence parts in Γ̂ div
M2

are the same,

which will be absorbed into the color-octet matrix element. Then, the results of Γ̂ div
M2

for different J are given by

Γ̂ div
M2

= 128(−1 + r2)C A C F (αsπμ2ε)4 K

81m9
br5ε

+ B J , (25)

where

B0 = 64C A C F π
4α4

s K (4 − 4r6 + 24(1 − r2(3 − 3r2 + r4)) log(1 − r2) + 12(1 + r6) log(r))

243m9
br5(−1 + r2)

2
, (26a)

B1 = 128C A C F π
4α4

s K (2 − 9r2 + 9r4 − 2r6 + 3(2 − 3r2 − 3r4 + 2r6) log(r) + 12(1 − 3r2 + 3r4 − r6) log(1 − r2))

243m9
br5(−1 + r2)

2
, (26b)

B2 = 128C A C F π
4α4

s K (10 − 27r2 + 27r4 − 10r6 + 3(10 − 9r2 − 9r4 + 10r6) log(r) − 60(−1 + r2)
3

log(1 − r2))

1215m9
br5(−1 + r2)2

. (26c)

The C A = 3 and C F = 4/3 in the above equations are the color factors. And the finite part 2Γ̂ fin
M2

+ Γ̂Int can be expressed by

2Γ̂ fin
M2

+ Γ̂Int = α4
s

m7
b

A J (r) (for J = 0,1,2). (27)

When r = 1.5/4.65, we obtain A0(r) � −9.71 × 102, A1(r) � −2.66 × 102 and A2(r) � −6.06 × 102. The results of A J (r) for r varying from
0.323 to 0.376 are shown in Fig. 3. The lower and upper boundaries of r are obtained by choosing mc = m J/ψ

2 � 1.5 GeV and 1.75 GeV,

which is approximately the c.o.g. (center of gravity) mass of χc J states, respectively and fixing mb = mηb
2 � 4.65 GeV.

To cancel the infrared divergence of Γ̂ div
M2

, we also need to take into account the renormalization of 〈Oχc J
c (3 S[8]

1 )〉. In the M S scheme,
it is given by [29,34]

〈
Oχc J

c
(3 S[8]

1

)〉(Λ) = 〈
Oχc J

c
(3 S[8]

1

)〉(Born) − 4αsC F

3πm2
c

(
1

ε
+ log 4π − γE

)(
μ

μΛ

)2ε 2∑
J=0

〈
Oχc J

c
(3 P [1]

J

)〉
. (28)

Combining the results of Eqs. (1b), (8), (25), (26), (27), (28), we finally obtain the infrared-safe expressions for inclusive decay of ηb
into χc J ( J = 0,1,2) states

Γ (ηb → χc J + X) = Γ
J

8 + Γ
J

1 , (29)

where Γ
J

8 is

2π2α3
s (1 − r2)

9m5r3
〈ηb|Ob

(1 S[1]
0

)|ηb〉
〈

Oχc J
c

(3 S[8]
1

)〉
, (30)
b



Z.-G. He, B.-Q. Li / Physics Letters B 693 (2010) 36–43 41
Fig. 3. The results of A J (r) defined in Eq. (23) as function of r = mc
mb

. The solid line is for J = 0 case; the dashed line is 3 times A1(r) and the dotted line is for J = 2 case.

and Γ
J

1 are

Γ 0
1 = 8πα4

s 〈ηb|Ob(
1 S[1]

0 )|ηb〉〈Oχc J
c (3 P [1]

0 )〉
243m7

br5(1 − r2)2

(
12

(
r6 + 1

)
log(r) + 24

(
1 − 3r2 + 3r4 − r6) log

(
1 − r2)

+ 2
(
1 − r2)((6 log 2 − 5)r4 − 4(3 log 2 − 4)r2 + 6 log 2 − 5 + 6

(
1 − r2)2

log

(
mb

μΛ

))
+ 243r5(1 − r2)2 A0(r)

8π

)
, (31a)

Γ 1
1 = 16πα4

s 〈ηb|Ob(
1 S[1]

0 )|ηb〉〈Oχc J
c (3 P [1]

1 )〉
243m7

br5(1 − r2)2

(
3
(
2r6 − 3r4 − 3r2 + 2

)
log(r) + 12

(
1 − r2)3

log
(
1 − r2)

+ (
1 − r2)((6 log 2 − 5)r4 + (7 − 12 log 2)r2 + 6 log 2 − 5 + 6

(
1 − r2)2

log

(
mb

μΛ

))
+ 243r5(1 − r2)2 A1(r)

16π

)
, (31b)

Γ 2
1 = 16πα4

s 〈ηb|Ob(
1 S[1]

0 )|ηb〉〈Oχc J
c (3 P [1]

2 )〉
1215m7

br5(1 − r2)2

(
3
(
10r6 − 9r4 − 9r2 + 10

)
log r + 60

(
1 − r2)3

log
(
1 − r2)

+ (
1 − r2)(5(6 log 2 − 5)r4 + (53 − 60 log 2)r2 + 5(6 log 2 − 5) + 30

(
1 − r2)2

log

(
mb

μΛ

))

+ 1215r5(1 − r2)2 A2(r)

16π

)
. (31c)

It can be seen that the contribution of the P -wave color-singlet depends on the factorization scale μΛ . When combined with the color-
octet S-wave contribution, in which the matrix element also depends on μΛ , the μΛ-dependence will be canceled.

To give numerical predictions, we also need to know the values of the long-distance matrix elements. The color-octet matrix elements
can be studied in lattice simulations, fitted to experimental data phenomenologically or determined through some other non-perturbative
methods. Here, we determined their numerical values with the help of operator evolution equations. In the decay process, the solution of
the operator evolution equations is [29]:

〈χc J |O8
(3 S1;μΛ

)|χc J 〉 = 〈χc J |O8
(3 S1;μΛ0

)|χc J 〉 + 8C F

3β0m2
c

ln
αs(μΛ0)

αs(μΛ)
〈χc J |O1

(3 P J
)|χc J 〉, (32)

where β0 = 11Nc−2N f
6 . We then naively relate the matrix element of production operator O H

n to that of the decay operator On using
〈

O H
n

〉 ≈ (2 J + 1)〈H|On|H〉. (33)

When μΛ � μΛ0 , the evolution term will be dominant, and the contribution of the initial matrix elements can be neglected. Since the
operator evolution hold only down to the energy scale of mc vc order, we set the lower bound μΛ0 = mc vc and choose v2

c = 0.3. Moreover,
we set μΛ = 2mc because the divergence comes from the soft gluons linked with the cc̄ pair. If we use the two-loop β function to evolve

αs(μ) and choose mc = 1.5 GeV, we find the ratio 〈χc J |O8(3 S1;2mc)|χc J 〉
〈χc J |O1(3 P J )|χc J 〉 = 0.39 GeV−2, which is consistent with the lattice result [35] and

the result obtained by fitting experimental data [36]. The P -wave color-singlet matrix elements can be estimated by relating them to the
first derivative of the non-relativistic wave function at the origin, which, in non-relativistic limit, is given by

〈
Oχc J

c
(3 P [1]

J

)〉 ≈ 3(2 J + 1)

4π

∣∣R ′
c(0)

∣∣2
. (34)

Setting N f = 3, ΛQCD = 390 MeV and |R ′
c(0)|2 = 0.075 GeV5 [31], we obtain
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Γ (ηb → χc J + gg) = (0.17,1.55,1.76) keV (for J = 0,1,2). (35)

The ηb → χc J +cc̄ processes have been considered in our previous work; both the color-singlet and color-octet contributions were included
but with different values of the color-octet matrix elements [28]. If we use the color-octet matrix elements determined in this work, the
decay widths of ηb → χc J + cc̄ are Γ (ηb → χc J + cc̄) = (4.54,4.21,4.28) × 10−2 keV (for J = 0,1,2), which are about an order of
magnitude less than the widths of ηb → χc J + gg processes, respectively. Including the contribution of the associate processes, we then
predict that the branching ratios for ηb inclusive decay into χc J are

Br(ηb → χc J + X) = (0.22,1.65,1.87) × 10−4 (for J = 0,1,2). (36)

The X(3872) state was discovered in pp̄ collisions at Tevatron [37] and B decay at Belle [38]. Until now, a convincing explanation has
not been proposed yet. The authors in [39] suggest that it is a χc1(2P ) state. If it is a χc1(2P ) state, we roughly predict

Br
(
ηb → X(3872) + X

) = 2.25 × 10−4, (37)

where we have chosen |R ′
c(0)|2 = 0.102 GeV5 for the 2P state and assumed that the ratio between color-singlet and color-octet matrix

elements does not change for the 2P state.

〈Oχc1
c (3 S[8]

1 )〉
〈Oχc1

c (3 P [1]
1 )〉 = 〈O X(3872)

c (3 S[8]
1 )〉

〈O X(3872)
c (3 P [1]

1 )〉
. (38)

The χc J states can also decay into J/ψ + γ with Br(χc1 → J/ψ + γ ) = 36% and Br(χc2 → J/ψ + γ ) = 20% [40], then we find the
contribution of χc J feed-down to J/ψ production in ηb decay is

Br
(
ηb → ( J/ψ + γ )χc J + X

) = 0.97 × 10−4. (39)

Here, we have neglected the feed-down contribution of χc0, because the branching ratio of χc0 → J/ψ + γ is very small. If we set mc =
1.5 ± 0.1 GeV and keep the other parameters unchanged, the branching ratio becomes 0.97−0.30

+0.46 × 10−4. In the process of J/ψ production

in Υ decay, the energy scale of αs is proposed to be 2mc instead of mb [41]. If we make the same choice, where αs(2mc) = 0.249−0.05
+0.07 for

mc = 1.5 ± 0.1 GeV, the branching ratio becomes 0.91−0.28
+0.43 × 10−4. It can be seen that the dependence of our prediction on the energy

scale of αs is not strong. This is because we estimate both the total and partial widths theoretically, therefore, their ratio reduces the
dependence on αs . Our numerical prediction also depends on the inputs of the long distance matrix elements. In this work, we use the
potential model result calculated with the B–T type potential in Ref. [31] for the color-singlet long distance matrix elements.

In [23], the authors studied the ηb → J/ψ + X process with Γ (ηb → J/ψ + X) = 2.29 keV. They found the contribution of the color-
octet process ηb → J/ψcolor-octet + X is more than one order of magnitude larger than that of the color-singlet contribution. If we choose
the same values for the parameters as those in Ref. [23], we find the χc J feed-down contribution to the decay of ηb into J/ψ is:

Γ
(
ηb → ( J/ψ + γ )χc J + X

) = 0.71 keV, (40)

which is about three times larger than that of the color-singlet process. Therefore, we conclude that in future experiments, when measur-
ing the J/ψ production in ηb decay, the contribution of ηb decays into χc J followed by χc J → J/ψ + γ is also important.

5. Summary

In this Letter, we have studied the inclusive production of charmonium state ηc,χc J in the decay of ground bottomonium state ηb

within the framework of NRQCD factorization formula. We find for the P -wave states χc J case, the color-singlet processes bb̄(1 S[1]
0 ) →

cc̄(3 P [1]
J ) + gg include infrared divergence. We show that such divergence can be absorbed into the S-wave color-octet matrix element.

To give numerical predictions, we use the potential model results to determine the color-singlet matrix elements and estimate the color-
singlet matrix elements with the help of operator evolution equations naively. We find that the branching ratios of ηb decay into ηc or
χc J plus anything are all on the order of 10−4. Furthermore, we give the branching ratios of ηb → X(3940) + X and ηb → X(3872) + X ,
if the X(3940) and X(3872) are the excited ηc(3S) and χc1(2P ) states respectively. In Ref. [23], the authors investigated the color-octet
mechanism for J/ψ production in ηb decay. Our results show that the J/ψ production from χc J feed-down is also important, because it
is about three times larger than the direct J/ψ production via color-singlet channel. These theoretical predictions may not be observed in
experiment for the time being, but they are very helpful when studying ηb ’s properties in future experiments, such as LHCb and Super-B.
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