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We argued in arXiv:1408.0624 that the quartic scalar field in AdS has features that could be instructive 
for answering the gravitational stability question of AdS. Indeed, the conserved charges identified there 
have recently been observed in the full gravity theory as well. In this paper, we continue our investigation 
of the scalar field in AdS and provide evidence that in the Two-Time Formalism (TTF), even for 
initial conditions that are far from quasi-periodicity, the energy in the higher modes at late times is 
exponentially suppressed in the mode number. Based on this and some related observations, we argue 
that there is no thermalization in the scalar TTF model within time-scales that go as ∼1/ε2, where ε
measures the initial amplitude (with only low-lying modes excited). It is tempting to speculate that the 
result holds also for AdS collapse.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Overview

The question of whether AdS space is stable [1,2] against turbu-
lent thermalization and the formation of black holes under generic 
(non-linear) perturbations has received much attention recently. 
AdS space with conventional boundary conditions is like a box, and 
therefore perturbations that were weak to begin with can reflect 
multiple times from the boundary, potentially resulting in suffi-
cient localization of energy to create black holes. Aside from the 
fact that black hole formation is a question of fundamental inter-
est in (quantum) gravity, this problem acquires another interesting 
facet via the AdS/CFT correspondence: it captures the physics of 
thermalization in strongly coupled quantum field theories.

At the moment however, it is fair to say that the evidence for 
and against the instability of AdS when excited by low-lying, low-
amplitude modes is mixed [3–11]. In an effort to (partially) clarify 
this situation, in this paper we will make some comments about 
two loosely inter-related questions:

• Does “most” initial data lead to thermalization?
• Can one argue that within a time-scale of order O(1/ε2), 

where ε captures the amplitude of the initial perturbation, 
thermalization does (not?) happen? This is an interesting 
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question because the statement of [1] is that black hole for-
mation happens in AdS within this time scale.

We will ask these questions, which are inspired by gravitational 
(in)stability in AdS, in the context of a simpler problem: a self-
interacting φ4 scalar field in AdS. The works of [6–10] suggest that 
these systems have close similarities, so we believe that this effort 
will be instructive and worthwhile.

One of our main tools will be the Two-Time Formalism (TTF) 
developed in [4] (we will describe this approach in Section 2). We 
will argue why this approach has various advantages, and why we 
believe it captures the essential physics of resonances in the full 
(i.e., non-TTF) model. But we emphasize that this will shed light on 
the instability question only if the instability, if it exits, is caused 
by resonances (which seems plausible to us). If the instability is 
caused by some other (possibly longer time-scale) dynamics, TTF in 
the leading order can miss that physics. But we expect that physics 
in the O(1/ε2) time-scale should be captured by TTF.

Furthermore, for concreteness, we will take the following as the 
definition of the absence of thermalization: the presence of expo-
nentially distributed energies in the higher modes, as a function 
of the mode number.1 That is, if the system has A j ∼ e− jβ at late 

1 Note that the definition of thermalization is somewhat ambiguous. We are 
adopting this as a sufficient but not necessary condition for the absence of thermal-
ization as we will make more precise at the beginning of Section 3. One source of 
ambiguity is that our system is classical and suffers from a UV catastrophe: so once 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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times for some positive β we will say that it does not thermalize 
(at least for a very long time). Loosely, one could also adopt a defi-
nition that the system has instability towards thermalization if the 
late-time behavior of the j’th mode goes as A j ∼ j−α , where α is 
a positive quantity – it is possible however that this is not a nec-
essary nor a sufficient condition [8], and we will not use this in 
our paper.

Within the context of these three limitations (namely, working 
with the scalar field and in the TTF approach and within a partic-
ular definition of thermalization) our results imply the following 
answers for the two questions (combined into one):

• Initial data with only low lying modes do not lead to thermal-
ization for the quartic scalar field in the TTF formalism within 
a time-scale of O(1/ε2). This suggests that if at all there is 
thermalization in the full theory, it should be coming from 
non-resonant transfer of energy.

Together, we believe that these observations present fairly 
strong evidence that thermalization (as defined above) does not 
happen for initial value data which have only the low-lying modes 
excited. Our results, as already emphasized, are for the φ4-scalar: 
but we believe similar statements apply for AdS gravity as well. 
We make various further comments of varying degrees of techni-
cality in later sections.

For completeness, lets also state that our results are still not 
quite conclusive. Apart from the points emphasized above, there is 
also the perverse possibility that collapse happens, but not due to 
resonances – but note however that the time-scale for this will be 
bigger than ∼1/ε2.

2. TTF formalism

The action for the scalar field theory is given by

S =
∫

dxx
√−g

(
1

2
∇μφ∇μφ + V (φ)

)
(2.1)

where the potential is given by

V (φ) = λ

4!φ
4 (2.2)

The metric for the space is given by

ds2 = sec2 x
(
−dt2 + dx2 + sin2 x d�2

)
(2.3)

The equations of motion for the scalar field are given by

φ(2,0) + �sφ ≡ φ(2,0) − φ(0,2) − 2

sin x cos x
φ(0,1)

= − λ

6 cos2 x
φ3 (2.4)

where the �s represents the spatial Laplacian operator. This oper-
ator has an eigenfunction basis given by

�se j(x) = ω2
j e j(x) (2.5)

e j(x) = 4

√
( j + 1)( j + 2)

π
cos3 x 2 F1

(
− j, j + 3; 3

2
; sin2 x

)
(2.6)

ω2
j = (2 j + 3)2 j = 0,1,2, . . . (2.7)

the system has fully thermalized, the average energy per state would be zero, if we 
don’t truncate it. In particular, the distribution of energies should not be compared 
to a canonical ensemble distribution, rather it should be thought of as capturing the 
efficiency of energy transfer to higher modes.
The inner product in this basis is defined as

( f , g) =
∫

dx tan2 x f (x) g(x) (2.8)

In the Two-Time Framework (TTF), we have the slow-moving time 
defined as τ = ε2t , which requires the time derivatives to be rede-
fined as ∂t → ∂t + ε2∂τ . The scalar field is written as an expansion 
in the small-parameter ε as

φ = ε φ(1)(t, τ , x) + ε3φ(3)(t, τ , x) +O(ε5) (2.9)

Note that the ratio between the slow and fast times (τ and t) also 
controls the overall scale of the amplitude. Putting this expansion 
in the scalar field equation of motion Eq. (2.4) we get

order ε: ∂2
t φ(1)(t, τ , x) − ∂2

x φ(1)(t, τ , x)

− 2

sin x cos x
∂xφ(1)(t, τ , x) = 0 (2.10)

order ε3: ∂2
t φ(3)(t, τ , x) + 2∂t∂τ φ(1)(t, τ , x) − ∂2

x φ(3)(t, τ , x)

− 2

sin x cos x
∂xφ(3)(t, τ , x)

= − λ

6 cos2 x
φ3

(1)(t, τ , x) (2.11)

The order ε equation has the general real solution

φ(1)(t, τ , x) =
∞∑
j=0

(
A j(τ )e−iω j t + A j(τ )eiω j t

)
e j(x) (2.12)

Note that the introduction of the slow times gives an extra variable 
that we can tune – we will use this at order ε3 to cancel of the 
resonant terms. The equations that accomplish this are called the 
TTF equations. Substituting the above first order results into the 
order ε3 equations we get

∂2
t φ(3)(t, τ , x) − 2i

∞∑
k=0

ωk

(
∂τ A j(τ )e−iω j t − ∂τ A j(τ )eiω j t

)
e j(x)

+ �sφ(3)(t, τ , x)

= − λ

6 cos2 x

∞∑
j,k,l=0

[(
A j(τ )e−iω j t + A j(τ )eiω j t

)

×
(

Ak(τ )e−iωkt + Ak(τ )eiωkt
)

×
(

Al(τ )e−iωlt + Al(τ )eiωlt
)

e j(x)ek(x)el(x)

]
(2.13)

Projecting on the basis solutions give(
e j(x), [∂2

t + ω2
j ]φ(3)(t, τ , x)

)
− 2iω j

[
∂τ A j(τ )e−iω j t − ∂τ A j(τ )eiω j t

]

= −λ

6

∞∑
k,l,m=0

C jklm

[[
Ak(τ )e−iωkt + Ak(τ )eiωkt

]

×
[

Al(τ )e−iωlt + Al(τ )eiωlt
]

×
[

Am(τ )e−iωmt + Am(τ )eiωmt
]]

(2.14)
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where

C jklm =
π/2∫
0

dx tan2(x) sec2(x) e j(x)ek(x)el(x)em(x) (2.15)

By direct computation (using properties of Jacobi polynomials – 
which are an alternate way to describe the basis functions, see 
Appendix A), one can show that the necessary and sufficient con-
dition for resonances is

ω j + ωm = ωk + ωl. (2.16)

The absence of other combinations for the resonances for the 
scalar theory was recognized and used in [6] (see footnote 3 of 
[7] for a simple proof). They are also absent in the gravity case, 
but the computation required to show this in that case is substan-
tially more lengthy [5]. The close parallel between the structure of 
the resonances in the two cases is evidently one of the reasons 
why they exhibit similarities in their thermalization dynamics [6].

In any event, at this stage we have the freedom to choose the 
A j(τ ) as mentioned above so that the resonances on both sides 
are canceled. This is accomplished by solving the A j according to

−2iω j ∂τ A j = −λ

6

∞∑
k,l,m=0

C jklm Ak Al Ām (2.17)

and its complex conjugate. By doing a rescaling of the modes as

Ai → √
ωi Ai, and Cijkl → C jklm√

ω jωkωlωm

we get

−2i ∂τ A j = −λ

6

∞∑
k,l,m=0

C jklm Ak Al Ām (2.18)

These are the TTF equations that we will use extensively in the 
next section. Once the resonances are canceled, the coupling to 
the higher modes is expected to be weak and we believe it is un-
likely that there will be efficient channels for thermalization: but 
this is a prejudice, and possibly far from proof. In any event, we 
can systematically solve for φ(3)(t, τ , x) at this stage if we wish, 
without being bothered by resonances.

Note that the simplicity of the quartic scalar arises from the 
fact that the Cijkl have a (relatively) simple expression. We will 
comment more about this in Appendix A.

Before concluding this section we quote some pertinent results 
from [6] for our scalar TTF system. Firstly, we can get the TTF equa-
tions using an effective Lagrangian

LTTF = i
∑

i

(Ai
˙̄Ai − Āi Ȧi)

+
∑

Cijkl Āi(τ ) Ā j(τ )Ak(τ )Al(τ ), (2.19)

where summation in the interaction term is over i, j, k, l such that 
ωi + ω j − ωk − ωl = 0. In writing the expression in this form, 
we have done an appropriate scaling of each mode by ωk and λ
for easy comparison with the notation of [6]: Ak are the rescaled 
modes. The system has a dilatation symmetry: Ak(τ ) → ε Ak(

1
ε2 τ ). 

So if thermalization happens in the TTF theory it should scale in-
versely as the square of the amplitude: the assumption that TTF 
theory captures the relevant physics is the assumption that the 
system has such a scaling regime.

However, the system has the following conserved charges [6]
arising from a corresponding set of symmetries:
Fig. 1. The log-plot of jα j vs. j for the quasi-periodic solutions. The linear fit is 
indicative of exponential suppression of A j with j.

Q 0 =
∑

Ak Āk, symmetry: Ak → eiθ Ak, (2.20)

Q 1 =
∑

kAk Āk, symmetry: Ak → eikθ Ak, (2.21)

E =
∑

ωi+ω j−ωk−ωl=0

Cijkl Āi(τ ) Ā j(τ )Ak(τ )Al(τ ),

symmetry: t → t + α. (2.22)

Various pieces of evidence indicating that the evolution of the 
quartic scalar in AdS has some close connections to collapse in AdS 
gravity were presented in [6]. The above conserved charges were 
identified for the full gravity system in [7] (see also [8]).

3. Results

In this section, we will study various aspects of the TTF equa-
tions for the quartic scalar in some detail. As mentioned in the 
introduction, we will take the exponential decay of A j(τ ) with j
as an indication that thermalization is suppressed. In [8] some ar-
guments were made that a power law A j ∼ j−a for positive a is 
indicative of thermalization/black hole formation. We will make 
this somewhat more precise as follows. The basic object that is 
taken as an indicator of collapse in [1,4] is the quantity |
(t, 0)|2, 
the unbounded growth of whose profile is taken as the onset of 
collapse. The analogue of this quantity in our scalar TTF case can 
be taken as |φ̇(1)(t, 0)|2 (compare Fig. 1(A) and the accompany-
ing discussion in [6] to Fig. 3 in [4]). At this point, using (2.12), 
(2.6) and (2.7) we can see that this quantity can be estimated and 
bounded via

|φ̇(1)(t,0)|2 ∼ |
∑

j2 A j|2 �
∑

j2|A j|2. (3.1)

Now, it is evident that when A j ∼ e− jα the last quantity is finite 
and therefore the LHS can never diverge, which is what we set 
out to show. This indicates that exponential suppression of higher 
modes is a sufficient condition for absence of thermalization. Note 
however that we are silent about what constitutes thermalization 
at the level of modes – fortunately, we will never need a precise 
definition of that for the purposes of this paper.

The TTF theory has quasi-periodic solutions (see [4] for a dis-
cussion of analogous solutions in the gravity system) of the form

A j(τ ) = α j exp(−iβ jτ ), where β j = β0 + j(β1 − β0). (3.2)

One can choose α0, α1 (or β0, β1) and determine the rest of the α j

via the TTF equations (2.18),2 if one truncates the system at some 

2 For some initial conditions we see more than one quasi-periodic solution.
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Fig. 2. Evolution plots of perturbations around quasi-periodic solutions.

Fig. 3. Plot of Cijkl together with an inverse linear fit.
j = jmax and demand stability of the solution against variation in 
jmax . We have done this, and the resulting modes decay with the 
mode number j as ∼ exp(−cj)

j for some positive c, see Fig. 1. This 
is obviously consistent with our definition of (non-)thermalization. 
In [4] the jmax was taken to be ∼50, in our case we are able to go 
up to jmax = 150.

If we perturb a quasi-periodic solution we expect to get oscil-
lations of the A j ’s around α j . See Fig. 2a for solutions where the 
initial value of the A j are close3 to their quasi-periodic values. If 
on the other hand, the initial A j values are sufficiently far from 
their quasi-periodic values, we expect that the solutions transition 
to chaos. This expectation is qualitatively verified in Fig. 2b where 
we launch the A j far away from quasi-periodicity. In what follows 
we will show that even in these far-from quasi-periodic solutions, 
the maximum value attained by the A j as we evolve the solution 
is exponentially suppressed in j. This is an indication that energy 

3 In order to make these statements precise, we will need a notion of closeness 
between solutions in terms of modes. A convenient way to define a dimensionless 
measure of the “distance” between two solutions (say 1 and 2) is to consider

�12 =
∑

j A(1)
j A(2)∗

j√∑
k |A(1)

k |2
√∑

l |A(2)

l |2
(3.3)

�12 ∼ 1 is close. The summation is only up to mode number jmax .
transfer to the higher modes is suppressed even in these solutions 
– if this behavior holds also in gravity, it could be an indication 
that these solutions generically do not collapse.

One of the ways in which one might try to understand the 
efficiency of energy transfer to higher modes is by studying the 
coefficients4 Cijkl which signify the coupling between the modes. 
To understand the behavior of TTF equations at large j, we look at 
various kinds of limits we may consider for Cijkl as the i, j, k, l
are sent to ∞. One is a simple scaling of indices, i, j,k, l →
ai,aj,ak,al. By fitting the plot (see Fig. 3b), we see that in this 
case Cijkl goes as O( 1

a ) as a → ∞. Another case is where we 
keep two modes fixed and take another two to infinity: i ∼ j ∼
approximately fixed, but with k ∼ l ∼ a and we take a → ∞. We 
find that they also have a O( 1

a ) fall off. It is important to note 
that because of the resonance condition, these are the only possi-
ble couplings available for a high mode – one cannot (for example) 
hold three indices small while sending the forth one to infinity. So 
progressively higher modes are weakly coupled, both to each other 
as well as to the low-lying modes.

Finally, we consider the evolution of the modes when we 
launch the system both near and far from quasi-periodic initial 
conditions. The way we do this is by calculating the coefficients 

4 Note that the coefficients Cijkl can be determined via (2.15) analytically, but 
using Mathematica. Some comments on this are given in Appendix A.
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Fig. 4. Plot of log[Max[An(τ )]] for j ∈ [0, 150] and a linear fit. The fit has been done 
in the region j ∈ [40, 150]. The last figure corresponds to quasi-periodic initial data.

Cijkl analytically (see Appendix A for some comments on this) and 
then integrating the resulting TTF equations numerically for the 
various initial conditions. In all cases we plot maximum value of 
A j that is attained during the entire period of evolution against j, 
and we find that this Max[A j(τ )] exponentially decays with j for 
all initial data. We see an exponential decay with respect to j, not 
just for solutions close to quasi-periodic solutions, but also for 
those that are far from it: see Fig. 4. This is true even though for 
some initial conditions (where initial values of mode energies are 
of the same order) we see an approximately power law decay of 
modes up to some intermediate frequency. These statements can 
be verified using the norm (3.3) with the understanding that the 
summation over j has to be restricted to be above some appropri-
ately chosen jmin (and of course below jmax) when we are talking 
about high modes.
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Appendix A. Comments on Ci jkl and Jacobi polynomials

The determination of the Cijkl is in principle straightforward by 
direct evaluation of (2.15). This is an analytically tractable problem 
because the basis functions e j(x) can be written in terms of Jacobi 
polynomials as

e j(x) = 4

√
( j + 1)( j + 2)

π

× �( j + 1)�(3/2)

�( j + 3/2)
cos3 x P (1/2,3/2)

j (cos 2x). (A.1)

Jacobi polynomials are (orthogonal) polynomials in their argu-
ments and therefore in our case they merely involve only (a finite 
number of) powers of sinusoids.5 Therefore the integral for Cijkl , 
which is in the range [0, π/2] can, again in principle, be straight-
forwardly evaluated. It turns out that the result can be expressed 
in terms of finite sums of finite products of Gamma functions 
and such, but simplifying them on Mathematica becomes time-
consuming. One could in principle try to simplify the expressions 
manually, but we have adopted a more pragmatic approach: we 
evaluate the integrals analytically on Mathematica by re-expressing 
the powers of sinusoids in terms of product formulas. Since the in-
tegrals are over [0, π/2] this makes them substantially less inten-
sive as far as time requirements are considered. This way we are 
able to algorithmize the (analytic) computation of Cijkl on Mathe-
matica, after which we use them in the TTF equations to do our 
numerical evolutions.
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