
Theoretical Computer Science 48 (1986) 9-33
North-Holland

9

O N T H E N O T I O N OF INFINITE P S E U D O R A N D O M
S E Q U E N C E S *

Ker-I KO**
Department of Computer Science, University of Houston, Houston, TX 77004, U.S.A.

Communicated by P. Young
Received July 1986

Abstract. Three definitions of infinite pseudorandom sequences, with respect to polynomial time
and space complexity, are introduced and compared with each other. It is shown that the first
two definitions, based on Martin-Lff's notion of sequential tests and Levin and Schnorr's notion
of monotonic operator complexity, are equivalent with respect to polynomial space complexity,
while both are strictly stronger than the third definition, which is derived from Von Mises's notion
of collectives.

I n t r o d u c t i o n

In the recent literature on computational complexity, several definitions of
pseudorandom sequences have been proposed. Yao [32] and Blum and Micali [3]
gave a weak definition of pseudorandom sequences. It was argued in [3] that the
classical strong definition of randomness, as developed by Martin-IAf [18, 20],
Kolmogorov [14] and Chaitin [4, 5, 6], is nonconstructive and unnatural, and a new
theory of randomness is necessary for the application to, say, cryptography. They
defined a sequence generated by a random-number generator to be pseudorandom
if it passes all probabilistic polynomial time statistical tests. Shamir [27], Yao [32],
Blum and Micali [3], Blum, Blum and Shub [2] and Plumstead [23] contain detailed
analyses of some well-known random-number generators. Wilber [31] defined a set
A to be P-random if, for every set B e P, the set of strings for which A and B agree
has density ½. This definition is based on Von Mises's concept of 'collectives', and
has been discussed by Meyer and McCreight [21]. Wilber showed the existence of
an exponential time computable P-random set, as well as the existence of efficient
random-number generators.

While the results obtained in these studies are interesting in the context of
complexity theory and cryptography theory, it is not clear what the relation is

* Research supported in part by the NSF Grants MCS-8103479 and DCR-8501226. Part of the work
was done while the author was at the Mathematical Sciences Research Institute, Berkeley, CA, U.S.A.

** Present affiliation: Department of Computer Science, SUNY at Stony Brook, Stony Brook, NY
11794, U.S.A.

0304-3975/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)

10 K. Ko

between these definitions and the classical definition of Martin-Lbf, Kolmogorov
and Chaitin. As it is well known, the theory of randomness based on Von Mises's
concept of collectives is unsatisfactory because there are random sequences, accord-
ing to the definition in this theory, which do not satisfy some important law of
probability [19, 33]. Instead, Martin-Lbf [18] defined random sequences to be infinite
sequences that can withstand all recursively enumerable statistical tests of random-
ness. He proved that a random sequence must have high program size complexity
and thus gave a strong justification for his definition. Kolmogorov [14] and Chaitin
[5] actually defined random sequences as those with high program size complexity.
Levin [16, 33] and Schnorr [24, 25, 26] defined a variation of program size com-
plexity, called monotonic operator complexity, or process complexity, and used this
complexity measure to provide a characterization of Martin-L/if's random sequences.
Furthermore, this characterization holds in general cases with respect to arbitrary
computable probability distributions on infinite sequences.

In this paper, we propose, based on Martin-L/if and Levin and Schnorr's
approaches, two definitions ofpseudorandom sequences and study their relationship.
It is shown that the class of pseudorandom sequences with respect to polynomial
space-bounded Martin-L/Sf tests is exactly the class of infinite sequences with high
polynomial space-bounded monotonic operator complexity. Thus it justifies the
naturalness of our approaches. However, for the class of pseudorandorn sequences
with respect to polynomial time-bounded Martin-L/if tests, such a characterization
is not known. It is observed that if FP = # P, then the two definitions, with respect
to polynomial time complexity, are equivalent. Whether this condition FP = CA P is
necessary remains open and appears to be difficult.

Recently, interesting applications of the concept of time/space-bounded program
size complexity to the study of the structure of feasible computation have been
demonstrated (see [11, 28]). Sets with low time-bounded program size complexity
and their relationship with sets in NP and PSPACE have been studied by Karp and
Lipton [13] and many other researchers. In Section 2, we will study recursive
sequences that have high polynomial time-bounded program size complexity (KT-
complexity, in short). We will demonstrate the existence of a double exponential
time computable sequence that has high polynomial time-bounded KT-complexity,
and hence, establish the existence of a double exponential time computable
pseudorandom sequence. The equivalence of the two definitions (with respect to
polynomial space bounds) will be established in Section 3. In Section 4, we will
compare our definitions of pseudorandom sequences with the weaker definition of
Meyer and McCreight [21] and Wilber [31] and show that our definitions are strictly
stronger than theirs. This comparison reveals interesting properties of the relative
frequency of pseudorandom sequences. Based on this result, we propose a
modification to the latter definition.

Notation. We only consider binary sequences, i.e., finite strings in {0, 1}* and
infinite sequences in {0, 1} °°. Finite strings are often denoted by s and t and infinite
sequences are denoted by x, y, and z. The length of a finite string s is denoted by
tsl. For each string x of length i> n (finite or infinite), x n denotes the initial segment

Infinite pseudorandom sequences 11

of x of length n, and x(n) denotes the nth bit of x. (This notation should not be
confused with extended regular expressions by which x" denotes the repetition of
x for n times. However, we do use 0" and 1" to denote a string of n 0's and a string
of n l's. 0 °° denotes the infinite sequence with all bits equal to 0.) Natural numbers
are represented by finite strings in {0, 1}* in its standard binary expansion. Let d(s)
be the string obtained from s by doubling each bit of s. We use a fixed coding
scheme for the pairing function (, >: (s, t>= d(s)Olt. Thus, J(s, t>J = JtJ+2JsJ+2. We
use # A to denote the cardinality of the set A. We say p is polynomial to mean that
p is a polynomial function with nonnegative coefficients. We use (V°°n) to denote
'for all but finitely many' and (3°°n) to denote 'for infinitely many'. For each n,
log n means log2 n.

We will use the standard notation for complexity classes. P denotes the class of
sets computable in polynomial time. FP denotes the class of functions computable
in polynomial time. NP denotes the class of sets recognizable in polynomial time
by nondeterministic Turing machines (TMs). # P denotes the class of functions
counting the number of accepting paths of a polynomial time nondeterministic TM.
PSPACE denotes the class of sets computable in polynomial space. FPSPACE denotes
the class of functions computable in polynomial space. It is obvious that P _ N P _
PSPACE, and FPc_ # P c FPSPACE. Whether any of the above inclusions is proper is
a major open question in complexity theory [10].

1. Polynomial time Martin-I/if tests and pseudorandom sequences

Martin-L6f [18] defined an infinite binary random sequence to be an infinite
sequence which can withstand all recursively enumerable (r.e.) tests of randomness.
From the statistical point of view, a test of randomness is a function f which accepts
or rejects, for any finite string s and level of significance e, the hypothesis that s is
random; or, equivalently, it is a function f which, for any finite string s, outputs an
integerf(s) as an indicator of the 'quantity of regularity' in s such that the hypothesis
that s is random is rejected on the level e = 2 -m iff f(s)>1 m. The following is a
more precise definition.

Definition 1.1 (Martin-L/if [18]; Zvonkin and Levin [33]). A Martin-L6f test (or,
simply, a test) is a function f : {0, 1}* --> N such that

(i) the set {(s, n)Jf(s)>>-n} is r.e.,

(ii) (Vn)(Vm) #{sllsl=n and f (s) >>- m}<~2 "-~, and
(iii) (f is sequential) f (s) <~f(t) whenever s is an initial segment of t.

Condition (ii) arises from the requirement that the probability of rejecting a string
s on level 2 -m must be ~<2 -m. This condition may be formulated in terms of
probability measures on {0, 1} °°. (In this paper, we deal only with the uniform
probability distribution.)

12 K. Ko

Lemma 1.2 (Zvonkin and Levin [33]). A function f : {0, 1}*---> N is a test/if(i), (iii) and
(ii') Pr{x ~ {0, 1}°°[(3n) f (x ") >>- m} <~ 2-" hold.

Now, an infinite random sequence can be defined as a sequence for which there
is a significance level e such that no Mart in-L6f test can ever reject any initial
segment of x on level e.

Definition 1.3 (Mart in-L6f [18]; Zvonkin and Levin [33]). An infinite sequence
x e {0, 1} °o is random if, for any Martin-L6f test f, limn_,oof(X n) < ~ .

It is shown in [18] that, with probability 1, a sequence x in {0, 1}oo is random.
This means that Definition 1.3 is not too strong.

We now give a definition of infinite pseudorandom sequences based on the concept
of Martin-L6ftests. While a random sequence is a sequence which cannot be rejected
by any effective method of testing randomness, our definition of pseudorandom
sequences requires that it cannot be easily rejected by any e Ofcient method o f testing
randomness. In other words, we will only consider tests of randomness which have
polynomial time complexity, i.e., tests in FP. (Sometimes we also consider tests
which have polynomial space complexity.) More generally, let C be a class of

functions.

Definition 1.4. A Mart in-L6f test f is called a C-test i f f c C.

It then appears natural to define, for any complexity class C, a sequence x ~ {0, 1}oo
to be pseudorandom with respect to C-tests if, for all C-tests f, lim,_,oof(x n) <oo.
However, the following lemma shows that if C = FP, then these sequences are
exactly random sequences as defined by Martin-L6f.

Lemma 1.5. Let x ~ {0, 1}oo. I f for all FP-testsf, lim,,_,oof(x")< ~ , then x is random.

Proof. Assume that x is not random. Then there is a Mart in-L6f test f such that
lim,_,oof(x") = co, and G/= {(s, k) I f (s) >I k} is r.e.

Let M be a Turing machine (TM) enumerator for Gy. We construct another TM
M' as follows: On input s with Is[= n, M ' simulates M on the empty string for n
moves, and outputs ks = m a x * { k] M enumerates some pair (t, k) in n moves with t
being an initial segment of s}, where m a x * (A) = m a x (A) if A ¢ 0, and =0 if A = 0.

Clearly, M ' computes a function g:{0, 1}*-* N in polynomial time. Also, for all
s, t e {0, 1}*, g(t) <~ g(s) if t is an initial segment of s. We claim that g is an FP-test.

S i n c e f i s sequential, (t, k)e G: implies (s, k)~ G: whenever t is an initial segment
of s. This implies that, for all s, g (s)~max{k[(s , k)~ G:}=f(s) . Therefore,

Pr{x e {0, 1 }oo] (::In) g(x n) I> m} ~< Pr{x ~ {0, 1 }ool (3n) f (x n) >1 m} <~ 2 -m.

So, g is an FP-test.

Infinite pseudorandom sequences 13

Finally, we observe that limn_,oof(x n) = ~ implies limn_,oo g(x") = ~ because, for
any large k, there is an n such that, for some initial segment t of x, (t, k) will be
generated by M in n moves, and thus g(x n) >1 k. This completes the proof. []

In the above lemma, the class FP may be replaced by any reasonable complexity
class C. So it shows that simply putting time bounds on the test functions does not
provide a bigger class of random sequences. Thus, for the definition ofpseudorandom
sequences, we must allow the sequence {f(x")} to diverge to infinity. This suggests
the following general definition.

Definition 1.6. Let C be a complexity class, and F a class of nondecreasing,
unbounded functions from N to N. A sequence x e {0, 1} ~° is pseudorandom with
respect to C-tests and diverging rates F if for any C-test f there is a function g ~ F
such that (V°°n) f (x ") <- g(n).

In other words, a sequence x is pseudorandom with respect to C-tests and the
diverging rate g if no C-test f can reject the hypothesis that x is random on the
significance level 2 -m by examining only the first g-~(m) bits of x.

Obviously, different complexity bounds C on the tests and different diverging
rates F give different classes ofpseudorandom sequences. We will, however, consider
only pseudorandom sequences with respect to a small class of tests and diverging
rates. Intuitively, we say a sequence x is (polynomially) pseudorandom if, for any
polynomial p, no test f can detect, in time p(m), enough 'quantity of regularity' in
x to reject the hypothesis that x is random on the significance level 2 -m. Comparing
this requirement with Definition 1.6, we arrive at the following two classes of
pseudorandom sequences. Let LOG be the class of all functions An[(log n)k], k >-O.

Definition 1.7. (a) PR1 = {x ~ {0, 1}°~[x is pseudorandom with respect to FP-tests
and diverging rates LOG}.

(b) PSR1 = {x e {0, 1}°°Ix is pseudorandom with respect to FPSPACE-tests and
diverging rates LOG}.

We note that PR1 is the largest class of infinite sequences satisfying our informal
requirement for polynomial pseudorandomness. If we allow the diverging rate to
grow a little faster, for instance, letting g(n) = n ~/k for some k > 1, then an FP-test
f may be able to reject x as nonrandom on the level 2 -m by examining only the
first m k bits of x (thus using only time p(m) for some polynomial p). On the other
hand, if we require a slower diverging rate, for instance g(n) = (log log n) k for some
k > 0, then no FP-test f can reject a pseudorandom sequence x on level 2 - m even
if it spends an exponential amount of time to get f(x2"). So, this definition would
give a much smaller class of pseudorandom sequences.

In [20], Martin-L/ff showed that for the class of Martin-L/if tests, there is a
universal test fusuch that, for any test f, there is a constant c such that f~(s) + c >~f(s)

14 K. Ko

for all s ~ {0, 1}*. Is there such a universal FP-test for the class of FP-tests? Probably
not. First, such a universal FP-test must be able to simulate all FP-tests and so
cannot be itself computed in polynomial time. Second, it is essential that the class
of FP-tests be recursively presentable in order for the universal FP-test to simulate
them systematically. (A class F of functions is recursively presentable if there is an
r.e. set of TMs {M1, M2, . . . } such that F = {f~ If~ is the function computed by M~}.)
In general, for a (reasonable) complexity class C, the class of C-tests does not have
a universal test in C On the other hand, if the class of C-tests is recursively
presentable, then a universal test can be found with complexity slightly higher than
the complexity bounds for the class C We do not know if the class of FP-tests is
recursively presentable. In the following, we will show that the class of FPSPACE-tests
is recursively presentable, and hence has a universal test fu which is computable in
space g for any superpolynomial function g.

Theorem 1.8. The class of FPSPACE-tests is recursively presentable.

Proof. Let {M~} be an enumeration of the class of polynomial space TMs. We
assume that each Mi computes a total function in space p~(n). The following
algorithm describes a TM M[for each i. Let < be the lexicographic order on {0, !}*.

input: s {let n := Isl}.
begin

if n = 0 then output 0 and halt;
for all u of length <~ n do

for all initial segments v of u do
if M,(v) > M,(u)
then recursively compute and output M~(s "-~) and halt;

for k :=0 to n do
for m := 0 to pi(k) do

if #{t i l t I = k and M,(t)>~ m} > 2 k-m
then recursively compute and output M[(s "-~) and halt;

output Mi(s) and halt
end.

We claim that the function f~ computed by M[is an FPsPACE-test. First, we note
that the amount of space required to perform the computation of f~(s) except
recursive calls of M[(s "-1) is O(p~(n)). Since we make at most n levels of recursive
calls, the total space requirement is only O(n . pi(n)). So, f~ is polynomial space
computable. Furthermore, f~(s) #f~(s "-1) implies f~(s) = M~(s) >f~(s"-l) . Thus, by
induction, fi(t) ~<f~(s) for all initial segments t of s.

Finally, let A,,m={t[lt[= n and f~(t) ~> m}. We check that, for all n, m, #A,,.,,, <~
2 "-m. First, this statement is true for n = 0. Assume that #A~,m <<-2 n-m for all m.
Consider # A n + l , m . Suppose, by way of contradiction, that #An+l,m > 2 "+l"m. Then,
by the inductive hypothesis, there mus t be a string s of length n + 1 such that

Infinite pseudorandom sequences 15

f~(s)~ > m>f~(s"). That is, f~(s) must be equal to Mi(s) and hence, during the
computation of M~, we must have had

(1) M~(v) <~ Mi(u) for all u of length n + 1 and all initial segments v of u, and
(2) #{t]]t]=n+l, Mi(t)>>-m}<~2 "+l-re.

Condition (1) implies that, for all t of length n + 1, f~(t) ~< M~(t) and so

#Aa+l.m ~ #{ t l ltl = n+ 1, Mi(t) >-- m}.

But this violates condition (2) and leads to a contradiction. Thus we have proved
that #An+Lm~2 n÷l-m, and hence, #An, m ~ 2 n-m for all n and m.

Conversely, if f is an FPSPACE-test computed by M,, then we must have
(3) (Vu)(Vv) (v is an initial segment of u) implies (Mi(v)<~ Mi(u)), and
(4) (VR)(Vm) #{ t l l t l=k and Mi(t)>~m}<~2 k-re.

Thus, the function f~ computed by M~ is exactly f. []

Now a universal test f , for the class of FPSPACE-tests may be defined as follows:
for each s e {0, 1}*, f , (s) = max{f~(s) - i l i <~ Isl}. It can be seen that f . is a Martin-l.,ff
test. Furthermore, if x is not in PSR1, then (Vk)(3°°n) f~(x") > (log n) k. That is,
whenever x is not in PSR1, the test fu can catch it. Assume that the function f~ is
computable in space ,Xn[n l°g i]. Then the universal test fu is computable in space
;tn[n I°g "]. However, since f . needs to simulate all FPSPACE-tests f , it does not have
a polynomial space bound, and so is not an FPSPACE-test.

2. Time-bounded program size complexity

Kolmogorov [14] and Chaitin [4, 5, 6] introduced the concept of program size
complexity and, based on this concept, proposed a definition of random sequences.
To be more precise, the program size complexity (or, the Kolmogorov complexity)
of a finite string is the length of the shortest TM program that prints it; and a finite
string is random if its Kolmogorov complexity is 'almost' equal to its length.
Intuitively, the complexity of a finite string is a measure of the amount of information
contained in the string, i.e., the minimum information that is sufficient to compute
the string. However, the amount of resources, such as time and space, required to
compute the string is not measured by its Kolmogorov complexity. Recently, time-
and space-bounded Kolmogorov complexity has been introduced and has been
demonstrated useful in complexity theory [8, 11, 15, 28]. This generalized Kol-
mogorov complexity is also closely related to the notion of circuitry complexity as
studied by Pippenger [22] and Karp and Lipton [13]. In this section, we will study
the basic properties of time- and space-bounded program size complexity and, in
particular, the existence of recursive sequences that have high time-bounded program
size complexity.

Recall that the Kolmogorov complexity of a string s e {0, 1}*, with respect to a
Turing machine (TM) M, is KM(s) = min*{ItllM(t) = s}, where min*(A) = min(A)

16 K. Ko

if A # 0 , and =oo if A=•. By adding time or space bounds on TMs, we have the
following definition (of. [8, 11, 28]).

Definition 2.1. The time- and space-bounded program size complexities (KT- and
KS-complexity, in short) of a string s e {0, 1}*, with respect to a TM M, are

KTk(s) = min*{[t[[M(t) halts and prints s in k moves}

and

KSk(s) = min*{[t[lM(t) halts and prints s using k cells},

respectively.

The following observation on the universal TM U is well known.

Observation 2.2. There is a universal TM U and a polynomial Po such that, for all
inputs (IVI, s) , where ~I encodes a TM M, if M (s) halts in k moves (or, using k cells),
then U ((IVI, s)) halts and prints M (s) in po(k) moves (using po(k) cells, respectively).

Using this universal TM U, the KTtrcomplexity is optimal in the sense that, for
all TM M, there is a constant c such that

(Vs ~ {0, 1}*)('Ok) P°<k) KT v (s)<~KTk(s)+c

because M (t) = s implies U((/17/, t)) = s and I(~r, t)[= It l+2[Ml+2. So, in the rest
of this paper, unless otherwise stated, we will use this fixed TM U for the KT- or
KS-complexity measure, and omit the subscript U. We sometimes say a string t is
the shortest TM program for a string s to mean that t is the shortest string such that
U (t) = s.

In addition to the absolute program size complexity, Kolmogorov [14] also
introduced the conditional program size complexity in which the information about
the length of the string to be computed is given without charge. Loveland [17]
modified it and introduced the uniform program size complexity which requires a
program for a string s, when given a length i ~ Isl, to output the initial segment s i
of s. This prevents the use of the length Is[from being used to provide information
about the bits of the string s. In the following we define the conditional and uniform
KT-complexity measures.

Definition 2.3. Let k be an integer.
(a) The time-bounded conditional program size complexity of s~{0, 1}*

respect to a two-input universal TM U) is

KTk(s[n) =min*{[t[[U(t, n) halts and prints s in k moves},

(with

where n = Isl.

Infinite pseudorandom sequences 17

(b) The time-bounded uniform program size complexity of s ~ {0, 1}* is

KTk(s; n)=min*{l t l l (v i < - n) u (t , i) halts and prints s i in k moves},

where n = Isl
The space-bounded conditional and uniform complexity KSk(sln) and KSk(s; n)

are similarly defined.

Notation. Let f be a function and s a string of length n. We will write KTI(s)
and KTY(sln) to denote KTI<n)(s) and KTY<n)(sln), respectively.

Remark 2.4. The generalized circuitry complexity introduced by Karp and Lipton
[13] (called by them 'nonuniform complexity') may be considered as another form
of the time-bounded Kolmogorov complexity defined on sets of strings. For example,
for a set A_{0,1}*, let A n denote the set {seA]lsl<-n}. We may define the
time-bounded program size complexity of A n with respect to a time function f as
CTf(An)=min{ltll(Vs, lsl<-n) U((t ,s)) halts and outputs XA(S) in f (n) moves}.
Using this notation, the class P/poly of sets with small circuits defined in [13] is
just the class of sets A with the following property:

(:lpolynomials p, q)(Vn) CTP(A n) <~ q(n) .

Now we consider recursive sequences with high KT-eomplexity. In the following,
we work only with the conditional KT-complexity. The analogous results about the
uniform KT-complexity will be discussed at the end of the section.

First, we consider sequences whose initial segments have high KT-complexity
infinitely often. Martin-l_ff [20] proved that, with probability 1, an infinite sequence
x has the maximal conditional complexity: (:lc)(3°°n) K(xnln)~ > n - c . The next
theorem shows that recursive sequences cannot have such maximal KT-complexity,
even with a polynomial time bound.

Theorem 2.5. Let x be an infinite recursive sequence. Then, there exists an unbounded
function f, and a polynomial p such that (W~ n) KTP(xnIn) <~ n - f (n).

ProoL Assume that x is recursive, and let M be a TM which computes x; i.e. for
all m, M (m) = x m. Consider the following algorithm M' for computing x n.

Algorithm M'. On input (t, n), simulate M(0), M(1) , . . . for n moves. Let x m=
M (m) be the longest output that we get in n moves. Then output the first n bits of
the sequence xmtO °°.

Let g (n) = m a x { m l t h e computation of M(0), M (1) , . . . , M (m) halts in <~n
moves}. Then, (Vn)(3t , Itl = n - g (n)) M'(t , n) = x n. Since M' is a polynomial time-
bounded TM, we can encode this TM together with its input (t, n) and simulate it

18 BL Ko

with the universal TM U. This gives us the following bound on the KT-complexity
of x:

(3polynomial p)(3c) KTP(xnln) <- n - g(n) + c.

Obviously, g (n) ~ oo as n ~ oo. So the theorem is proved. []

Corollary 2.6. / f x ~ {0, 1} °° is computable in time 0(2 ~) for some k >! 1, then

(3polynomial p)(V°°n) KTP(x"In)~< n - l o g n.

The next theorem shows that the upper bound given by Theorem 2.5 is the best
we can have.

T h e o r e m 2.7. For any unbounded recursive function f, there is a recursive sequence x
such that (Vpolynomialp)(3°~n) KTP(x~In)>i n - f (n) .

Proof. Assume, without loss of generality, that f (n) < n for all n. Define a function
g(n) inductively:

g(0) =0, g (n + l) = m i n { m l m ~ n , f (m) ~ g (n) } .

Since f is unbounded, g is well-defined and recursive. Furthermore, g(n + 1) > g(n)
for all n.

We define, for each n 1> 1, the subsequence x (g (n - 1) + 1) . . . x(g(n)) (i.e., from
the (g (n - 1)+ 1)st bit to the g(n)th bit of x) to be distinct from those bits of the
outputs of U(t, g(n)) for all t of length < g (n) - g (n - 1) such that U(t, g(n)) halts
in 2 g(") moves. Since there are less than 2 ~")-~("-1) such strings t and there are
g (n) - g (n - 1) many bits of x to be defined, this diagonalization always works.
(Indeed, it works in time 2°(z(")).)

Now, for any polynomial p, we have

(V~n) KTl'(xg°°lg(n))>~ g (n) - g (n - 1)~ > g (n) - f (g (n)) .

This completes the proof. []

Next we study recursive sequences whose initial segments have high KT-
complexity almost everywhere. First we recall that Martin-HSf [20] has proved that
i f f is a recursive function satisfying the condition Y.,~=o 2 -f(n) = oo, then, for every
infinite sequence x,

(3°%) K (x n] n) ~ n - f (n) .

We can modify his proof to show a similar upper bound for KT-complexity.

T h e o r e m 2.8. Let fbe a function such that (a) f (n) < nforalln >~ 1, (b) F.n°°= o 2 -/(") = oo,
and (c) the function h(n) = 2 "-f(~)- 1 is computable in time r(n) for some polynomial
r. Also let x ~ {0, 1} ~°. Then, there exist a polynomial p and a constant c such that

(3~n) KTP(x"In) <<- n - f (n) + c.

Infinite pseudorandom sequences 19

Remark 2.9. Actually, Theorem 2.8 holds for all functions f ' such that f ' (n) ~ f (n)
for some f satisfying conditions (a), (b), and (c). An example is f '(n)<~ [log n].

Proof of Theorem 2.8. Define a function succ on all finite strings: if s = 1" for some
n, then succ(s) =0"; otherwise s u c c (s) = s + 1. Then, inductively define sets A, as
follows: Ao := {e}. Let s be the last string in An-I with respect to the function succ,
i.e., s is the (unique) string in A,_I whose successor succ(s) is not in A,_~. Define
A, to contain 2 "-:~'° - 1 many strings of length n, starting with the string t = succ(sl)
and containing the next 2 n-y~)- 2 successors. The sets An are well-defined because
each set A, has exactly one string without a successor in A,.

Define, for each n, B , = { x ~ { 0 , 1}°°lx"~A~}. Also define a circular order on
{0, 1} °~ as the natural lexicographic order on {0, 1} °°, with the extra rule that 1 °° is
immediately followed by 0 °°. Then, Bn contains an 'interval' of sequences (with
respect to the circular order) which is immediately followed by the interval B.+~.
Furthermore, assuming the uniform probability measure on {0, 1} °~, we have Pr(B,) =
2 - f (n) - 2-". Since y.,oo__~ 2_f(n) = o0, the sets {B,,},,~°=~ circularly cover {0, 1} °° infinitely
many times. Or, equivalently, for any x ~ {0, 1} ~°, x ~ An infinitely often.

Now, consider the following function g:g(t , n) = the tth string in A, with respect
to succ. We claim that g(t, n) can be computed in time p(n) for some polynomial
p. Define u,, = the last string in A~, and h(n) = 2 "-f(")- 1. We observe that, for each
n > 0 , u n = SUcc(h(n))(Un_11) where succ(k)=the composition of k succ's, it is easy
to see that the function Ak, s[succtk)(s)] is just (s + k) mod 10 Isl and is polynomial
time computable. So, g(t, n) can be computed by successively calculating uo,
u l , . . . , u,,-1, and g(t, n) = succ(')(u~_ll) and is computable in time p(n) for some
polynomial p.

Since, for any x e{0, 1} °°, x n occurs in A, infinitely often, we have, for all
x ~ {0, 1} °°, (3°°n)(:lt, Itl <~ n - f (n)) g(t, n)= x ~. By encoding the TM program for
g into a string of fixed length, we have

(3polynomial q)(~lc)(~l°°n) KTq(x~l n) <~ n - f (n) + c. []

The next theorem shows that if ~,~o2-/(")<oo, then we can find recursive
sequences with KT-complexity almost as high as n - f (n) almost everywhere. The
proof technique is a refinement of Meyer and McCreight's weighted priority
diagonalization [21].

Theorem 2.10. Let f be a nondecreasing, unbounded recursive function such that
~n~__o 2 -:~") converges to a real number a < oo. Then, for any recursive function dp, there
is a recursive sequence x such that

(V°°n) KT~(x"ln) >~ n - f (n) - [log nJ.

ProoL The idea of the proof is to construct a recursive sequence x bit by bit such
that for each bit x(n) we try to diagonalize against exponentially many TM programs.

20 K. Ko

Since a TM program t may be used to compute any initial segment of x, our
diagonalization process works on pairs (t, n) for all strings t and all numbers n.

We first define a function h:{0, 1}*+N by h(t)=ltl+f(Itl). Then, let S be the
set of all pairs (t, n) t o be diagonalized; i.e., S={(t , n) l te{0 , 1}*, n~N and n -
[log nJ I> h(t)}. Also, for each pair (t, n)e S, define a weight w(t, n)=2 -°'-0°g'J)
Note that the function g(n)= n - [log nJ is nondecreasing and has the property
that, for all n, g(n) < g(n +2). Thus, ~<,)~k 2-g<")<~ 2" Y':~k 2-" = 2 -<k-2). It fol-
lows that the total weight of pairs in S is

oo

E w(t, n) = Y. Y. Y. 2
(t , n) e S m = 0 [tl=rn g(n)a~h(t)

oo oo

~< ~ ~ 2-(h(0-2)= ~ 2-(f(m)-2)=4~.
m=O Itl=m m=0

Now we describe an algorithm for x. The algorithm proceeds in stages. At stage
k., it determines the kth bit of x. Prior to stage 1, we assign to each pair (t, n) in S
the initial weight w(t, n) = 2 -s<"), and all pairs in S are uncancelled. In each stage,
some pairs may be cancelled and some may double their weights.

Stage k: For j := 0 and 1, let Qj := {(t, n) e S I k <~ n ~ 2 2k+2, (t, n) is uncancelled, and
U(t, n) prints xk-ljs in tb(n) moves for some s of length n-k} , and vj:=

w(t, n).
If Vo ~> vl, then we cancel all pairs (t, n) in Qo, set x(k) := 1, double weight w(t, n)

for all pairs (t, n) in Qt, and go to the next stage; otherwise, we do the opposite:
cancel all pairs (t, n) in Q1, set x(k):=O, double weight w(t, n) for all pairs (t, n)
in Qo, and go to the next stage.
End of stage k.

First, note that in each stage k, the total weight of uncancelled pairs in S is
increased by min{vo, vl} and decreased by max{vo, vl} and therefore it can never
exceed the initial value 4a.

Next, if the weight of a pair (t, n) is doubled m times before it is cancelled, its
final weight becomes 2 m-n+ll°g nj. Since this value is less than or equal to the total
weight 4cq we have m - n + [log nJ ~<log a + 2 . That is, each pair (t, n)~ S can be
doubled at most n - [log nJ +log c~+2 times.

Now, assume that tn is the shortest string such that U(t~, n) prints x" in ~b(n)
moves. Then the pair (tn, n) is never cancelled. However, if (t,, n) ~ S, then (tn, n)
must have been included in Qou Q! from stage ½ [log nJ to stage n, and hence its
weight must have been doubled n -½ Llog nJ - 1 times. Since a pair (t, n) in s can
be doubled at most n - [log nJ + l o g , + 2 times, we have n-½[log n J - l<~
n - [log nJ +log a + 2 ; or, n~<27a 2. Thus, for almost all n, (t,, n)~ S. Th~/t is,

('C°°n) n- Llog nJ <[t,,l+f(It,,I);

Infinite pseudorandom sequences 21

or,

(V ~n) KT~(x"In)> n - [log nJ -f(n)

because n ltnl implies f(n)~f([t, ,I). []

The following corollary will be used in the next section to show the existence of
a double exponential time computable sequence in PR1.

Corollary 2.11. Let dp(n) = 2C" for some constant c. Then, there is an infinite sequence
x, computable in time 22°<'), such that (V~°n) KT~(xn[n)1 > n - 3 log n.

Proof. In the proof of Theorem 2.10, let f (n) = [2 log nJ. Then, at stage k, we need
to simulate U(t, n) for 2 22k÷e many pairs (t, n), each for ~<d~(n)~<2 2~÷c+2 moves. So,
x" can be computed in time 2 2°¢n). []

Remark 2.12. It is easy to check that all of the above results also hold for the
conditional KS-complexity. They also hold for the uniform KT- and KS-complexity.
We first make two general observations about the relationship between the condi-
tional and uniform KT-complexity.

Observation 2.13. (Vs)(Vk) KT~(s[n) ~< KTk(s ; n), where n = Is[.

Observation 2.14. There exist a polynomial p and a constant c such that, for all s of
length n and for all integers k and m,

KTk(s[n)~ < n - m ~ KTp(k)(s;n)<~ n - m + 2 1 o g m+c.

Sketch of proof for Observation 2.14. Assume that U(t, n) prints s in k moves with

It[= n - m . Define a new TM M as follows: on input ((j, u), i), M simulates
U(u, [u]+j) and prints the first i bits of its output. Then, for all i<~ n, M((m, t), i)
prints s i in p (k) moves for some polynomial p. Note that I(m, t)[= 2lml + Itl +2. This
proves Observation 2.14. []

Now, from Observation 2.13, Theorems 2.7 and 2.10 and Corollary 2.11 hold for
the uniform KT-complexity, too. From Observation 2.14, Theorem 2.5 and Corollary
2.6 hold for the uniform KT-complexity, because the function f (n) - 2 log(f(n)) is
unbounded whenever the function f (n) is unbounded. Finally, from Observation
2.14, we have the following weaker form of Theorem 2.8 for the uniform KT-
complexity.

22 IC Ko

Theorem 2.8'. Let f and x be given as in Theorem 2.8. Then, there exist a polynomial
p and a constant c such that

(:l~n) KTe(x" ; n)<~ n - f (n) + 2 log (f (n))+ c.

3. The monotonic KT-complexity and pseudorandom sequences

The relationship between Martin-L/bUs random sequences and program size
complexity has been observed in many forms. Martin-LSf [20] has observed the
following relations:

(3c)(3°°n) K(x"ln)/> n - c
x is random
(Vf, f recursive and Y~ 2 -s<") < oo)(V~n) K(x"ln) >i n - f (n) .

Kolmogorov [14] and Chaitin [4, 5] actually defined a random sequence x to be
the one with high K-complexity almost everywhere. Levin [16, 33] and Schnorr
[24, 25, 26] used a variation of K-complexity, called monotonic operator complexity,
or process complexity, to give an exact characterization of random sequences. We
give, in the following, a brief review of this work.

Definition 3.1 (Schnorr [24, 25]). A TM M is called a monotonic operator if, for
any s and t in the domain of M, M(s) is an initial segment of M (t) whenever s is
an initial segment of t.

The class of monotonic operators are recursively presentable, and hence there is
a universal monotonic operator UM.

Observation 3.2. There exists a universal monotonic operator UM such that, for any

monotonic operator M, there exist a polynomial p and a constant c such that

KUM (s) ~ K~(s) + c.

Definition 3.3. The monotonic operator complexity of a string s is KM(s)=
min{] t[IUM(t) = s}.

Theorem 3.4 (Levin [16], Schnorr [25]). Let x ~ {0, 1} ~. Then x is random in the sense

ofMart in-L~fi f f (::lc)(Vn) KM(x")I> n - c.

In addition, this characterization can be generalized to the definition of finite
random strings and that of infinite random sequences with respect to arbitrary
computable probability measures.

In this section, we follow this approach to define an infinite pseudorandom
sequence to be the one with high monotonic operator complexity with respect to
polynomial time (or, space) bound.

Infinite pseudorandom sequences 23

Definition 3.5. Let k be an integer. The time- and space-bounded monotonic operator
complexities of a string s are

KMTk(s) =min{ l t I IUM(t) prints s in k moves}

and
KMSk(s) =rain{It I [UM(t) prints s using k cells},

respectively.

Following the Convention of Section 2, for any function f, we write KMTI(s) and
KMSI(s) to denote KMTI¢I~I)(s) and KMSI~I~I)(s), respectively.

Definition 3.6
(a) PR2 = {x ~ {0, 1}~°[(Vpolynomial p)(3k)(V~n) KMTP(x ") >I n - (log n)k}.
(b) PSR2 = {x e {0, 1}~[(Vpolynomial p)(::lk)(V°~n) KMSP(x ") t> n - (log n)k}.

The following theorem is a polynomial space analogue of Theorem 3.4.

Theorem 3.7. PSR1 = PSR2.

Proof. (PSR1 ___ PSR2): For a fixed polynomial p, define a function f : {0, 1}*~ N as
follows:

f (s) = max{m - KMSP(sm)Im <~ Isl}.

We claim that f is an FPSPACE-test.
First, we note that, in order to compute f (s) , we need only to simulate UM(t),

for all t of length Itl Isl, each using p(Isl) cells. So, it is clear that f ~ FPSPACE.
Next, if s is an initial segment of t, and i f f (s) = m - KMSP(s m) for some m <-Isl,

then f (t) >t m - KMSP(t m) = f (s) . So, f satisfies the sequential property.
Finally, for each k, we define As = {x ~ {0, 1}~[(3 n) f (x n) >i k}, and check that

Pr(Ak) <~ 2 -k. Assume, by way of contradiction, Pr(Ak)> 2 -k. Then we can find a
finite number of strings s l , . . . , Sh such that

(1) for any / , j~< h, st is not a prefix of sj i f i # j ;
(2) 2% and
(3) KMSP(s,)~<Is, i - k , for all i = 1 , . . . , h .
Property (3) implies that there are h , . - . , th such that UMP(t~) = si and Iti[~< Is~[- k,

for i = 1 , . . . , h. Since UM is a monotonic operator, property (1) implies that h is
not a prefix of tj i f i # j . However, y~h=l 2_lt, l>y~=l 2_ls, l+k> 1, and it implies that
some t~ is a prefix of some t~, i # j , and hence gives a contradiction. So, we have
proved that Pr(Ak)<~ 2 -k, and also the claim.

Now, assume that x e PSR1. Then there is an integer k such that (V~°n) f (x") <~
(log n) k. But, from the definition o f f , this exactly means that (V~n) KMSP(x ") ~>
n - (log n)k. Since this holds for arbitrary polynomials p, we have x e PSR2.

24 BL Ko

(PSR2 c PSR1): Assume that x ~ PSR1. Then, there exists an FPSPACE-test f such
that

(Vk) (3~n) f (x ") > (log n) h.

We need to find a polynomial space-bounded monotonic operator M such that

(Vk)(3~n)(3t , ,) M(t, ,) = x n and [tn[~ < n - (l o g n) k.

For fixed n and k, the set B , , , k = { W l l w l = n , f (w) > (l o g n) g+l} has size #B.,k<~
2~_0o 8 ,,)~+l. Recall that our pairing function (,) is defined as follows: (s, t) = d(s)01 t,
where d(s) is the string obtained by doubling each bit of s. So, [(s, t)l = 2[sl +ltl + 2.
We now define a TM M as follows:

(1) d o m a i n (M) = {(n, t)ll t l = I n - (l o g n)k+~]};
(2) on input (n, t), ignoring the leading O's of t and using t as an integer, M

outputs the tth string in B~.k (if t > #B,.k, then M outputs the first string in B,.k).
It is easy to see that M operates in polynomial space because f e FPSPACE. We

note that if (n, t), (m, u) ~ doma in (M) and (n, t) is an initial segment of (m, u), then
we must have n = m because the first occurrence of "01" in (n, t)= d(n)Olt and
(m, u) = d(m)Olu determines the length of n and m. But, then, It[= [u[and hence,
t = u. This implies that M is a monotonic operator. Furthermore, for each n with
f (x ") > (log n) k+l, M((n , t)) = x" for some t with I(n, t)l n - (l o g n)k+l+2lnl. So,
by the universality of UM, we have

(: l~n) KMSP(x ") ~ n - (l o g n)k+l + 2 log n + c

for some polynomial p and some constant c (since Inl = [log n] + 1). This shows
that x ~ PSR2 and completes the proof. []

For the classes PR1 and PR2, we are not able to show their equivalence. We
observe that if P = PSPACE, then PR1 = PSR1 and PR2 = PSR2 and therefore they
are equivalent. In fact, they are equivalent under the weaker assumption FP = # P.

Observation 3.8. (a) PR2 ~_ PR1 i f FP = #P .
(b) PR1 ~ PR2 i f P = NP.

Proof. (a): Consider the proof of PSR2_cPSR1 of Theorem 3.7. The function
g(n, k, s) = # { t ~ B~,k I t <~ s} is in # P i f f ~ FP. So, if FP = #P , then g ~ FP and hence,
M((n, t)) can be computed in time q(n) for some polynomial q by binary searching
for s such that g(n, k, s) = t.

(b): Consider the p roof of PSR1 _ PSR2 of Theorem 3.7 and define, for each
polynomial p, a function

f (s) = max{m - K M T P (s ') I m <~ Isl}.

Now, let Q={(s , i)l(::lu, lu[~< i) U M (u) prints s in p([s[) moves}. Then, it is clear

Infinite pseudorandom sequences 25

that Q~NP. If P = N P , then Q~P, and so f ~ F P because f (s) =
max{j - i l (sJ , i)eQ}. []

We do not know whether the conditions F P = # P and P= NP are necessary. It
appears to be an interesting open question. In particular, whether P = NP is necessary
for PR1 _ PR2 is closely related to the following question: is the set

A - i - {<s, 0,0J>l(3t, Itl i) U(t) prints s in j moves}

NP-complete? Hartmanis [12] has pointed out the importance of this question in
connection with studies of generalized Kolmogorov complexity.

Another interesting question related to the equivalence of the two defilnitions is
that in case they are not equivalent, which one is a better definition of pseudorandom-
ness. It appears to need further studies before we can give a satisfactory answer to
this question.

We use the above proofs to show the existence of a double exponential time
computable pseudorandom sequence x in PR1.

Corollary 3.9. (a) There is a sequence x ~ PSRI that is computable in space 2 2°<"~
(b) There is a sequence x ~ PR1 that is computable in time 2 2°<")

Proof. (a): By Theorem 3.7, if x satisfies

(V=n) KMS2"(x ") > n - [4 log n J,

then x e PSR1. The KS-complexity version of Corollary 2.11 showed the existence
of an x computable in space 2 2°~'~ which satisfies

(V=n) KS2"(x"ln)> n - [3 log n].

Since KMS2"(s)~ > KS2"(sln)- log n if Isl = n , part (a) follows.
(b): In the proofs of Theorem 3.7 and Observation 3.2(a), we defined, for each

t e s t f and each integer k, a set B.,k and a monotonic operator M such that M((n, t))
prints the tth string in B.,k. Note that the tth string in B,,,k can be found by simulating
f (w) for all w of length n, and so M((n, t)) runs in time 2". p(n) i f f runs in time
p(n). Furthermore, if x~ PR1, then x" occurs among the first 2 "-°°s"J~÷' strings of
B.,k for infinitely many n. In other words, if x satisfies

(V °°n) KMT22" (x ") > n - [4 log nJ,

then x ~ PR1. Now, part (b) follows from Corollary 2.11 and the fact that

KMT2~"(x ") 1> KT2~" (x"ln) - log n. []

The questions of the existence of exponential space computable sequences in
PSR1 and the existence of exponential time computable sequences in PR1 remain

26 K. Ko

open. It seems that Wilber's technique [31] of constructing exponential time compu-
table P-random sets cannot apply to our setting, because our definition of pseudo-
randomness is strictly stronger than his definition (as will be shown in the next
section).

4. Relative frequency and pseudorandom sequences

Based on Von Mises's notion of 'collectives', we may give a third definition of
infinite pseudorandom sequences x ~ {0, 1} ~° as follows (cf. [7, 9, 21, 29, 30, 31]).

Definition 4.1. A sequence x e {0, 1} °° is in PR3 (PSR3) if, for any polynomial time
(space, respectively) computable function f : {0, 1}* -~ {0, 1},

lira #{klk<~ n, f (xk-~)= xk}/n=½.
n -.* o o

In other words, x is in PR3 if, for any polynomial time algorithm which predicts
the nth bit x(n) from the previous n - 1 bits x "-~, the probability of success is no
better than tossing an unbiased coin.

In this section we will show that this definition of pseudorandomness is strictly
weaker than the definitions PR1 and PR2. Thus the definition given above is probably
not adequate in the sense that there exists a sequence x that is pseudorandom by
this definition but for which we may find a polynomial time testing function f such
that f (x n) >i n 1/3 infinitely often. Our results here agree with the analogous results
on random sequences and hence serve as another justification for our definitions
of PR1 and PR2.

We first state several lemmas. The first lemma gives an information-theoretic
bound and is due to Chaitin [4].

Lemma 4.2. Let e be a real number between 0 and ½. Then, for any n >>- 1,

(n)
log [½n-en] ~ n . I-I(e)+¢

for some constant e, where H (e) - - (½ + e) . log(½+ e) - (½ - e) , log(½- e).

Next we define an order < on {0, 1} n. For s e {0, 1} n, let u (s) =the number of l 's
in s =#{klk<~ n, s(k) = 1}. Then, < is defined as follows: s < t if (u (s)<u(t)) or
(u(s) = u(t) and s precedes t under the lexicographic order).

Infinite pseudorandom sequences 27

Lemma 4.3. The function g, defined by g(n, m) = the m-th string in {0, 1} n under order
<, is computable in time p(n) for some polynomial p.

Proof. First, we can determine the number of l ' s in g(n,m) as k=
m i n { j [~ = 0 (7)I> m}. Thus, we need only to find the m'th string in {0, 1} n which has

k--I
k l ' s and n - k O's, where m ' = m - ~ i ~ o (7). Let us call it h(n, k, m').

We note that the leftmost 1 of h(n, k, m') can be determined as the (n - i + l) s t
bit, where i = min{jl (h)~> m'}. (We call the leftmost bit the first bit.) Now, after
determining the leftmost 1 of h(n, k, m'), the rest of the string h(n, k, m'), between
the (n - i + 2) n d and nth bits, is just the m"th string of length i - 1 and having k - 1
l 's , where m" = m ' - (i~). That is, h(n, k, m') = 0n-~lh(i - 1, k - 1, m"). By repeating
the computation of the leftmost 1 in h(i - 1, k - 1, m"), we can get all l ' s in g(n, m) =
h(n, k, m') in k iterations.

It is clear that the above computation runs in time O(n2). []

Lenuna 4.4. The function g', defined by g'(n, t)= the unique number m such that
g(n, m) = t, is computable in time p(n) for some polynomial p.

Proof. The function g' can be computed by reversing the algorithm in the proof of
Lemma 4.3. We omit it here. []

Theorem 4.5. (a) PR1 ~ PR3.
(b) PR2_c PR3.

Proof. The proof is based on the following simple observation: there are relatively
few strings of length n with more than ½ n + en O's, even for a small e. Therefore,
these strings (i.e., strings not in PR3) can be rejected by FP-tests, and can be
computed easily from short TM programs.

For each function f : {0, 1}*--> {0, 1} and string s of length n, define

w(f, s) = #{klk<~ n,f(sk-~)= s(k)}.

Assume that x~PR3 . Then there is a function f e F P such that liminfn_,~o
w(f, xn)/n ~½. Without loss of generality, we assume that l iminf w(f, xn)/n <3
(otherwise, just replace f by f ' (s) = 1 - f (s)) . Thus, we have (3 e > 0) (3 ~ n)
w(f ,x")<-½n-en. We claim that, for each n and k, there are exactly (~) many
strings s of length n such that w(f, s) = k:

Proof of claim: If s has length lsl--- n and satisfies the condition w(f, s) = k, then
there are k positions i l , . . . , ik between 1 and n such that, for each i <~ n, f(s H) = s(i)
iff i ~ { i l , . . . , ik}. Now, if s and t, both of length n, determine the same set of
positions { i l , . . . , ik}, then, by a simple inductive proof, we have s = t. So, each
string s such that w(f, s) = k uniquely determines a set { i~ , . . . , ik}, and there are
exactly (r,) many such strings.

28 IC Ko

~<:'V' Ln/2-enJ Therefore, there are "~/~k=O (~¢) many strings s such that w(f, s)<~½ n -en . By
Lemma 4.2,

log Y. <~log n. < ~ n . H (e) + l o g n + c
~:o t½. - ~,J

for some constant c. Since H(e) < 1 for all e > O, there is a 8 > 0 such that

log • <~(1-B)n.
k = 0

Now, for part (a), we consider the following algorithm M. Let K be the least
>_ co 2_(8i /2)" integer such that K ~- Y.~=I

Algorithm M.

input: s {Let n := Isl}.
begin

for i := 1 to n do
i f f (s ~-1) = s(i) then t(i):= 1 else t(i):= O;

{denote this t as t(f, s)}
for i ' = l to n do

k(i) := [(1-½ 8)iJ - Flog(g'(g t '))] - K;
{g' is defined in Lemma 4.4}

output (max{ k(i) l i <~ n})
end.

The algorithm M computes a function h" {0, 1 }* -> N. We claim that h is an FP-test.
First, by Lemma 4.4, g ' ~ FP and hence h ~ FP. To see that h is a test, we note that,
for each function f, the function As[t(f, s)] is a one-one mapping from {0, 1}" to
{0, 1}". Thus,

{ s l l s l = ,~ h(s)>~ m } = #{tlltl = n, (3i <~ n) k(i)>~ m}

tl

<~ E # { t l l t l = n , g ' (i , ti)<~2 0-8/2)i-"-r}
i = l

n n

~< Y. 2"-ai /2- ' ' -K <~2,,-,,,-x . y. 2 -~8~/2)
i = 1 i = 1

<~ 2 " - ' - K • K <~ 2 " - m

because for each j there are only 2 0 many strings s of length i such that g'(/, s)~< 20.
So, h is a test. Finally, it is obvious from the definition of h that h is a sequential test.

Now, for each x" such that w(f, x ") ~ ½ n - en, we have log(g'(n, x"))<~ (1 - 8)n,
and so h(x")>~½8n-K. Therefore, we have

(38 > 0)(3c)(3~°n) h (x ") >>-½8n - c.

It follows that x ~ PR1, and part (a) is proven.

Infinite pseudorandom sequences 29

For part (b), consider the following algorithm M' .

Algorithm M'.
input: u = (n, t).
begin

if Itl ~ [(1 - 8) n] then undefined
else begin

m := the integer represented by t, ignoring leading zeros;
s := g(n, m); {g is defined in Lemma 4.3}
for i := 1 to n do

if s(i)---1 then v(i) :=f(v i-l) else v(i):= 1 - f (v i - 1) ;
output (v ~)

end
end.

We note that, by our coding scheme for the pairing function (,) , for any ul,
u2~ domain(M') , ul is not a prefix of u2 unless ul---u2. So, M ' is a monotonic
operator. Furthermore, M'((n, t)) outputs the tth string in {0, 1} n under an order

< ' that satisfies the property that w(f, s~)< w(f, s2) implies s~ < ' s2. Thus, for
infinitely many n, x ~ is computed by M'((n, t)) with Itl ~ (1-~)n . Or, there is a
polynomial p such that

(3~n) KMT~(x ") <~ (1 - 8)n + log n.

It follows that x ~ PR2. []

Theorem 4.6. (a) PR1 ~ PR3.
(b) PR2 ~ PR3.

Proof. Let u(s) be the number of 0's in s, i.e., u(s) = #{klk<~lsl, s(k) =0}. We will
construct a sequence x with the following property:

(V°°n)u(x ") ~ n(2 -1 + (2 log n)- l) .

Since lim,~,oo (2 log n) -~ = 0, the relative frequency of 0's in x is ½ and hence x e PR3.
However, n/(2 log n) many extra O's in x" allow us to find a test to reject x n, and
to find a short monotonic TM program to compute x n.

Let y e {0, 1}oo be an arbitrary random sequence (in the sense of Definition 1.3).
Then y c PR1 (and y ~ PR2), and so yE PR3. That is, limn_,oo u(y") /n =½. Without
loss of generality, assume that there is an infinite sequence {no, n~, . . .} such that
u(yn')~½ni. Now, we insert some 0's into y to form a new sequence xE{0, 1}°°:
insert two O's between y(4) and y(5); and insert, for each n > 2 , [2"/n] -
[2"-~/(n - 1)] many O's between y(2 ~) and y(2 n + 1). We claim two properties of x:

(1) x e PR3, and
(2) (:l°°n) u(xn)>~n(2-~+(21ogn)-t).

30 K. Ko

Proof o f claim (1): Assume that x ~ P R 3 , and so there is a function f ~ FP a n d
an e > 0 such that (3~°n) w(f, xn)~½n+en. (Recall that w(f, xn) =
#{k I k <<- n , f (x k-l) = x(k)}.) Define a function f ' as follows: On input s with Is] =
n - 1, first insert two O's between s(4) and s(5) and then insert, for each k > 2 such
that 2 k <~ n - 1, [2k/k] - [2k- l / (k - 1)] O's between s(2 k) ancl s (2k+ 1); call the new

string t; then, output f (t) .
Now consider w(f ' , y,) . Let k = [log nJ. Then,

w(f ' , y") >~ w(f, Xn+[2k/k])-- [2k/k] .

So, we have (::l~n) w (f ' , y ") > ~ ½ n + e n - n / l o g n; or, 1)1
limsup,_~ w(f',n y") ~> ,-~oo\21im 1 + e - I o - ~ =-+2 e.

This contradicts the assumption that y e PR3. So, x must be in PR3.
Proof o f claim (2): F o r each ne{no, n l , . . . } , we have u(yn)~½n. Let k~=

2 tlog , j / [log nJ. Then, for each n e {no, n l , . . . } ,

u(x n+k.) >I ½n + ~ >1 ½n + n/(2 log n).

So, (3°°n) u(x ~) >1 n(2 -1 + (2 log n)- l) .

Next we recall that in the proof of Theorem 4.5, we have shown that there are
<~2 "n(~)+l°g"+c many strings s of length n such that u(s)>~½n+ en. Now replace e
by (2 log n) -1. We observe that lim,_~o 2 1/(4")- (1 - H(r)) = oo. (The second derivative
of 2 -1/(4") has a limit 0 as r tends to 0, and the second derivative of 1 - H (r)
has a limit 4 as r tends to 0.) So, (V°°n) H((2 log n) -1) <~ 1 - n -1/2. This implies
that there are <~ 2 n- ~ */2+log n + c many strings in the set S =
{slls [= n, u(s)>~ n. (2 -1 + (2 log n)-l)}.

For part (a), we consider the function h which, on input s with Isl = n, outputs

m a x { i - [i 1/3] - [log(g'(/, si))] - K li <~ n},

where g'(i, s ~) is the function defined in Lemma 4.4 and K ~ Y-,=I 2-"/~- Then, similar
to the proof of Theorem 4.5(a), we can prove that h is an FP-test. (The only thing
that needs to be checked is that

Pi

#{s IIsl = m} E #{sllsl = i - i l /3-1og(g ' (i , s i)) - K >1 m}
i = 1

n

<~ ~, 2 ~-i. 2i-i~/3-,,,-K<~2.-~.)
i = 1

Now, if u(x ~) ~ n. (2 -1 + (2 log n)-~), then g'(n, t) <~ 2 "-"l/~+~°g n+~ for some constant

c. This implies that

(::lc')(::l°°n) h(x") >I n 1/2 - n 1/3 - l o g n - c',

and hence x ~ PR1, and part (a) is proven.
For par t (b), consider algorithm M" that operates as follows: on input u = (n, t),

if [t[# In - n 1/2 + log n + c], then M"(u) is undefined; otherwise, let m be the integer
represented by t, ignoring leading zeros, and output g(n, m).

Infinite pseudorandom sequences 31

Similar to Algorithm M' in the proof of Theorem 4.5(b), M " is a monotonic TM.
Also, by the estimation of the size of the set S, there is a constant c such that

(3°°n) (3t , Itl ~< n - n~/2+ log n + c) M"((n, t)) = x n.

As a consequence, there is a polynomial p such that

(3~°n) KMTP (x n) <~ n - n 1/3.

and so x~PR2. []

Corollary 4.7. PSR1 ~ PSR3.

Proof. The proofs of Theorems 4.5(a) and 4.6(a) can be carried over for the classes
PSR1 and PSR3. []

We remark that the above proof shows more than just PR1 # PR3. It actually
shows that the relative frequency of O's in a pseudorandom sequence x ~ PR1
converges to ½ faster than the function An[l/log n] to 0. This suggests a stronger
relative frequency requirement for pseudorandom sequences. Namely, a sequence
x s {0, 1} ~° cannot be considered as pseudorandom unless, for all f ~ FP, the relative
frequency A n [w (f , x ") / n] converges to ½ at least as fast as the function
A n [1 / (k . log n)] for any constant k:

5. Concluding remarks

A pseudorandom sequence may be defined in many different forms, depending
upon its application. In this paper we proposed two strong definitions of pseudoran-
dom sequences and compared them with a third, weaker definition. The strong
definitions are not intended to be the criteria for judging random-number generators.
Instead, our purpose is to get better understanding of the structural relations between
the notion of pseudorandomness and the notion of complexity.

One of the main questions left open here is whether there exists an exponential
time computable sequence x that has high polynomial time-bounded KT-complexity
almost everywhere (cf. Corollary 2.11). The priority diagonalization technique of
Meyer and McCreight [21] does not seem applicable to this question. Another
interesting question is to find a necessary and sufficient condition for the relation
PR1 = PR2 (cf. Observation 3.8). These questions ask, in general, what the relation
is between computational complexity and program size complexity, and deserve
further investigation.

Acknowledgment

The author thanks the referee for the helpful reports. In particular, the current
formulation of the definitions PR2 and PSR2 are suggested by the referee. The

32 IC Ko

author is also grateful to Professor Juris Hartmanis and Dr. Osamu Watanabe for
their encouragement.

References

[1] M. Blum, On the size of machines, Inform. and Control 11 (1967) 257-265.
[2] L. Blum, M. Blum and M. Shub, A simple secure pseudo-random number generator, SIAM 1

Comput. 15 (1986) 364-383.
[3] M. Blum and S. MicaH, How to generate cryptographically strong sequences of pseudo random

bits, Proc. 23rd IEEE Symp. on Foundations of Computer Science (1982) 112-117.
[4] G.J. Chaitin, On the length of programs for computing finite binary sequences, i Assoc. Comput.

Much. 13 (1966) 547-569.
[5] G.J. Chaitin, On the length of programs for computing finite binary sequences: statistical consider-

ations, J. Assoc. Comput. Mach. 16 (1969) 145-159.
[6] G.J. Chaitin, A theory of program size formally identical to information theory, J. Assoc. Comput.

Mack 22 (1975) 329-340.
[7] A. Church, On the concept of random sequence, Bull Amer. Math. Soc. 46 (1940) 130-135.
[8] R.P. Daley, Noncomplex sequences: characterizations and examples, J. Symbolic Logic 41 (1976)

626-638.
[9] R.A. Di Paola, Random sets in subrecursive hierarchies, J. Assoc. CompuL Mach. 16 (1969) 621-630.

[10] M. Garey and D. Johnson, Computers and Intractability (Freeman, San Francisco, CA, 1979).
[11] J. Hartmanis, Generalized Kolmogorov complexity and the structure of feasible computations, Proc.

24th IEEE Symp. on Foundations of Computer Science (1983) 439-445.
[12] J. Hartmanis, Personal communication, 1995.
[13] ILM. Karp and ILJ. Lipton, Some connections between nonuniform and uniform complexity classes,

Proc. 12th A C M Syrup. on Theory of Computing (1980) 302-309.
[14] A.N. Kolmogorov, Three approaches to the quantitative definition of information, Problems Inform.

Transmission 1 (1965) 1-7.
[15] L. Levin, Universal sorting problems, Problems Inform. Transmission 9 (1973) 265-266.
[16] L. Levin, On the notion of a random sequence, Soviet Math. Dold 14 (1973) 1413-1416.
[17] D.W. Loveland, A variant of the Kolmogorov concept of complexity, Inform. and Control 15 (1969)

510-526.
[18] P. Martin-Lff, On the definition of random sequences, lnfornL and Control 9 (1966) 602-619.
[19] P. Martin-L/if, The literature on Von Mises' Kollektivs revisited, Theor/a 35 (1969) 12-37.
[20] P. Martin-L/if, Complexity oscillations in infinite binary sequences, Z~ Wahrsch. Verw. Gebiete 19

(1971) 225-230.
[21] A.R. Meyer and E.M. McCreight, Computationally complex and pseudorandom zero- one valued

functions, in: Z. Kohavi and A. Paz, eds., Theory of Machines and Computations (Academic Press,
New York/London, 1971) 19-42.

[22] N. Pippenger, On simultaneous resource bounds, Proc. 20th IEEE Syrup. on Foundations of Computer
Science (1979) 307-311.

[23] J. Plumstead, Inferring a sequence generated by a linear congruence, Pro," 23rd IEEE Symp. on
Foundations of Computer Science (1982) 153-159.

[24] C.P. Schnorr, ZuJ'dUigkeit und Wahrscheinlichkeit, Lecture Notes in Mathematics 218 (Springer,
New York, 1971).

[25] C.P. Schnorr, Process complexity and effective random tests, 1 CompuL System SoL 7 (1973) 376-388.
[26] C.P. Schnorr and P. Fuchs, General random sequences and learnable sequences, J. Symbolic Logic

42 (1977) 329-340.
[27] A. Shamir, On the generation of cryptographically strong pseudorandom sequences, Proc. 8th

Internal Coil on Automata, Languages, and Programming (1981).
[28] M. Sipser, A complexity theoretic approach to randomness, Proc. 15th ACM Symp. on Theory of

Computing (1983) 330-335.
[29] R. Von Mises, Grundlagen der Wahrscheinlichkeitsrechnung, Math. Z 5 (1919) 52-99.

Infinite pseudorandom sequences 33

[30] A. Wald, Die Widerspruchsfreiheit des Kollektivbegriffes der Wahrscheinlichkeitsrechnung, Ergeb-
nisse eines Math. Kolloquiums 8 (1937) 38-72.

[31] R. Wilber, Randomness and the density of hard problems, Proc. 24th 1EEE Syrup. on Foundations
of Computer Science (1983) 335-342.

[32] A.C. Yao, Theory and applications of trapdoor functions, Proc. 23rd IEEE Syrup. on Foundations
of Computer Science (1982) 80-91.

[33] A.IC Zvonkin and L.A. Levin, The complexity of finite objects and the development of the concepts
of information and randomness by means of the theory of algorithms, Russian Math. Survey 25
(1970) 83-124.

