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SUMMARY

Shape is an indicator of cell health. But how is the
information in shape decoded? We hypothesize
that decoding occurs by modulation of signaling
through changes in plasma membrane curvature.
Using analytical approaches and numerical simula-
tions, we studied how elongation of cell shape
affects plasma membrane signaling. Mathematical
analyses reveal transient accumulation of activated
receptors at regions of higher curvature with
increasing cell eccentricity. This distribution of acti-
vated receptors is periodic, following the Mathieu
function, and it arises from local imbalance between
reaction and diffusion of soluble ligands and recep-
tors in the plane of the membrane. Numerical simula-
tions show that transient microdomains of activated
receptors amplify signals to downstream protein
kinases. For growth factor receptor pathways,
increasing cell eccentricity elevates the levels of acti-
vated cytoplasmic Src and nuclear MAPK1,2. These
predictions were experimentally validated by chang-
ing cellular eccentricity, showing that shape is a
locus of retrievable information storage in cells.

INTRODUCTION

Many cellular factors affect spatial dynamics of signaling. The

presence of the lipid rafts in plasma membrane (Allen et al.,

2007; Lingwood and Simons, 2010; Pike, 2009), cytoskeleton

network (Ahmed et al., 2007; Allen et al., 2007; Deshpande

et al., 2006; Iglic et al., 2006; Ten Klooster et al., 2006; Lacayo

et al., 2007; Lingwood and Simons, 2010; Pike, 2009), scaf-

folding proteins (Allen et al., 2007; Lingwood and Simons,

2010; McMahon and Gallop, 2005; Pike, 2009; Westphal et al.,

2000), and location of intracellular organelles (Ahmed et al.,

2007; Campello and Scorrano, 2010; Deshpande et al., 2006;

Freche et al., 2011; Iglic et al., 2006; Ten Klooster et al., 2006; La-

cayo et al., 2007) all play important roles in controlling the spatial

as well as temporal dynamics of signaling. But what about cell

shape? It is well established that cell shape is controlled by
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both physical properties of the plasma membrane and the

biochemical reactions involving membrane components and

the underlying cytoskeleton, most often the actin filament

network (Döbereiner et al., 2004; Dubin-Thaler et al., 2004,

2008; Giannone et al., 2007; Mogilner and Keren, 2009; Xiong

et al., 2010). The intracellular signaling network activated by

extracellular ligand binding to receptors in plasma membrane

utilizes multiple signaling pathways containing small GTPases

to regulate the actin cytoskeleton and thus control cell shape

(Rangamani et al., 2011). So the shape of cells can be consid-

ered as a repository of information that flows through the cell

signaling network. Is this information retrievable? If so, what

could be the mechanisms of retrieval? These questions,

although very fundamental in cell biology, also have translational

relevance. For more than 100 years, the field of pathology has

had as one of its major foci the observation of cell shape and tis-

sue organization to identify disease states. This is done with pre-

cision, albeit in an empirical manner. If we were to understand

how information in cell shape can be retrieved and utilized by

cells, then there is the possibility that we can identify the mech-

anisms that relate cell shape to disease states.

The central hypothesis for this study is that cell shape can con-

trol signal transduction at the plasma membrane. By doing so,

the information stored in cell shape can be retrieved and used

to modulate cellular responses to extracellular signals. Such a

hypothesis is impossible to answer solely by experimentation,

as changing cell shape by plating cells on patterned surfaces

affects cytoskeleton organization and dynamics (Ahmed et al.,

2007; Allen et al., 2007; Deshpande et al., 2006; Iglic et al.,

2006; James et al., 2008; Ten Klooster et al., 2006; Lacayo

et al., 2007; Lingwood and Simons, 2010; Pike, 2009) that in

turn regulate cell signaling. Hence, a theoretical approach is

essential to determine whether cell shape can regulate signal

transduction at the plasma membrane.

The fusiform shape is often associated with transformed cells.

An early experimental study showed that cell shape controls pro-

liferation (Folkman and Moscona, 1978). These experimental

observations, in conjunction with our hypothesis, allowed us to

formulate the following question: could the curvature of the

plasma membrane result in the spatial gradients of activated

signaling components in the plane of the membrane? To answer

this question, we used reaction-diffusion formulations with ho-

mogeneous initial conditions and analyzed the effect of shape
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of the boundary on the spatial distribution of activated signaling

components in the plane of the plasma membrane and subse-

quently in the cytoplasm as a function of time. We focused on

ellipses as cell shapes because neoplastic transformation leads

to cells acquiring a fusiform shape that is close to an ellipsoid

(Figure S1 available online) (Campello and Scorrano, 2010; Kim

et al., 1999; McMahon and Gallop, 2005). To determine whether

cell shape by itself canmodulate plasmamembrane signal trans-

duction, our mathematical model and numerical simulations did

not include cytoskeletal regulation of membrane signaling or the

presence of lipid rafts in themembrane. In the following sections,

we briefly describe a mathematical model in both two and three

dimensions and use it to generate numerical simulations and

predictions. We then show that the predictions from the numer-

ical simulations can be observed experimentally.

RESULTS

Mathematical Model for Membrane Gradients of
Activated Signaling Components
Consider the following reaction, where A is a component in solu-

tion (extracellular or cytoplasmic component) and X is a mem-

brane component. When A binds to X on the membrane, it forms

B, which is also a membrane component. This is shown in

Figure 1A.

A+X!
kon

koff
B (Equation 1)

In the cytoplasm, A is free to diffuse. X and B are limited to the

plasma membrane and are free to diffuse along the plane of

the membrane. The dynamics of A in the cytoplasm are gov-

erned by

vCA

vt
=DAV

2CA (Equation 2)

where CA is the concentration of A (in molecules/mm3), and DA is

the diffusion coefficient (mm2/s) of A.

The boundary condition accounts for the balance between

diffusive flux and reaction rate at the boundary. This is given by

DAðn$VCAÞ=�konCAjvUNX + koffNB (Equation 3)

where kon, (mm
3s�1molecules�1) and koff are the reaction rate

constants (s�1), NX and NB are the concentrations of X and B

on the membrane, respectively (in molecules/ mm2), n is the

unit normal to the membrane at every point along the curve,

and CAjvU is the concentration of A at the boundary.

Similarly, membrane components X andB satisfy the following

equations

vNX

vt
=DXV

2NX � konCAjvUNX + koffNB (Equation 4)

vNB

vt
=DBV

2NB + konCAjvUNX � koffNB (Equation 5)
C

where DX and DB are the diffusion coefficients of X and B,

respectively. Accordingly, NX and NB must satisfy periodic

boundary conditions because the domain is closed. We assume

that X has a uniform distribution in the membrane initially with a

valueNX0 (molecules/mm2), and A has a uniform cytoplasmic dis-

tribution of CA0 (molecules/mm3). Initially, the density of B is zero

along the membrane.

We solved the above system of equations for a spherical and

ellipsoidal geometry using separation of variables and analyzed

the roleofcurvature in thegenerationofgradientsofNB in theplane

of themembrane. The solution to the system of equations evolves

similarly in both coordinates except the final formof the equations.

In many cases, only one surface of the cell is exposed to the

stimulus. Therefore, simplification to a two-dimensional (2D)

system is reasonable. For further simulations, we used the 2D

geometry because it allows us to study the effect of curvature

variation along a single axis. However, all results can be readily

extended to three-dimensional (3D) models, and although the

quantitative behavior of the membrane and cytoplasmic com-

ponents may vary depending on the eccentricity and size of

the ellipsoid, the angle-dependent wave function remains intact.

In the case of a first-order reaction, we can obtain analytical

solutions to the reaction-diffusion system as Mathieu functions

in elliptic coordinates and Bessel functions (Arscott, 1964) in

polar coordinates. We only show the final equations in the ellip-

tical coordinates system here, and the complete derivation is in

the Supplemental Information.

In elliptical coordinates, the final equations for radial and

angular coordinates take the following form:

v2U

vm2
� ðl � 2u coshð2mÞÞU= 0 (Equation 6)

v2V

vn2
� ðl � 2u coshð2nÞÞV = 0 (Equation 7)

Here, U(m) and V(n) are the radial and angular functions for NB,

respectively; m is the equivalent of the radius for the ellipse,

and m = m0 defines the ellipse; n is the angle going from 0� to

360�. The quantities l and u are given as

l =

�
a2 sinh2

m0 +
a2

2

�
gDA

ðDA � DBÞ (Equation 8)

u=
a2gDA

4ðDA � DBÞ (Equation 9)

where a is the distance between the two foci of an ellipse, and g

is the effective reaction rate in spatial coordinates at the bound-

ary (see Supplemental Information). Equations 6 and 7 are the

modified Mathieu and the Mathieu differential equation, respec-

tively (McLachlan, 1947). There is no analogous solution like the

m = 0 (see Equation S33) mode for the angular dependence,

V(n). The solution to the Mathieu functions is a series summation

of sines and cosines, and it inherently has an angular depen-

dence. The solution to these equations was computed

numerically.
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Figure 1. Simulations of the Effect of Membrane Curvature on the Transformation of Homogeneous Initial Distribution of Signaling Com-
ponents to Transient Inhomogeneities in the Membrane and the Cytoplasm

(A) Signaling from the cytoplasm to themembrane. (i) The cytoplasmic component A binds to the plasmamembrane to formmembrane component B. A is free to

diffuse in the cytoplasmic volume, whereas B has lateral mobility in the plane of the membrane. The cartoon below the reaction scheme illustrates that, in an

ellipsoid, all 2D cross-sections passing through the center yield ellipses. (ii) Membrane surface distribution of B in 3D at 10 and 30 s in a sphere and two ellipsoids.

(legend continued on next page)
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Numerical Simulations

Partial differential equations resulting from the reaction diffusion

systemwere solved numerically using the Virtual Cell suite (Loew

and Schaff, 2001). The volume component A can be present

either in the cytoplasm (Figure 1A) or extracellular space (Fig-

ure 1B). In either case, interaction with the membrane depends

on the local curvature. Therefore, we conducted simulations

for two conditions: (1) when component A is in the cytoplasm

(Figure 1A) and (2) when A is in the extracellular space

(Figure 1B).

We conducted simulations using 3D geometries. When the

volume component A is present in the cytoplasm, there is

no spatial variation of membrane component B along the

membrane for a sphere. However, as the eccentricity of the

ellipsoid increases, the membrane distribution becomes curva-

ture dependent at early times. In this case, the concentration

of B is lower at the tip than at the body (Figure 1A, ii). In an ellip-

soid, there are surface gradients along all three axes because

every cross-section passing through the center of an ellipsoid

is an ellipse (see Figure 1A, i, inset).

The system of equations for the 2D reaction-diffusion model

was implemented using an elliptical geometry with eccentricity

0.999, and the concentrations of A and B were computed as a

function of time (Figure 1A, iii). This geometry was chosen as it

is similar in shape of elongated cells characteristics of those

that have undergone neoplastic transformation (see Figures

S1A–S1C) (Kalluri, 2009; Kalluri and Zeisberg, 2006; Young

et al., 2006). At time zero, as per the initial conditions, CA is

homogeneous in the cytoplasm, andNB is zero on themembrane

(Figure 1A, iii). At 30 s, bothCA andNB demonstrate a concentra-

tion gradient (Figure 1A, iii). Furthermore, the reaction flux also

shows an angular dependence (Figure 1A, iii). The angular

dependence of NB varies in time during the course of the simu-

lation (Figure 1C, v). The angular dependence of the membrane

gradient is a result of theMathieu functions. In fact, the firstmode

of the Mathieu sine function shows the same periodicity and

qualitative behavior (McLachlan, 1947) as that of the membrane

gradient of NB.

When A is present in the extracellular space, the curvature

dependence is reversed (Figure 1B). As expected, a spherical

geometry does not exhibit any spatial variation of B along the

membrane. As the eccentricity of the ellipsoid increases, the cur-

vature-dependent gradients can be observed transiently (Fig-

ure 1B, ii). The membrane gradient exhibits a Mathieu cosine

function (Figure 1B, iii). This is because the surface-to-volume

relationships are reversed. Therefore, depending on the location

of the volume component (cytoplasmic or extracellular), the

regions of high curvature (q = 0) will have minimum or maximum

concentration, respectively.We also testedwhether the shape of

the outer bounding box (similar to extracellular space) would
The needle-shaped cell shows a transient spatial inhomogeneity in the membran

Initial concentration of A in the cytoplasm is 2 mM, and initial distribution of B on th

axes of the ellipsoid and determine its shape. For a sphere, a = b = c = radius o

geometry. Shown are the initial distribution of A (2 mM in the cytoplasm) and B (0 m

B on themembrane at 30 s, and reaction rate along themembrane at 30 s, and ang

sine function.

(B) Same as in (A) except species A is in the extracellular space. The surface-to-

See also Figure S1.

C

affect the membrane pattern, and we see that, when A is present

in the extracellular space (such as a ligand for a membrane

bound receptor), the shape of the outer bounding box does

not qualitatively affect the nature of the membrane gradient

(Figure S1D).

When the reaction pathway is unidirectional toward the

membrane—that is, extracellular ligand binding the receptor

(Figure 1B) or the intracellular component binding the receptor

(Figure 1A)—the effect of curvature is as described by the theo-

retical analysis. However, when both intracellular and extracel-

lular components bind themembrane-bound receptor, the effect

of curvature will depend on the relative rates of reaction and con-

centrations of the reactions (extracellular species A / mem-

brane species B ) intracellular species C). This effect can be

explained by a simulation (Figure S1E) in which both an extracel-

lular and a cytoplasmic component bind simultaneously (within

our timescale) to the membrane. Because signal transduction

at the cell surface almost always involves near-simultaneous

binding of ligand to the receptor on the outer surface and cyto-

plasmic signaling components on the inner surface, we tested

and found that simultaneous binding of cytoplasmic and extra-

cellular components to the membrane can also result in curva-

ture-dependent membrane gradients of B (Figure S1E). Thus, a

homogeneous initial distribution can be converted into a

signaling microdomain by the curvature of the membrane (i.e.,

cell shape). In addition to curvature, the directionality of the reac-

tions is also important for curvature-dependent gradients of

components restricted to the boundary (i.e., plasmamembrane).

Mechanism Underlying Dynamics of Membrane
Gradient of Signaling Components
Local Competition between Reaction and Diffusion

What is the physical basis for this differential distribution along

the boundary (i.e., the plasma membrane)? The process of free

diffusion works toward homogenizing concentration gradients;

i.e., Fickian diffusion eliminates concentration gradients over a

length scale. On the other hand, chemical reactions are occur-

ring everywhere along the cell membrane, and the local

surface-to-volume ratio establishes concentration differences

along themembrane. The balance between these two processes

is represented by the Thiele modulus (F), a dimensionless num-

ber. The Thiele modulus is used in chemical engineering to char-

acterize processes that involve reaction diffusion on immobilized

surfaces such as catalyst pellets. In those cases, the typical

length scale is the size of the catalyst pellet. In the case of ellip-

tical cell shapes, the radius of curvature is the natural choice for

length scale. The radius of curvature, Rc, captures how curved

the membrane is at any given point and is distinct from the dis-

tance from the center of the ellipse to the membrane. The radius

of curvature is defined as the radius of the osculating circle that
e concentration of B. The dimensions of the shapes are shown on the panels.

e membrane is 0 molecules/mm2. The values of a, b, and c are the semiprincipal

f the sphere. (iii) Simulations of the distribution of signaling components in 2D

olecules/mm2), concentration of A in the cytoplasm at 30 s, molecular density of

ular dependence of membrane density of B at different times follows aMathieu

volume relationship is reversed, and this results in a Mathieu cosine function.

ell 154, 1356–1369, September 12, 2013 ª2013 Elsevier Inc. 1359
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Figure 2. Angular Dependence of Local Thiele Modulus in Elliptically Shaped Cells

(A) Local Thiele modulus varies along the angle in an ellipse and results in competing reaction and diffusion processes along themembrane. The range of the local

Thielemodulus also increases with increasing eccentricity of the ellipse. Inset shows a reference ellipse with the different anglesmarked. The red circle shows the

osculating circle that determines the radius of curvature at the point q = 0.

(B) The global timescales from analysis and numerical simulations follow similar dependence on eccentricity. Note that the simulation includes the timescale of

the reaction, whereas the analysis is based on size and diffusivity alone.

(C) The fold change in component B along the membrane is calculated by normalizing the membrane concentrations by the value of B at q = 0. The fold change in

B depends on the eccentricity of the ellipse, and as the ellipse becomes more elongated (compare ε = 0.9 to ε = 0.999), the fold change in B increases.
can be drawn at each point along the curve; it is the inverse of

curvature. At q = 0, the ellipse is highly curved, and a small circle

(red circle in Figure 2A, inset) will fit in this circle. Hence, Rc is

small here.

Flocal =Rc

ffiffiffiffiffiffiffi
kon
DB

s
(Equation 10)

The competing processes of reaction and diffusion can be

demonstrated by computing the local Thiele modulus (Equation

10 and Figure 2A). At q = 0, Rc is small, therefore Flocal is small.

Along the circumference of the cell, Flocal varies from �0.1,

(a diffusion-limited regime) to >1,000 (a reaction-limited regime).

Hence, the gradient of A in the cytoplasm follows the membrane
1360 Cell 154, 1356–1369, September 12, 2013 ª2013 Elsevier Inc.
gradient because closer to q = 0, reaction dominates, and closer

to q = p/2, diffusion dominates.

As a result, the local reaction rate along the boundary depends

on the local curvature (Figures 1A, iii, and 1B, iii). Consider q =

0 in Figure 2A; here, the local surface-to-volume ratio is high

because curvature is high. Therefore, the contribution of reaction

alone (per membrane unit area) is small—more A gets converted

to B at the membrane, and there is a depletion of A in the local

volume with a minor increase in NB. In this local region, the pro-

cess is diffusion limited because the reaction depletes A much

faster than diffusion of A from the inside of the cytoplasm. In

contrast, at q = p/2, the distance for A to travel from the center

to the membrane is smaller; therefore, the process is less diffu-

sion limited.WhenA is present in the extracellular space, the sur-

face-to-volume ratio relationships are reversed (more at q = 0,



less at q = p/2), and this is captured in the volume gradient of A,

the membrane gradient of B, and the local reaction rate

(Figure 1B).

Global Timescales and Effect of Eccentricity

Howdo the temporal characteristics of distribution at the bound-

ary (i.e., plasma membrane) arise? The transient membrane in-

homogeneities resulting from the shape of the cell are governed

by a global timescale that captures the time required for the

gradient to be abolished. We estimate the time required for

gradient elimination as the difference between diffusion time at

the major axis (r1) and time at the minor axis (r2) (Equation 11).

t =
r21 � r22
4DA

(Equation 11)

The diffusion-limited ‘‘supply vs. demand’’ causes gradient for-

mation, and thus the difference in diffusion times is a good indi-

cator of the characteristic gradient relaxation time. We compare

the computed timescale with the time required to achieve NB(q =

0) = NB(q = p/2) in the simulations (Figure 2B) and see that the

dependence of the timescale on eccentricity is similar. The simu-

lation time includes reaction lifetime and diffusion time, although

the analysis is only considering the diffusion.

In the case of a circle, the only acceptable mode of solution is

when the mode number m is zero. This gives an exponential

decay as the time-dependent solution (Equation S22). In elliptical

coordinates, the mode numbers q (Equation S36) are not zero.

They capture the different oscillatory patterns of the harmonic

solutions of the Mathieu functions. Therefore, there are multiple

contributions to the time-dependent solution. Each of these

modes contributes to the final solution of the reaction-diffusion

equation, and each mode converges to steady state with its

own timescale. Areas that are closer to the zero point of the

long-lasting modes would converge to steady state earlier than

the others. As the eccentricity of the ellipse increases, more

modes are required, and the significance of the different time-

scales increases. Because relaxation time increases dramati-

cally with eccentricity, cell shape is a key determinant of how

long the transient inhomogeneity will last along the membrane.

The increase in the concentration ofNB depends on the eccen-

tricity of the ellipse (Figure 2C). As the eccentricity increases, the

curvature range gets wider and the gradient gets steeper. There-

fore, even if we start with the same concentration of a biochem-

ical species at all locations, the shape of the cell will dynamically

affect the spatial distribution of the activated signaling compo-

nent in response to amembrane-delimited biochemical signaling

event.

Model Predictions
Using our theoretical model, we make the following predictions

that may be tested in numerical simulations and experiments.

(1) A circular cell shape will have a homogeneous spatial activa-

tion of a membrane-bound receptor by a soluble ligand. Spatial

distribution of activated receptor depends on the local curvature

of the cell membrane. The persistence of a spatial gradient will

depend on the relative rates of the reactions. (2) The transient

spatial inhomogeneity at the plasma membrane can affect
C

downstream reactions in a biochemical signaling pathway. As

a result, there can be transient spatial gradients of the signaling

components in the cytoplasm. (3) The effect of local curvature

may also be seen in the cell nucleus. If the nucleus is elongated,

then signaling interactions at the nuclear membrane will show an

increase in activated signaling components in the nucleus.

In testing these predictions by numerical simulations, we had

to introduce two additional details to make the simulations real-

istic: (1) we assumed near-simultaneous binding of agonist to

receptor on the outside of the cell and recruitment of the appro-

priate signaling component from the cytoplasm and (2) inhomo-

geneous distribution of receptors as the starting condition,

based on our observations described below, that receptors

are present in higher density at the tips of elliptically patterned

cells.

Numerical Simulations and Experimental Testing
GPCR

We simulated the distribution of the bradykinin receptor, a Gq/11-

coupled receptor in circular and elliptical cells. We chose this re-

ceptor type because of the availability of good antibodies that

allow us to study the native receptor in the cell. In response to

activation by bradykinin, this receptor rapidly recruits b-arrestin

(Gera et al., 2011; Philip et al., 2007). The lists of reactions, kinetic

parameters, and diffusion coefficients are provided in Tables S1

and S2. As a starting point, we assumed that the initial distribu-

tion of the receptor was uniform (Figure 3A). Our simulations

showed that, at early times after simulation, the receptors had

a curvature-dependent distribution, with higher concentration

on the cell body and lower concentration on the tip.

To test the predictions of this model, we manipulated cell

shape by plating rat aortic smooth muscle A-10 cells on

patterned surfaces that were either circular or elliptical. The

plating of cells onto elliptical patterns always resulted in more

receptors at the tip (Figure 3E).We then testedwhether a nonuni-

form initial distribution (Figure 3B) as seen in the plated cells

affected the spatial distribution of the receptor upon activation.

We found that a similar curvature-dependent inhomogeneous

receptor at early times after agonist addition could be seen, irre-

spective of the starting distribution (Figure 3B). Although we did

not explore the causes of the initial inhomogeneous initial distri-

bution, it is likely that this is related to plating in the presence of

serum followed by serum starvation, a protocol that is essential

for cells to adhere to the patterned surface. These predictions

were tested experimentally in micropatterned A-10 cells (see

Experimental Procedures).

The distribution of receptors in elliptical and circular cells is

shown in Figures 3C and 3D. Experimental measurements of

the receptor distribution in circular cells show that, before and

after stimulation, the cells had a uniform distribution of receptors

(Figure 3E). Experiments also showed that, in elliptical cells, the

distribution of receptors prior to stimulation was nonuniform. The

elliptical cells had higher receptor numbers at the tip than in the

cell body. This is similar to the initial distribution shown in Fig-

ure 3B. One minute after stimulus, the elliptical cells showed a

lower concentration of receptors in the tip than in the body (Fig-

ure 3E), similar to the predictions from the numerical simulations.

We compared the ratio of receptor numbers in the cell tip to the
ell 154, 1356–1369, September 12, 2013 ª2013 Elsevier Inc. 1361



Figure 3. Numerical Simulations and Experiments on the Plasma Membrane Distribution of Bradykinin Receptor in Circular and Elliptical

A-10 Cells

Simulation of the spatial distribution of active bradykinin receptor at 1min for a uniform initial distribution. The concentration of active bradykinin receptor is higher

in the body than in the tips. Please note that this simulation utilizes signaling components binding to the plasmamembrane from both the outside (bradykinin) and

inside (b-arrestin) of the cell (see Figure S1E).

(A) Simulation of the spatial distribution of active bradykinin receptor at 1 min for a nonuniform initial distribution of the receptor.

(B) Representative circular cell used for analysis. Arrows indicate the region of the plasma membrane where body and tip measurements were taken.

(C) Representative elliptical cell used for analysis. Arrows indicate the region of the plasma membrane where body and tip measurements were taken.

(legend continued on next page)
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cell body in circular cells (Figure 3F) and elliptical cells (Figure 3G)

and found a good match between model predictions and exper-

imental observations.

Growth Factor Receptors

Growth factors such as epidermal growth factor (EGF) and

platelet-derived growth factor (PDGF) activate the membrane-

bound receptors, which results in downstream recruitment of

adaptors such as SHC and the Grb2/Sos complex. Grb2/Sos

is an adaptor-guanine nucleotide exchange factor complex for

Ras and promotes the exchange of GDP for GTP on Ras leading

to MAPK1,2 activation (Asthagiri and Lauffenburger, 2001;

Bhalla et al., 2002; Fujioka et al., 2006; Hall, 2005). This pathway

has been extensivelymodeled (Bhalla and Iyengar, 1999; Schoe-

berl et al., 2002). The complete set of reactions and parameters

is presented in Tables S3, S4, and S5. The receptor activation by

the ligand (present in the extracellular space) results in a mem-

brane gradient with regions of high curvature having higher con-

centrations of ligand-bound activated receptor (Figure S1D).

However, when the cytoplasmic components such SHC and

Grb2/Sos bind the activated receptor, the regions of lower cur-

vature now have a higher active EGFR concentration (Figures

4A and S1E).

When the initial membrane distribution of EGFR is uniform

(Figure 4A), the active receptor shows transient curvature

dependence, with higher receptor numbers at the cell body

than at the tip. This effect is also observed when the initial distri-

bution of EGFR is nonuniform as shown in Figure 4B. To test our

prediction that activated growth factor receptor is in homo-

geneously distributed in a curvature-dependent manner, we

conducted experiments using monkey kidney tissue-derived

COS-7 cells that were grown to circular and elliptical shapes

using microfabricated surfaces (see Supplemental Information).

Most cells fully complied with the induced geometries and took

ellipsoidal shapes (Figure S2). These cells were then transfected

with EGFR-eGFP, and fluorescence correlation spectroscopy

(FCS) was used to quantify receptor dynamics. Unstimulated

cells showed a significant difference in the number of molecules

(or concentration) between cell tip and body in elliptical cells

(Figure 4E). Upon EGF addition to the cell medium, we observed

an increased concentration of EGFR at the body and reduced

concentration at the tips (Figures 4D and 4E). Circular cells

showed no difference in receptor numbers in either control

case or upon EGF addition (Figures 4C and 4E). Comparing

the ratio of receptor number in the cell tip to cell body (Figures

4F and 4G) shows that the model predictions are validated by

the experimental measurements.

Experimentally determined diffusion coefficients of EGFR

between the body and the tip in stimulated elliptical cells differed

significantly. A similar difference was also seen in tips before

and after EGF stimulation (Figure S2E). Hence, we ran a set of

simulations varying the diffusion coefficient of EGFR. In the

experimentally observed range, we did not see a significant
(D) Experiments determining levels of bradykinin receptor in the body or tip of circu

between circular cells and elliptical cells. Data ± SD are shown. p values indicat

(E) Ratio of receptor intensity in cell tip to cell body in circular cells.

(F) Ratio of receptor intensity in cell tip to cell body in elliptical cells.

See also Tables S1 and S2.

C

effect of diffusion coefficients on EGFR microdomains (Fig-

ure S3A). Because the levels of the transfected EGFR-eGFP

are variable, we also ran a set of simulations to determine

whether EGFR microdomains varied with overall receptor con-

centration. No significant effect was found in the experimentally

observed range (Figure S3A).

The necessity of binding dynamics for the inhomogeneous

distribution was tested by determining the distribution of a

constitutively expressed yellow fluorescent protein (YFP)-

labeled plasma membrane marker. When we measured the

distribution of a YFP-labeled membrane marker (e-YFP-mem,

Clontech), which is a doubly palmotiylated fusion protein con-

taining residues 1–20 of GAP-43, no differences were found

between circular and elliptical cells (Figures S2F and S2G). Over-

all, these simulations and experiments validate the first predic-

tion from our mathematical analysis for two different types of

membrane receptors.

The curvature-dependent transient gradient of EGFR on the

membrane could have functional consequences for MAPK1,2

activation, which regulates gene expression in the nucleus to

trigger cellular proliferation. We simulated the EGFR signaling

pathway to MAPK1,2 activation and accumulation in the nucleus

and explored the consequences of circular versus elliptical

shapes. The concentration profiles of active Raf, MEK, and

MAPK1,2 in the cytoplasm are greater in the elliptical cell shape

than in the circular cell shape (Figure S4). We assumed elon-

gated nuclear geometries in elongated cells because trans-

formed cells have elongated nuclei (Dean et al., 2010).

The simulations show that the spatial distribution of MAPK1,2

in the cytoplasm (Figure 5A) and in the nucleus (Figure 5B) is

nearly homogeneous because of the high diffusivity of MAPK

in the cytoplasm. Further, average MAPK1,2 concentration in

the nucleus and the concentration of MAPK1,2 in the cytoplasm

are higher in the ellipse than in the circle (Figure 5C, i and ii). This

is because the nuclear shape is elongated in the elliptical cell,

which allows for a curvature-dependent reaction flux at the

boundary of the cytoplasm-nucleus interface, similar to that at

the extracellular space and the plasma membrane. The concen-

tration of activated MAPK1,2 also depends on the eccentricity of

the nucleus (Figure S4). In the ellipse, the activation of MAPK1,2

has a steeper initial increase when compared to the circle (Fig-

ure S5). The early increase in active MAPK1,2, combined with

the increase in time for dissipation of gradient in an ellipse, can

have a large impact on cellular decision-making processes

even for small increases in the concentration ofMAPK1,2. There-

fore, transformed cells with the same number of growth factor re-

ceptors as normal cells can display enhanced levels of MAPK1,2

in the nucleus.

We experimentally tested the prediction that elliptical cells will

show higher MAPK1,2 activity in the nucleus as compared to cir-

cular cells. Initially, we did this in live-cell imaging experiments.

For this, COS-7 cells were transfected with a MAPK1,2 Förster
lar and elliptical cells (n = 5). The normalized fluorescence intensity is compared

e statistical difference according to Mann-Whitney tests.
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Figure 4. Numerical Simulations and Experiments on the Membrane Distribution of EGFR-eGFP in Circular and Elliptical COS-7 Cells

(A) Simulation of the spatial distribution of active EGFR-eGFP at 5 and 10min. The concentration of EGFR is higher in the body than in the tips. Please note that this

simulation utilizes signaling components binding to the plasma membrane from both the outside (EGF) and inside (SHC and GRB2) of the cell (see Figure S1E).

The initial distribution of EGFR is uniform in this case.

(B) Simulations of the spatial distribution of active EGFR-eGFP at 5 and 10 min. The initial distribution of EGFR is nonuniform in this case. The concentration of

EGFR is higher in the body than in the tips.

(C) Representative circular cell transfected with EGFR-eGFP. Arrows indicate the region of the plasmamembrane where body and tip measurements were taken.

(D) Representative elliptical cell used for FCS analysis. Arrows indicate the region of the plasma membrane where body and tip measurements were taken.

(E) Experiments determining levels of EGFR-eGFP in the body or tip of elliptical cells (n = 14). Numerical values were extracted from the autocorrelation function fit

to fluorescence correlation data for unstimulated data. Cells were measured after 12 hr of serum starvation; for stimulated data, measurements were started

immediately after addition of 100 ng/ml EGF and were completed within 8 min. Data ± SD are shown. p values indicate statistical difference according to Mann-

Whitney tests.

(F) Ratio of receptor number at the tip to body in simulations and experiment in circular cells.

(G) Ratio of receptor number at the tip to body in simulations and experiment in elliptical cells.

See also Figures S2 and S3 and Tables S3, S4, and S5.
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Figure 5. Levels of Activated MAPK1,2 in the Nucleus of Circular and Elliptical Cells

(A) Simulations of the activation of MAPK1,2 in the cytoplasm. The concentration of MAPK1,2 in the cytoplasm follows the kinetics shown in Figure S4—first

increasing and then attaining a steady value before decreasing. The spatial distribution of MAPK1,2 in the cytoplasm appears uniform because of the high

diffusion coefficient of MAPK1,2 in the cytoplasm. Later time points are shown for comparison with experiments

(B) Simulations of active MAPK1,2 in the nucleus. The concentration of MAPK1,2 increases with time in the nucleus. The spatial distribution of MAPK1,2 in the

nucleus appears uniform because of the high diffusion coefficient of active MAPK within the nucleus.

(C) (i) From simulations, the number of molecules of active MAPK1,2 in the nucleus is higher in elliptical cells when compared to the number of active MAPK in

circular cells. (ii) The concentration of p-MAPK1,2 in circular and elliptical cells at 20 min is shown from simulations.

(D) Elliptical COS7 cells stimulated with EGF show an enhanced accumulation of phosphor- MAPK. p MAPK1,2 immunostained cells are shown as color-coded

grayscale images. Original pseudocolored images are shown in Figure S5.

(E) EGF-treated cells show a higher concentration of p-MAPK1,2 in elliptical cells than in circular cells. Fluorescence intensity ratios of nuclear p-MAPK1,2/

MAPK1,2 were plotted as mean ± SEM (n = 15–31; p = 0.0069; one-tailed t test)

See also Figures S4 and S5.
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resonance energy transfer (FRET) probe that localizes to the

nucleus (Harvey et al., 2008) and were plated on coverslips

with microfabricated circular and elliptical wells. The cells were

serum starved overnight and then stimulated with EGF, and acti-

vated nuclear MAPK1,2 response was measured using FRET.

We found that, in elliptical cells, there was an increase in the level

of activated MAPK1,2 in the nucleus compared to circular cells

(Figure S5). However, these experiments were problematic

because the cells transfected with the FRET probe that functions

as a de facto dominant negative and plating on the engineered

surfaces resulted in a large number of unhealthy cells, leading

to variable responses (Figure S5, inset). Hence, we decided to

use an immunochemistry approach in which cells plated on

microfabricated surfaces were stimulated, fixed, and then

stained with phospho-MAPK1,2 antibodies. This approach

yielded much more reproducible observations. The nuclei of

elongated cells had significantly higher amounts of phospho-

to total-MAPK1,2. Representative pseudocolored images are

shown in Figure 5D, along with the quantification of the average

response in Figure 5E. The original images of the experiment in

Figure 5D are in Figure S5. We show that this increase in nuclear

MAPK1,2 activation is not due to changes in nuclear area

(Figure S5).

To further establish the general relevance of our findings, we

tested our model in another cell type, primary neonatal rat car-

diac fibroblasts, where activation of Src is stimulated by the

growth factor PDGF. Table S6 shows reactions and various

parameters, and experimental time course of p-Src is shown in

Figure S6. Whereas circular cells exhibit no spatial variation in

Src activation at any time (Figure 6A), elliptical cells generate

increased levels of activated Src at the tips where membrane

curvature is also higher (Figure 6C).

In order to test these predictions experimentally, primary car-

diac fibroblasts were grown on microfabricated surfaces, which

resulted in cells with elliptical (eccentricity = 0.99) or circular

(eccentricity = 0) shapes. Circular fibroblasts did not exhibit

any spatial inhomogeneity of Src activation at any time (Fig-

ure 6B); elliptical cells, however, showed a curvature-dependent

spatial activation of Src upon stimulation (Figure 6D). This spatial

gradient lasted for up to 30 min, demonstrating that the local

shape of the cell can induce transient spatial inhomogeneities

on the activation of downstream signaling components.

Comparing the concentration of phospho-Src in the cyto-

plasm shows that elliptical cells have a higher concentration of

phospho-Src than circular cells (Figure 6E). This behavior is

also observed in experiments, in which elliptical fibroblasts
Figure 6. Levels of PDGF-Activated Phospho-Src in Circle and Elliptic

(A) Simulations show that, in circular cells, homogeneous concentration of phos

(B) In experiments, circular cardiac fibroblasts grown in microfabricated grooves

as measured by quantitative immunofluorescence.

(C) Simulations show that, upon activation, the concentration of phospho-Src lea

(D) In experiments, PDGF-activated phospho-Src in cardiac fibroblasts grown o

(E) Simulations show that phospho-Src in the cytoplasm has a higher concentra

circular cells.

(F) Summary of experimental data of fold increase of phospho-Src upon PDGF ac

two separate experiments and SEM (n = 12–20; *p < 0.001 when comparing ellipse

correction for multiple comparisons).

See also Figure S6 and Table S6.
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show a higher concentration of phospho-Src when compared

to circular cells (Figure 6F). In the case of Src, the cytoplasmic

gradient is observed because Src may be associated with endo-

somal membranes and may not diffuse as fast as MAPK1,2 in

the cytoplasm (Kaplan et al., 1992). Thus, the activation of

Src through PDGF signaling also shows transient curvature

dependence.

DISCUSSION

This study provides evidence that cell shape can play a role in in-

formation processing as extracellular signals are transduced to

intracellular signals at the plasma membrane. This information-

processing capability arises from simple reaction-diffusion

kinetics of lateral mobility of proteins in the plane of the mem-

brane and their ability to selectively interact with partners in the

aqueous milieu either in the extracellular space, as is the case

for receptor agonists, or intracellularly with components in the

cytoplasm such as adaptors and exchange factors by receptor

tyrosine kinases. Because receptor tyrosine kinases stimulate

GTPases such as Rho, Rac, and Cdc42 to affect cell shape

and because cell shape can in turn modulate receptor signals

flowing through these GTPases, cell shape and growth factor

signals can act as a multiscale feedback loop. Such feedback

loops could play a role in reinforcing the transformed state, as

rate of proliferation can depend on cell shape (Folkman and

Moscona, 1978). Although the effects observed at the plasma

membrane are small in magnitude, the propagation of these dif-

ferences along the signaling pathway results in significant

changes in downstream effectors such as Src and MAPK such

that biologically meaningful effects are likely.

Using a combination of theory, numerical simulations, and

experiments, we show that local curvature of the cell can modu-

late information processing of biochemical signaling pathways.

The order of interaction between volume (extracellular and cyto-

plasmic) and surface (membrane-bound) components also plays

an important role in determining the spatial pattern. As shown in

Figure 1, in the simple case of one reaction, the resulting spatial

gradient can be either Mathieu sine or cosine function. The local

competition between reaction and diffusion combined with the

reaction direction can lead to a transient inhomogeneity of

membrane-bound components resulting solely from cell shapes.

This conclusion obtained from our mathematical analyses and

numerical simulations illustrates the nonintuitive knowledge of

biological mechanisms that can be obtained from theoretical

analysis.
ally Shaped Cardiac Fibroblasts

pho-Src in the cytoplasm is obtained upon activation of the cells by PDGF.

(n = 13–19) exhibit nearly uniform activation of Src near the plasma membrane,

ds to a curvature-dependent concentration gradient in the cytoplasm.

n elliptical cells (n = 12–14) shows a concentration gradient.

tion in elliptical cells when compared to the concentration of phospho-Src in

tivation for indicated times. Values are means of 12–20 independent cells from

s and circles at the same time point; unpaired two-tailed t tests with Bonferroni
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The predictions from our model were tested experimentally in

different cases. We tested the membrane distribution of recep-

tors for bradykinin and EGF. In both cases, we were able to

obtain a good match between the model prediction and the

experimental observations. The net result of the curvature-

dependent spatial inhomogeneity is that the concentration of

downstream cytoplasmic component (MAPK1,2 and Src) is

higher in elliptical cells than in circular cells. This observation

provides one part of the explanation why cells that have under-

gone neoplastic transformation can have a higher MAPK activity.

The composition of the plasma membrane is complex, con-

taining regional inhomogeneities in phospholipid and cholesterol

concentrations (Eggeling et al., 2009; Lingwood and Simons,

2010) that will alter the lateral mobility of proteins. Additionally,

the presence of membrane scaffolds and anchors that connect

membrane proteins to the cytoskeleton will also affect lateral

mobility. Given these regulatory processes, it would not be

possible to fully experimentally decipher what, if any, contribu-

tion cell shape alone can make to information processing. The

mathematical analyses and numerical simulations shown here

clearly demonstrate that the simple physico-chemical properties

of the system can enable cell shape to dynamically control infor-

mation processing as signal flows across the cell-surface mem-

brane. Because cell shape is often the result of prior signaling, in

addition to network regulatory motifs such as positive-feedback

loops (Bhalla and Iyengar, 1999), cell shape can also be consid-

ered a locus of information storage within the cell.
EXPERIMENTAL PROCEDURES

Microfabrication

Circular or elliptical wells were microfabricated with standard photolithog-

raphy techniques (Qin et al., 2010). Briefly, glass coverslips were cleaned by

successive washes in boiling 25% Linbro 73 surfactant and deionized water,

nitrogen dried, and treated with oxygen plasma. They were then spin coated

with a 500-nm-thick layer of SU-8 2000.5 resist, baked, exposed to UV light

on a mask aligner, developed, and rinsed according to the manufacturer’s in-

structions. The surface area for both elliptical and circular patterns was main-

tained constant at 2,000 mm2. The circular patterns had a diameter of 50 mm.

The major axis (r1) and minor axis (r2) for elliptical patterns was 134 and

19 mm, respectively.

Diffusion Measurements of EGFR-eGFP in COS-7 Cells

EGFR-eGFP is a kind gift from Dr. Linda Pike (Washington University School of

Medicine). Micropatterned coverslips were pretreated with 500 mg/ml Genta-

micin (Sigma) and 0.5% Pluronic F127 (Sigma) for 1 hr and washed with

distilled water three times. Cells were reverse transfected with Fugene HD us-

ing manufacturer’s instructions (Roche Diagnostics). Briefly, EGFR-eGFP and

Fugene HD were complexed in a 1:3 mg DNA:mL Fugene ratio and incubated

with �70,000 COS-7 cells in suspension. 36 hr posttransfection, cells were

incubated in serum-starving media (DMEM, 0.1% FBS) for 12 hr. At least

1 hr before stimulation, cells were treated with 10 mM NaN3, 2 mM NaF, and

5 mM 2-deoxy-D-glucose to prevent internalization of EGFR (Liu et al., 2007).

Fluorescence correlation spectroscopy (FCS) measurements were per-

formed on cells expressing EGFR-eGFP using a Zeiss LSM 510 Confocor-2

system equipped with 403 (N.A. 1.2) water immersion objective. eGFP was

excited using 488 nm Argon laser, and the focal volume was determined using

10 nM Rhodamine 6G solution (D = 2.8 3 10�6 cm2/s). The focal volume was

focused on either the cell body, which was aligned with the nucleus, or on the

cell tip, which was designated as within 5 mm from the apex of the cell shape

(Figure S5A). A z axis scan of the cells showed two peaks corresponding to the

basolateral and apical membrane populations of EGFR-eGFP (Figure S5B).
1368 Cell 154, 1356–1369, September 12, 2013 ª2013 Elsevier Inc.
The apical peak was chosen for FCS measurements. Each FCS trace was

measured for 20 s. EGFR was stimulated using 100 ng/ml of EGF. Measure-

ments were started immediately after EGF addition andwere completed within

8 min. Time traces that showed a decrease or increase of intensity were not

used for analysis. Autocorrelation functions were analyzed using a two-

component, pseudo-2D diffusion model by modifying the 3D fitting routine

provided by the Confocor2 software and setting the structural parameter to

quasi-infinite: G(t) = 1 + 1/N{(1+t/tD)
�1[1+t(S�2tD)]

�1/2}, where t is the corre-

lation time, tD is the average time a particle spends in the confocal volume, N

is the average number of molecules in the confocal volume, and S is the

structural parameter, where S is set to 100 (quasi-infinite) for 2D diffusion.

The diffusion coefficient, D, is calculated from the tD of a molecule using Ein-

stein relation for diffusion: r2 = 4D3 tD, where r is the radius of the observation

volume (Figure S2E). To quantify the number of EGFR-eGFP on themembrane,

N was obtained from the fit, which is the average number of receptors in the

confocal volume. To determine the concentration of receptors per unit area,

N was divided by the area of the beam waist obtained through the calibration

of the confocal volume with Rhodamine.

For details on mathematical modeling, simulations using Virtual Cell, the

parameters used in the simulations, and standard experimental procedures

please see the Supplemental Information.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, six

figures, and six tables and can be found with this article online at http://dx.

doi.org/10.1016/j.cell.2013.08.026.
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Dubin-Thaler, B.J., Giannone, G., Döbereiner, H.G., and Sheetz, M.P. (2004).

Nanometer analysis of cell spreading on matrix-coated surfaces reveals two

distinct cell states and STEPs. Biophys. J. 86, 1794–1806.

Dubin-Thaler, B.J., Hofman, J.M., Cai, Y., Xenias, H., Spielman, I., Shneidman,
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Beaver, W., Döbereiner, H.G., Freund, Y., Borisy, G., and Sheetz, M.P.

(2007). Lamellipodial actin mechanically links myosin activity with adhesion-

site formation. Cell 128, 561–575.

Hall, A. (2005). Rho GTPases and the control of cell behaviour. Biochem. Soc.

Trans. 33, 891–895.

Harvey, C.D., Ehrhardt, A.G., Cellurale, C., Zhong, H., Yasuda, R., Davis, R.J.,

and Svoboda, K. (2008). A genetically encoded fluorescent sensor of ERK

activity. Proc. Natl. Acad. Sci. USA 105, 19264–19269.
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